Graph Neural Networks in Biology: Introduction

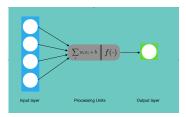
Alexander Schönhuth Luna Pianesi

Bielefeld University April 15, 2025

Graph Neural Networks: Motivation

Neural Networks

NEURONS Linear + Activation Function



output = $a(w^T \cdot x + b)$

Note: replace *f* in Figure by *a*!

Neuron: linear function followed by activation function

Examples

a = Id

a is identity function

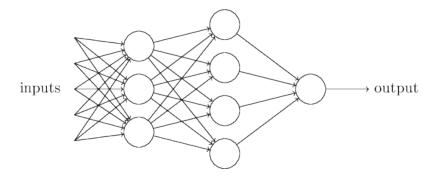
► Perceptron:

$$a(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

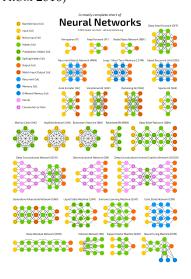
a is step function

NEURAL NETWORKS

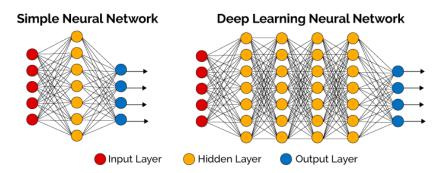
CONCATENATING NEURONS



NEURAL NETWORKS Architectures (chart from 2016)



DEEP NEURAL NETWORKS



Width = Number of nodes in a hidden layerDepth = Number of hidden layers $Deep = depth \ge 8$ (for historical reasons)

NEURAL NETWORKS

FORMAL DEFINITION

- Let x^l ∈ ℝ^{d(l)} be all outputs from neurons in layer *l*, where d(l) is the *width* of layer *l*.
- Let $y \in V$ be the output.
- Let $\mathbf{x} =: \mathbf{x}^0$ be the input.
- ► Then

$$\mathbf{x}^{l} = \mathbf{a}^{l} (\mathbf{W}^{(l)} \mathbf{x}^{l-1} + \mathbf{b}^{l})$$

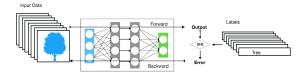
where $\mathbf{a}^{l}(.) = (a_{1}^{l}(.), ..., a_{d(l)}^{l}(.))$, $\mathbf{W}^{(l)} \in \mathbb{R}^{d(l) \times d(l-1)}$, $\mathbf{b}^{l} \in \mathbb{R}^{d(l)}$

► The function *f* representing a neural network with *L* layers (with depth *L*) can be written

$$y = f(\mathbf{x}^0) = f^{(L)}(f^{(L-1)}(...(f^{(1)}(\mathbf{x}^{(0)}))...))$$

where $\mathbf{x}^{l} = f^{(l)}(\mathbf{x}^{l-1}) = \mathbf{a}^{l}(\mathbf{W}^{(l)}\mathbf{x}^{l-1} + \mathbf{b}^{l})$

TRAINING: BACKPROPAGATION



► *E.g.* let *X* be a set of images, labels 1 and 0: tree or not

► Let

$$f_{(\mathbf{w},\mathbf{b})}: X \to \{0,1\}$$
 and $\hat{f}: X \to \{0,1\}$

be the network function $(f_{w,b})$ and the true function (\hat{f})

- ► $L(f_{(\mathbf{w},\mathbf{b})},\hat{f})$ loss function, differentiable in network parameters \mathbf{w}, \mathbf{b}
- Back Propagation: Minimize L(f, f) through gradient descent
 Image: Heavily parallelizable!
- Decisive: Ratio number of parameters and training data

Why Neural Networks?

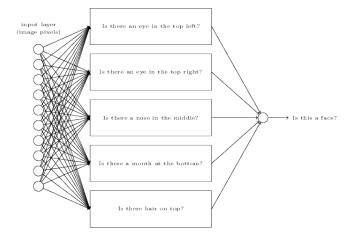
WHY NEURAL NETWORKS?

