
Programming
Object-oriented

programming

Luna Pianesi

Faculty of Technology, Bielefeld University

Bielefeld University, November 13, 2024

Recap

Programming (Object-oriented programming): Recap 1

Functions: reusable blocks of code with defined syntax

Variable scope: local vs global

Debugging with try/except statements

Functional programming: treating functions as objects
First-class functions

Recursions

Lambda functions

map, reduce and filter
List comprehensions, generator expressions

Lazy evaluation

Programming (Object-oriented programming): Programming Errors &Debugging 2

Programming

Errors &

Debugging
Classes

Modules Packages

Programming errors

Programming (Object-oriented programming): Programming Errors &Debugging 3

Recognizing different types of errors:

Syntactic: spelling & grammar mistakes
e.g. avg = (x y)/2

Semantic: mistakes in meaning, context, or program flow
e.g. avg = x+ y/2 or avg = (x+ z)/0

Distinction between

Compile-time errors (syntactic, semantic)

Runtime errors (semantic)

RuntimeError

Programming (Object-oriented programming): Programming Errors &Debugging 4

Changing the size of my_dict in loop

1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # for-loop over keys of my_dict with control
variable 'key'

5 for key in my_dict:
6 my_dict[(key , 1, 2, 3)] = 'new element'

Catching exceptions

Programming (Object-oriented programming): Programming Errors &Debugging 5

Controlled treatment of anticipated exceptions:

1 while True:
2 try:
3 x = int(input("Please enter a number: "))
4 break
5 except ValueError:
6 print("Oops! That was no valid number. Try again...")

Raising exceptions

Programming (Object-oriented programming): Programming Errors &Debugging 6

Use raise keyword to throw exceptions:

1 def myFunction(collection):
2

3 if len(collection) == 0:
4 raise RuntimeError("Invalid input: empty collection")
5 # do something ..
6 return
7

8 myFunction(list())

Raising exceptions

Programming (Object-oriented programming): Programming Errors &Debugging 7

Check properties of input parameters using the assert
statement:

1 def myFunction(collection):
2

3 assert len(collection) > 0, "Invalid input: empty collection"
4

5 # do something ..
6 return
7

8 myFunction(list())

Failed assertions result in an AssertionError

Debugging

Programming (Object-oriented programming): Programming Errors &Debugging 8

PDB—the Python debugger

Enables step-by-step proceeding of statements in Python

programs

Interaction with Python program at runtime

Debugger is invoked by breakpoints

Set breakpoint in arbitrary location of your code by
calling builtin “breakpoint()” function (Python version ≥ 3.7)

statement “import pdb; pdb.set_trace()”

Python debugger—example

Programming (Object-oriented programming): Programming Errors &Debugging 9

1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # invoke Python debugger
5 breakpoint()
6

7 # for-loop over keys of my_dict with control
variable 'key'

8 for key in my_dict:
9 my_dict[(key , 1, 2, 3)] = 'new element'

Programming (Object-oriented programming): Classes 10

Programming

Errors &

Debugging
Classes

Modules Packages

Programming (Object-oriented programming): Classes 11

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types!

Creating new types

Programming (Object-oriented programming): Classes 12

A class defines a new type

It can provide
class variables & functions

instance variables & functions

Classes—example of code reuse

Programming (Object-oriented programming): Classes 13

1 class Library:
2 description = 'This is a Library'
3

4 def __init__(self, name):
5 # name the library
6 self.name = name
7 # create empty book storage on initialization
8 self.storage = list()
9

10 def addBook(self, book):
11 self.storage.append(book)
12

13 def getAllBooks(self):
14 return tuple(self.storage)
15

16 myLib = Library('Bodleian Library')
17 myLib.addBook('The Art of Computer Programming (D. Knuth)')

Programming (Object-oriented programming): Modules 14

Programming

Errors &

Debugging
Classes

Modules Packages

Modules

Programming (Object-oriented programming): Modules 15

Every .py file is a module

Modules can host functions, variables, and classes

Imported modules with import statement

Should not have blocks of code that are immediately executed

Explicit reference to module scope: global
Name of module available as global variable __name__

Modules—example of code reuse

Programming (Object-oriented programming): Modules 16

mystringutils.py
1 #
2 # A module for all kinds of string utils
3 #
4
5 def findSubstringInStrings(stringCollection ,

pattern):
6 occ = list()
7 for i, s in enumerate(stringCollection):
8 j = s.find(pattern)
9 while j != -1:
10 occ.append((i, j))
11 j = s.find(pattern , j+1)
12 return occ

myscript.py
1 #!/usr/bin/env python3
2

3 import mystringutils
4

5 if __name__ == '__main__':
6 myStringList = ['the rain in spain',
7 'ain\'t no sunshine',
8 'she was greeted with disdain']
9

10 occOfAin = mystringutils.
findSubstringInStrings(myStringList ,

'ain')
11 print(occOfAin)

Programming (Object-oriented programming): Packages 17

Programming

Errors &

Debugging
Classes

Modules Packages

Packages

Programming (Object-oriented programming): Packages 18

Way of structuring multiple modules into a directory hierarchy

Package directories must contain a __init__.py file

Can be imported the same way as modules

Python itself offers many packages, and even more third-party

packages are available through package managers such as

conda

Quiz

Programming (Object-oriented programming): Packages 19

In Python, a class is for an object.

a nuisance an instance a blueprint

�

a distraction

Consider the following class:

1 class Dog:
2 def __init__(self , name , age):
3 self.name = name
4 self.age = age

What is the correct statement to instantiate a Dog object?

Dog('Rufus', 3)

�

Dog(self, 'Rufus', 3)
Dog.__init__('Rufus', 3)

source (in part): https://realpython.com/quizzes

https://realpython.com/quizzes

Quiz

Programming (Object-oriented programming): Packages 19

In Python, a class is for an object.

a nuisance an instance a blueprint� a distraction

Consider the following class:

1 class Dog:
2 def __init__(self , name , age):
3 self.name = name
4 self.age = age

What is the correct statement to instantiate a Dog object?

Dog('Rufus', 3) �
Dog(self, 'Rufus', 3)
Dog.__init__('Rufus', 3)

source (in part): https://realpython.com/quizzes

https://realpython.com/quizzes

Programming (Object-oriented programming): Recap 20

Recap

Summary

Programming (Object-oriented programming): Recap 21

Compile-time and runtime errors

Python debugger, a tool for hunting runtime errors (bugs)

Code reuse through
Functions

Classes

Modules & Packages

What comes next?

Programming (Object-oriented programming): Recap 22

Write your first class, module, and Python script

Due date for this week’s exercises isWednesday, November 27,

2pm, 2024.

Next lecture: Data management & analysis, Jupyter Notebook,

text mining ...

	Recap
	Programming Errors & Debugging
	Classes
	Modules
	Packages
	Recap

