
04-Exercises

November 6, 2024

1 03 - Exercises: functions, debugging, functional programming
and lazy evaluation

This week we saw a looot of things: - Functions - Debugging - Functional programming - Lazy
evaluation

Here are some exercises to help you get comfortable with these concepts :)

1.0.1 1. Animal Parade! (but turn this into a function) - 2 points

Imagine you’re organizing a parade with a list of animals. For each animal in the list, print its name
multiple times, creating a “parade” effect based on the animal’s length (number of characters). For
instance, “Cat” (3 letters) will repeat 3 times.

Let’s break down the task:

1. Create a list of animal names (e.g., ["Cat", "Elephant", "Dog", "Giraffe", "Bee"]).
2. Create a function that for each animal prints its name as many times as it has letters.
3. Define a single function and use nested for loops to print the repeated names.

Sample Output:

Cat Cat Cat
Elephant Elephant Elephant Elephant Elephant Elephant Elephant Elephant
Dog Dog Dog
Giraffe Giraffe Giraffe Giraffe Giraffe Giraffe Giraffe
Bee Bee Bee

Choose 5 different animals this time :)

[]:

1.0.2 2. Simple Calculator - 2 points

You decide that you want to substitute your physical calculator with a Python-based one. Write a
function that performs this task!

Let’s break down the task:

1. Define a function calculator(a, b, operation) where operation can be “add”, “subtract”,
“multiply”, or “divide”.

2. Based on operation, return the result of the chosen operation.

1

For example, calculator(10, 5, "add") should return 15.

[]:

1.0.3 3. Factorial Calculator - 2 points

Write a recursive function that calculates the factorial of a number. The factorial of a number
n, denoted by n!, is the product of all positive integers less than or equal to n. E.g. 3! = 3 * 2
* 1 = 6.

Let’s break down the task:

1. Write a recursive function factorial(n) that returns the factorial of a given number n.

For example, factorial(5) should return 120.

[]:

1.0.4 4. Food Servings Adjuster - 2 points

Write a function that uses try/except statements for error handling in division.

Let’s break down the task:

1. Write a function adjust_recipe(servings, people) that calculates how much to multiply
each ingredient to serve the desired number of people.

2. If people is zero (meaning there’s no one to serve!), catch the error and return "Sorry, no
one to cook for!".

For example, adjust_recipe(4, 2) should return 0.5 (since you’re cooking for half as many
people).

Example:

adjust_recipe(4, 2) # Should return 0.5
adjust_recipe(4, 8) # Should return 2.0
adjust_recipe(4, 0) # Should return "Sorry, no one to cook for!"

[]:

1.0.5 5. Prime Number Finder for Space Missions - 3 points

Write a function that uses the filter function to identify only “prime” rocket numbers.

Let’s break down the task:

1. Write a function is_prime(n) that checks if n is a prime number.
2. Define a list of rocket numbers, e.g., [101, 202, 303, 404, 505, 607, 808].
3. Use filter with is_prime to identify only the prime rocket numbers, meaning they’re more

likely to “reach space” safely!

Expected Output:

Promising rockets are: [101, 607]

2

[]:

1.0.6 6. Spot the error in the String Reverser - 3 points

Carefully read the following code and identify the errors in the string manipulation.

The reverse_string function is intended to return the reverse of a given string, but it’s not
working as expected. What are the problems? Write the correct function:

[]: def reverse_string(s):
reversed_str = ""
for i in range(len(s)):

reversed_str = reversed_str + s[i]
return reversed

print(reverse_string("hello")) # Expected output: "olleh"

[]:

1.0.7 7. Spot the error in the Number Doubler with map - 3 points

Carefully read the following code and identify the errors in the use of the map function.

The function is intended to return the double of each number in a list, but it’s not working as
expected. What are the problems? Write the correct function:

[]: numbers = [1, 2, 3, 4]
doubled_numbers = map(lambda x: x * 2, numbers)
print(doubled_numbers) # Expected output: [2, 4, 6, 8]

[]:

1.0.8 8. Fix the Sum with Reduce - 3 points

Carefully read the following code and identify the errors in the use of the reduce function.

The function is intended to return the sum of all numbers in a list, but it’s not working as expected.
What are the problems? Write the correct function:

[]: from functools import reduce
numbers = [1, 2, 3, 4]
total_sum = reduce(lambda x, y: x + y)
print(total_sum) # Expected output: 10

1.1 Bonus exercises
1.1.1 1. Dictionary Merger with Duplicate Key Handling - 2 points

Write a functino to merge two dictionaries with custom handling for duplicate keys.

Let’s break down the task: 1. Define a function merge_dicts that takes two dictionaries and
returns a new dictionary by merging them. 2. Use a try/except block to handle duplicate keys,

3

which should add "Error: Duplicate key encountered!" for that key. 3. What happens if you
do not handle duplicate keys? What is the default Python behaviour?

Example:

dict1 = {"a": 1, "b": 2}
dict2 = {"b": 3, "c": 4}
print(merge_dicts(dict1, dict2)) # Expected output: {"a": 1, "b": "Error:
Duplicate key encountered!", "c": 4}

[]:

4

	03 - Exercises: functions, debugging, functional programming and lazy evaluation
	1. Animal Parade! (but turn this into a function) - 2 points
	2. Simple Calculator - 2 points
	3. Factorial Calculator - 2 points
	4. Food Servings Adjuster - 2 points
	5. Prime Number Finder for Space Missions - 3 points
	6. Spot the error in the String Reverser - 3 points
	7. Spot the error in the Number Doubler with map - 3 points
	8. Fix the Sum with Reduce - 3 points

	Bonus exercises
	1. Dictionary Merger with Duplicate Key Handling - 2 points

