
06-Exercises

November 27, 2024

1 06 - Exercises: file input/output
This week we saw: - How to deal with files in input and output in Python - Different file formats
for our files - What is text mining - NLTK for natural language processing

Here are some exercises to help you get comfortable with these concepts :)

1.1 0. Some setup
Often, text is not stored plainly, but in some formatted structure, such as Word documents, HTML
web pages, or XML files. In this exercise, we will learn: 1. How to install third-party packages
with Anaconda 2. How to preprocess such data through the example of reading a Word document.
For this you are provided with the first chapter of Mary Shelley’s novel Frankenstein in the file
Frankenstein.docx.

NOTE: a .docx file is a compressed archive that contains a set of different XML documents;
each of them can contain content, but also theme details, settings and style instructions:

Browsing zipfile Frankenstein.docx:
[Content_Types].xml
_rels/.rels
word/_rels/document.xml.rels
word/document.xml
word/theme/theme1.xml
word/settings.xml
word/fontTable.xml
word/webSettings.xml
docProps/app.xml
docProps/core.xml
word/styles.xml

(if you’re curious how to do it on your own laptop, try googling “How to browse a .docx file as a
compressed archive”)

1.2 1. Installing third-party packages with Anaconda - 1 point
The third-party package python-docx provides a Word Document parser that you will use to
load the contents of Frankenstein.docx into your Python program. 1. Open Anaconda Navigator
and switch to the “Environments” view. 2. Add channel “conda-forge” by clicking on the “channels”
button, and then “add”. 3. Update the package index afterwards. 4. Switch to the “Not installed”

1

list and search for “python-docx”, then select the package for installation and hit the “Apply”
button

[]:

1.3 2. Preprocessing the Frankenstein.docx file - 3 points
Now that we have our python-docx package installed, we can turn to the task of preprocessing
the Frankenstein.docx file: 1. Read up on the package and its API (Application Programming
Interface) at https://python-docx.readthedocs.io/en/latest/. 2. Load the Frankenstein.docx file.
3. Iterate over its paragraphs, and extract the content in a single, long string. Delimit paragraphs
by a newline (\n) character. - You can use a for loop, the join() function, a list comprehension…
4. Print the contents of the string.

[]:

1.4 3. Improving the lemmatization of the Frankenstein test
1.4.1 3.1. Repeating some analyses - 3 points

During the lecture, we have noted that lemmatization without Part-Of-Speech (POS) information
will lead to a poor performance. We will now investigate the issue further in this exercise. 1. Repeat
the analysis of the lecture in which the WordNetLemmatizer is applied to the Frankenstein text:
- Create a list of filtered words by removing punctuation marks and ignoring stop words. - Print
the 10 most common words after this filtering - Instantiate the WordNetLemmatizer - Lemmatize
words in the filtered words list - Print the 10 most common words after lemmatization of filtered
words

[]:

1.4.2 3.2. Tagging a text: using nested lists - 3 points

The process of obtaining POS information is called tagging. You can find some info about
tagging with NLTK here: https://www.nltk.org/book/ch05.html. The following step of the ex-
ercise requires some additional data from NLTK’s database, which can be obtained by execut-
ing the following commands: - import nltk - nltk.download('average_perceptron_tagger') -
nltk.download('universal_tagset')

Now we are ready to continue our analyses! Let’s use NLTK’s functionality to tag the Frankenstein
text: 1. Tagging can only be performed sentence by sentence. Therefore, alter the analysis shown
in the lecture to create a list of sentences, where each sentence is again represented by a list of its
contained words that preserves their original order. Use NLTK’s sentence and word tokenizers
for this task: - Import necessary packages - Tokenize each sentence in the text by using the
sent_tokenize() function we used together - Tokenize each word of each sentence by using the
word_tokenize() function we used together (you need to maintain the nested list structure!) -
Print the results

[]:

2

1.4.3 3.3. Tagging a text: using NLTK’s pos_tag() - 3 points

Now we are ready to tag each sentence of the text using NLTK’s pos_tag() function! 1. When
calling this function, use the parameter setting tagset='universal' to indicate the use of the
more commonly used universal POS annotation (called **tagset), instead of the NLTK’s default
one: - Use the pos_tag() function on the list containing each tokenized sentence in a list - Print
the result

[]:

1.4.4 3.4. Tagging a text: Prepare the POS information for the WordNetLemmatizer
- 2 points

Before we can supply the newly obtained POS information to the WordNetLemmatizer, the tagset
must be mapped to the WordNetLemmatizer’s tagset dialect. 1. The WordNetLemmatizer can
only lemmatize nouns, verbs, adverbs, and adjectives, so we need to create a mapping: - Create a
dictionary to map between the universal tagset and WordNetLemmatizer’s tagset dialect using the
following table:
NOUN n
VERB v
ADV r
ADJ a

[]:

1.4.5 3.5. Lemmatize the sentences - 5 points

1. Create a function lemmatizeSentences(text, universal_to_wordnet_tagset) that lem-
matizes the given text (represented as a list of lists of word-tokenized sentences) and our
previously created mapping between the universal and WordNetLemmatizer’s tagset. Discard
any word whose tag does not appear in the mapping:
• Create the function lemmatizeSentences(text, universal_to_wordnet_tagset)
• Iterate through your tagged text
• Discard any word whose tag does not appear in the mapping
• “Translate” your tagset used the dictionary we previously created
• Lemmatize each word in your sentence and store it

[]:

1.4.6 3.6. Analyze results - 5 points

Finally! After all of our analyses, let’s print out the results and compare them. 1. Print the 10
most frequent lemmatized words after tagging 2. Compare the sets of lemmatized words before
and after tagging.

Are they different? How?

[]:

3

	06 - Exercises: file input/output
	0. Some setup
	1. Installing third-party packages with Anaconda - 1 point
	2. Preprocessing the Frankenstein.docx file - 3 points
	3. Improving the lemmatization of the Frankenstein test
	3.1. Repeating some analyses - 3 points
	3.2. Tagging a text: using nested lists - 3 points
	3.3. Tagging a text: using NLTK's pos_tag() - 3 points
	3.4. Tagging a text: Prepare the POS information for the WordNetLemmatizer - 2 points
	3.5. Lemmatize the sentences - 5 points
	3.6. Analyze results - 5 points