Given an (unknown) functional relationship $f : \mathbb{R}^d \to V$, why should we learn f by approximating it with a neural network?

Practical, Intuitive Consideration

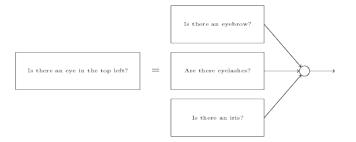
DEEP LEARNING

INTUITIVE EXPLANATION



► *Face recognition*: decompose classification task into subtasks

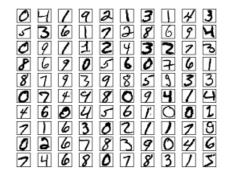
DEEP LEARNING IS INTUITIVE



- *Face recognition*: decompose subtask (eye recognition) into sub-subtasks
- Subtasks are composed into overall task "layer by layer"

RUNNING EXAMPLE: MNIST CLASSIFICATION

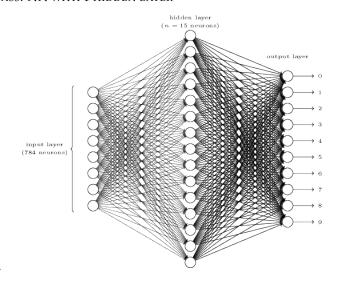
DATA, FUNCTION



$$f: \mathbb{R}^{28 \times 28 = 784} \longrightarrow \{0, 1, ..., 9\}$$

(1)

RUNNING EXAMPLE Model Class: NN with 1 hidden layer



RUNNING EXAMPLE

together makes

Neurons of hidden layer recognize characterizing parts of digit

Theoretical Consideration

THE UNIVERSAL APPROXIMATION THEOREM

First version formulated by George Cybenko in 1989.

Theorem

A feedforward network with a single hidden layer containing a finite number of neurons can approximate any nonconstant, bounded and continuous function with arbitrary closeness, as long as there are enough hidden nodes.

Why Deep Learning?

Rule of Thumb

One needs approximately

as many training data as there are parameters

in the class of models

MORE LAYERS

We save on neurons/parameters, while increasing number of steps, by increasing depth!

If you are curious about a working example: watch Lecture 02 by Prof. Schönhuth here https://gds.techfak.uni-bielefeld. de/teaching/2022winter/bioadl

WHY DEEP LEARNING

- ► We need only O(n + 1) (and not O(2n)) parameters to model a constellation with 2n steps and one symmetry axis
- ► Hence, we only need O(n + 1) training data, and not O(2n) (like SVM or Nearest Neighbour)
- In general O(n^l) (symmetric) steps need only O(nl) training data
- This illustrates why deeper NNs can deal with symmetry invariance in images

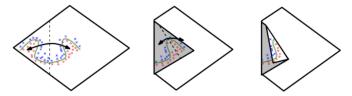
WHY DEEP LEARNING

Theorem (Universal Approximation; Montufar (2014))

Let f be an NN with d inputs, l hidden layers (depth l) of width n each. Then the number of differently labeled regions is

$$O\left(\binom{n}{d}^{d(l-1)}n^d\right) \tag{2}$$

That is, the number of regions that can receive different labels is exponential in the depth (the number of hidden layers) *l*.



[Montufar 2014]: Every neuron can fold space along an axis

DEEP LEARNING

ASSUMPTIONS

- Model classes make certain assumptions about properties of the functions they aim to approximate
- Many model classes (such as Nearest Neighbors and SVM's) require *local consistency* and *smoothness*: nearby points are likely to receive the same label
- Deep neural networks make further assumptions such as invariance to shifts, rotations and mirroring

IMAGENET AND ILSVRC

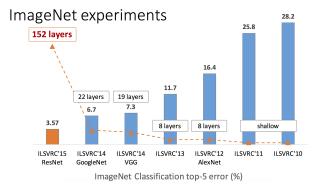
DATASET AND FIRST RESULTS

ImageNet examples: "beading plane", "brown root rot fungus", "scalded milk", "common roundworm"

