

Programming Data Visualization & Numerical Data Analysis

Luna Pianesi

Faculty of Technology, Bielefeld University

	then "Inclent and "Placing or
	is with the sh
233	extrapolate de sina
334	extrapolate None:
335	np.asarray(x) self.extrapolate
336	~_snape, x_ndim = x_change
337	- ip.ascontiguousarray(, x.ndim
338	# With ment
339	# [self.t[k]
340	if extrapolate = 'periodici
341	n = self.t.size - self.k - 1
342	<pre>x = self.t[self.k] + (x - self.t[self.k]);</pre>
343	automatata a fatas
344	extrapolate = ratse
346	<pre>out = np.empty((len(x), prod(self.c.shape[1:])),</pre>
347	<pre>selfensure_c_contiguous() selfensure_c_contiguous()</pre>
348	selfevaluate(x, nd, care + self.c.shape(1:)
349	if self.axis != 0:
350	<pre># transpose to mot.ndim)) # transpose to mot.ndim)) # transpose to mot.ndim))</pre>
351	l _ l[x ndim:x_ndim+self.axia)
354	out = out.transpose(t)
354	return out extrapolate, out);
355	nate(self, spline(self.t, sette, out)
356	defk, xp, nu, extra,
358	tiquous(self):
359	ensure_c_contrastitied by the use
360	det may be mousiguous
	c and they are contiguous:
	t. (Lags copy() javous!

Recap

1

Programming (Data Visualization & Numerical Data Analysis): Recap

File I/O and text mining

- File I/O: managing data in the form of files
- Reading, writing, and closing files
- File formats: plain text, XML, JSON, tables and matrices
- Text mining
- Information extraction with NLTK:
 - Lexical analysis: tokenization, stemming and lemmatization
 - Semantic analysis: parse trees
 - Domain analysis: anaphora resolution

Data Visualization

Numerical Data Analysis with NumPy Modeling Experimental Data

Programming (Data Visualization & Numerical Data Analysis): Data Visualization

What is data visualization?

Also known as *dataviz*, data visualization is the practice of designing and creating **easy-to-communicate** and **easy-to-understand** images or other types of visual representations of complex data.

source: https://en.wikipedia.org/wiki/Data_and_information_visualization

Matplotlib: dataviz with Python

- de-facto standard library for scientific visualizations
- Many third party packages built on top of Matplotlib
- Comprehensive library for creating static, animated, and interactive visualizations

source: https://matplotlib.org/

What you can do with Matplotlib

Lines, bars and markers

Programming (Data Visualization & Numerical Data Analysis): Data Visualization

Data Visualization

Numerical Data Analysis with NumPy Modeling Experimental Data

What is numerical data analysis?

Now we know how to plot data, but what data are we plotting? Numerical analysis is the study of the methods that find *approximate* solutions to problems. Our numbers will be anything that can be measured, and our analyses will focus on algorithms that *approximately* make sense of that data.

source: https://en.wikipedia.org/wiki/Numerical_analysis

NumPy: numerical analysis with Python

- Fundamental package for scientific computing in Python
- The library provides:
 - A multidimensional array object
 - Fast and easy operations on arrays

Initial Documentation Learn Community About Us News Contribute English
NummPy
The fundamental package for scientific computing with Python
Learn Tableship Initial Package (Second Second Seco

NumPy 2.1 released! 2024-08-18

Powerful N-dimensional arrays Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.	Numerical computing tools NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.	Open source Distributed under a liberal <u>BSD license</u> , NumPy is developed and maintained <u>publicly on GitHub by a vibrant</u> , responsive, and diverse <u>community</u> .
Interoperable NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.	Performant The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.	Easy to use NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.
	Try NumPy Use the interactive shell to try NumPy in the brow	ser
he brawser: t cell and press tt ell and press tte e, and click on he toolbar	2 S WebAssembly-powered Python kernel backed by Py [1]: import numpy as np	odiđe

N-dimensional array: numpy.ndarray

Array data structure

- **immutable**: can't be changed after creation
- *n-dimensional*: very useful for multidimensional data
- **storage efficient**: Python takes care of it
- can store only data of same type: can't mix int and float, for example

source: https://numpy.org/doc/stable/user/absolute_beginners.html

Data Visualization

Numerical Data Analysis with NumPy Modeling Experimental Data

Programming (Data Visualization & Numerical Data Analysis): Modeling Experimental Data

