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Recap



Programming (Loops): Recap 2

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types



Conditional statements: if/else clause
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if �Boolean expression�:
␣␣␣␣�statement� � Mind the indentation!

OR

if �Boolean expression�:
␣␣␣␣�statement�
else:
␣␣␣␣�alternative statement�



Boolean operators, Comparisons
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Elementary logic: and, or, not

Comparators:
== “is equal/equivalent to”

!= “is not equal/equivalent to”

> “is larger than”

< “is is smaller than”

>= “is larger or equal to”

<= “is smaller or equal to”

is “is identical instance of”

is not “is not identical instance of”

in “is contained in collection”

not in “is not contained in collection”



Loops
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What are loops?

Loops are the ability of programming languages to execute

something again and again

They are a control flow statement

They allow us to execute a group of instructions as long as the

initial condition remains satisfied

Two keywords: for and while
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For loops

While loops



for-Loop
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for �control variable name� in �iterable�:
␣␣␣␣�statement� � Mind the indentation!



for-Loop: Iteration over ordered collections
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Loop over elements

1 # tuple filled with arbitrary elements
2 my_tuple = (1, 2.0, 'text', list(), dict())
3

4 # for-loop over my_tuple with control
variable 'el'

5 for el in my_tuple:
6 msg = 'element: {}'.format(el)
7 print(msg)



for-Loop: Iteration over ordered collections
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Loop over indices with range

1 # tuple filled with arbitrary elements
2 my_tuple = (1, 2.0, 'text', list(), dict())
3

4 # for-loop over my_tuple with control
variable 'i'

5 for i in range(len(my_tuple)):
6 el = my_tuple[i]
7 msg = 'element {}: {}'.format(i, el)
8 print(msg)



for-Loop: Iteration over ordered collections
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Update list in for-loop

1 # list filled with arbitrary elements
2 my_list = [1, 2.0, 'text', list(), dict()]
3

4 # for-loop over my_list with control
variable 'i'

5 for i in range(len(my_list)):
6 # update element with index i
7 my_list[i] = 'element {}: {}'.format(i,

my_list[i])
8 print(my_list[i])



for-Loop: Iteration over ordered collections
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Loop over indices and elements with enumerate

1 # list filled with arbitrary elements
2 my_list = [1, 2.0, 'text', list(), dict()]
3

4 # for-loop over my_list with control
variables 'i' and 'el'

5 for i, el in enumerate(my_list):
6 # update element with index i
7 my_list[i] = 'element {}: {}'.format(i,

el)
8 print('old: {}, new: {}'.format(el,

my_list[i]))



for-Loop: Iteration over unordered collections
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Loop over elements of a set

1 # set filled with arbitrary elements
2 my_set = {1, 1, 1, 2.0, 'text'}
3

4 # for-loop over my_set with control variable
'el'

5 for el in my_set:
6 msg = 'element: {}'.format(el)
7 print(msg)



for-Loop: Iteration over unordered collections
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Loop over keys of a dict

1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # for-loop over keys of my_dict with control
variable 'key'

5 for key in my_dict:
6 val = my_dict[key]
7 msg = 'key: {}, value: {}'.format(key ,

val)
8 print(msg)



for-Loop: Iteration over unordered collections

Programming (Loops): For loops 14

Loop over items of a dict

1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # for-loop over items of my_dict with
control variables 'key', 'val'

5 for key , val in my_dict.items():
6 msg = 'key: {}, value: {}'.format(key ,

val)
7 print(msg)
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For loops

While loops



Conditional iteration
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Another type of loop in Python: while
Loops until condition becomes False

1 x = 5
2 while x > 0:
3 print(x)
4 x -= 1 # shorthand for x = x - 1

Special keywords in loops:

continue: aborts current iteration and continues with the next

break: aborts loop completely



Quiz
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What does the instruction tuple(range(3)) return?

[1, 2, 3] (1, 2, 3) (0, 1, 2)

�

(0, 1, 2, 3)

Let x be any integer, how many times is the print statement in

the follwing for-loop executed?

1 for i in range(x):
2 for j in range(i):
3 print((i, j))

(
x
2

)
times



Quiz
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What does the instruction tuple(range(3)) return?

[1, 2, 3] (1, 2, 3) (0, 1, 2)� (0, 1, 2, 3)

Let x be any integer, how many times is the print statement in

the follwing for-loop executed?

1 for i in range(x):
2 for j in range(i):
3 print((i, j))

(
x
2

)
times
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Recap



Summary
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for and while
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