- ► ImageNet dataset: 16 million full color images; 20 000 categories
- Starting point: Le, Ranzato, Monga, Devin, Chen, Corrado, Dean & Ng: "Building high-level features using large scale unsupervised learning", 2012, https://ai.google/research/pubs/pub38115 achieved 15.3 % test accuracy
- ► *ILSVRC*: Image-Net Large-Scale Visual Recognition Challenge
 - 2012: 1000 categories; Training 1.2 million images; Validation 50 000 images; Test 150 000 images

UNIVERSITÄT BIELEFELD

GOING DEEPER

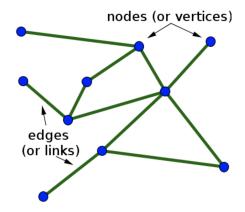


https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_ networks_kaiminghe.pdf; Note: correct error rate for AlexNet is 15.4%

Graph Neural Networks: Introduction

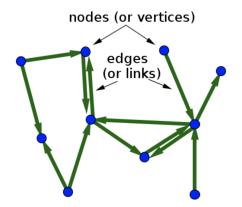
Graphs

GRAPHS: INTRODUCTION



From https://mathinsight.org/network_introduction

DIRECTED GRAPH



From https://mathinsight.org/network_introduction

GRAPHS, ADJACENCY MATRIX: DEFINITION

DEFINITION [GRAPH]:

A graph G = (V, E) has vertices V and edges $E \subset V \times V$. If G is *directed*, the order $(i, j) := (v_i, v_j) \in E$ matters (and edges are often referred to as *arcs*). If G is undirected, (i, j) can be considered unordered, so (i, j) = (j, i).

DEFINITION [ADJACENCY MATRIX]:

Let G = (V, E) be a graph with vertices V and (directed) edges E. The *adjacency matrix* $A = (a_{ij})_{1 \le i,j \le |V|}$ is defined by

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$
(3)

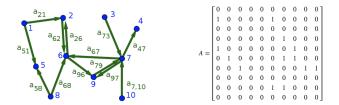
Remark: If *G* is undirected, $a_{ij} = 1$ implies $a_{ji} = 1$. Hence *A* is symmetric.

ADJACENCY MATRIX: EXAMPLE

DEFINITION [ADJACENCY MATRIX]:

Let G = (V, E) be a graph with vertices V and (directed) edges E. The *adjacency matrix* $A = (a_{ij})_{1 \le i,j \le |V|}$ is defined by

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$
(4)

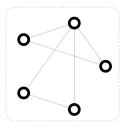


From https://mathinsight.org/network_introduction

Graphs: Storing Information

GRAPHS: STORING INFORMATION I

Graphs can store information in various ways



- V Vertex (or node) attributes e.g., node identity, number of neighbors
- E Edge (or link) attributes and directions e.g., edge identity, edge weight
- U Global (or master node) attributes e.g., number of nodes, longest path

Vertex attributes

From https://distill.pub/2021/gnn-intro/

GRAPHS: STORING INFORMATION II

Graphs can store information in various ways

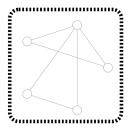
- V Vertex (or node) attributes e.g., node identity, number of neighbors
- E Edge (or link) attributes and directions e.g., edge identity, edge weight
- U Global (or master node) attributes e.g., number of nodes, longest path

Edge attributes

From https://distill.pub/2021/gnn-intro/

GRAPHS: STORINGINFORMATION III

Graphs can store information in various ways

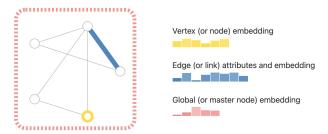


- V Vertex (or node) attributes e.g., node identity, number of neighbors
- E Edge (or link) attributes and directions e.g., edge identity, edge weight
- U Global (or master node) attributes e.g., number of nodes, longest path