NASA's GISS Surface Temperature Analysis

- https://data.giss.nasa. gov/gistemp
- Collection of temperature data from thousands of meteorological stations
- Data represents anomalies, i.e., deviations from mean temperature measured in 1951-1980

Box (whisker) plot

source: https://en.wikipedia.org/wiki/Box_plot

Programming (Data Visualization & Numerical Data Analysis): Modeling Experimental Data

Whisker plot of GISS data

Temperature anomalies between 1881-2019

Programming (Data Visualization & Numerical Data Analysis): Modeling Experimental Data

Further material on methods in Data Science

MIT Course 6.0002, Lectures on Understanding Experimental Data:

- https://www.youtube.com/v/vIFKGFl1Cn8
- https://www.youtube.com/v/fQvg-hh9dUw

Linear regression

Linear regression is a *linear* approach for modelling a predictive relationship between some parameters and a given input:

$$X = \begin{pmatrix} X_0 \\ X_1 \\ \vdots \\ X_{N-1} \end{pmatrix}, Y = \begin{pmatrix} Y_0 \\ Y_1 \\ \vdots \\ Y_{N-1} \end{pmatrix} \rightarrow \alpha = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{N-1} \end{pmatrix}$$

Estimator:

$$\hat{Y} = \alpha_0 + \alpha_1 X + \alpha_2 + X^2 + \dots + \alpha_{N-1} X^{N-1}$$

Simple linear regression: Estimate line, i.e, estimate α_0 , α_1 and set $\alpha_2 = \cdots = \alpha_{N-1} = 0$

Programming (Data Visualization & Numerical Data Analysis): Modeling Experimental Data

What criterion to optimize?

id est, Which line is better?

Optimization criteria

- Residual: difference predicted/observed |Y_i - Ŷ_i|
- Possible minimization criteria:
 - Sum of residuals
 - Maximum
 - Variance of residuals

$$Var_{res} := \frac{1}{N} \sum_{i} (Y_i - \hat{Y}_i)^2 = E[(Y - \hat{Y})^2]$$

Minimize Var_{res} = ordinary least squares optimization

Optimization criteria

- Residual: difference predicted/observed |Y_i - Ŷ_i|
- Possible minimization criteria:
 - Sum of residuals
 - Maximum
 - Variance of residuals

$$Var_{res} := \frac{1}{N} \sum_{i} (Y_i - \hat{Y}_i)^2 = E[(Y - \hat{Y})^2]$$

Minimize Var_{res} = ordinary least squares optimization

Why least squares?

Three advantages:

- 1. Penalizes large deviations from the observed data very strongly and sums over all data points;
- 2. Finding the polynomial that minimizes the variance can be done efficiently via least squares optimization methods;
- 3. Minimizing the variance guarantees that there is one and only one solution.

Coefficient of determination R^2

How to measure quality of fit?

Recall: Ordinary Least squares optimization minimizes Varres

 R^2 is a normalized measure thereof:

$$R^2 := 1 - \frac{Var_{res}}{Var(Y)}$$

i.e, ${\it R}^2
ightarrow 0$ bad fit, ${\it R}^2
ightarrow 1$ good fit

Separated training from testing

Programming (Data Visualization & Numerical Data Analysis): Modeling Experimental Data

Quiz

- True or false?
 - The residual is the distance between an observed and its predicted data point
 - Linear regression always minimizes the variance of residuals
 - Linear regression is the task of fitting a line to a set of data points
 - Ordinary least squares always minimizes the variance of residuals
- How does linear regression measure the distance between an observed and its predicted data point?

Quiz

- True or false?
 - The residual is the distance between an observed and its predicted data point true
 - Linear regression always minimizes the variance of residuals false
 - Linear regression is the task of fitting a line to a set of data points false
 - Ordinary least squares always minimizes the variance of residuals true
- How does linear regression measure the distance between an observed and its predicted data point? (a)

Recap

Programming (Data Visualization & Numerical Data Analysis): Recap

Summary

- Plots with matplotlib:
 - Line- and scatter plot
 - Histogram
 - Whisker (box) plot
- Numpy
 - ndarray data type
 - Vectorized operations, broadcasting
 - Curve fitting: polyfit()
- Realistic data analysis: climate trends

What comes next?

- Draw your first plots with matplotlib
- Further reading about NumPy: Chapter 2 of the "Python Data Science Handbook":

https://jakevdp.github.io/PythonDataScienceHandbook/

Due date for this week's exercises is Wednesday, December 11, 2pm, 2024.

Next lecture: Pandas! ...