Global attributes

GRAPHS: STORINGINFORMATION IV

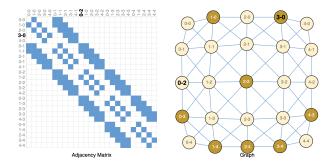
Graphs can store information in various ways



Embeddings: vector-valued information

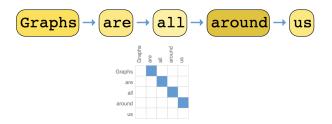
Graphs: Examples

GRAPHS: IMAGES



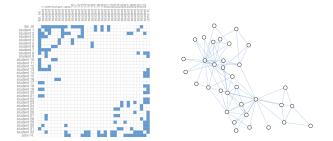
Graph and adjacency matrix of an image

GRAPHS: TEXTS



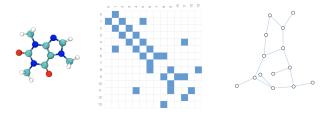
Graph and adjacency matrix of a piece of text From https://distill.pub/2021/gnn-intro/

GRAPHS: SOCIAL NETWORKS



Graph and adjacency matrix displaying interactions in karate club From https://distill.pub/2021/gnn-intro/

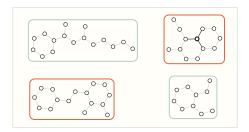
GRAPHS: MOLECULES



Graph and adjacency matrix of a molecule From https://distill.pub/2021/gnn-intro/

Graphs: Learning Tasks

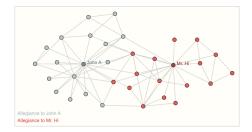
GRAPH LEVEL TASKS



Structures in molecule graphs. Two rings (red) or not (black).
From https://distill.pub/2021/gnn-intro/

- Labels reflect statements about the entire graph.
- ► If unknown, determine using machine learning.

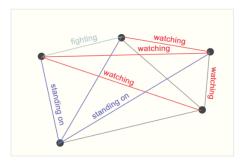
NODE LEVEL TASKS



Karate club: Allegiance to either Mr. Hi (red) or John A. (gray) From https://distill.pub/2021/gnn-intro/

- Labels reflect statements about individual nodes.
- ► Some may be known. Others not: determine using ML.

Edge Level Tasks



Fight scene in image: elements (two fighters, arbiter, audience, mat). Labels: relationships.

From https://distill.pub/2021/gnn-intro/

► Labels reflect statements about edges, so indicate relationships.

Some relationships known. If not known: determine using ML. ERSITÄT FELD

Graphs: Machine Learning Challenges

NEURAL NETWORKS AND GRAPHS

• Techniques for certain graphs available:

- ► *Images* = *Grids:* Convolutional neural networks
- Text = Sequences: Recurrent neural networks, attention networks
- Techniques for arbitrary graphs desirable:
 - ► *Social networks:* vary (heavily) by application
 - Molecules: plenty of different structures
 - Other applications: manifold interaction networks
- Motivation: Extend existing techniques to general graphs
- ► *Issue:* Get rid of regularity as a necessary condition

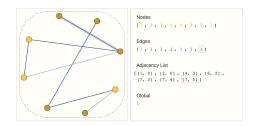
GENERAL GRAPHS: INPUT

► Neural networks usually expect well-arranged input:

- Rectangular, grid-like input
- Sequence type input
- Arrangement in terms of graph-type evaluation obvious
- Graphs may harbor four types of information:
 - Node information
 - Edge information
 - Global information
 - Connectivity

How to exploit them by appropriately arranging input?

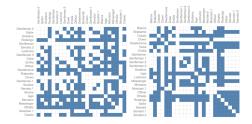
CHALLENGE: REPRESENTING INPUT



Suitable way of storing graph information. Colors: different information. From https://distill.pub/2021/gnn-intro/

- Nodes: node information
- Edges: edge information
- Global: global information
- Adjacency List: connectivity information

CHALLENGE: PERMUTATION INVARIANCE



- Graphs are permutation invariant
- Goal: Exploit data in permutation invariant way

Thanks for your attention!

