
Programming
Loops

Luna Pianesi

Faculty of Technology, Bielefeld University

Bielefeld University, October 30, 2024



Programming (Loops): Recap 1

Recap



Programming (Loops): Recap 2

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/

Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types



Conditional statements: if/else clause

Programming (Loops): Recap 3

if �Boolean expression�:
␣␣␣␣�statement� � Mind the indentation!

OR

if �Boolean expression�:
␣␣␣␣�statement�
else:
␣␣␣␣�alternative statement�



Boolean operators, Comparisons

Programming (Loops): Recap 4

Elementary logic: and, or, not

Comparators:
== “is equal/equivalent to”

!= “is not equal/equivalent to”

> “is larger than”

< “is is smaller than”

>= “is larger or equal to”

<= “is smaller or equal to”

is “is identical instance of”

is not “is not identical instance of”

in “is contained in collection”

not in “is not contained in collection”



Loops

Programming (Loops): Loops 5

What are loops?

Loops are the ability of programming languages to execute

something again and again

They are a control flow statement

They allow us to execute a group of instructions as long as the

initial condition remains satisfied

Two keywords: for and while



Programming (Loops): For loops 6

For loops

While loops



for-Loop

Programming (Loops): For loops 7

for �control variable name� in �iterable�:
␣␣␣␣�statement� � Mind the indentation!



for-Loop: Iteration over ordered collections

Programming (Loops): For loops 8

Loop over elements

1 # tuple filled with arbitrary elements
2 my_tuple = (1, 2.0, 'text', list(), dict())
3

4 # for-loop over my_tuple with control
variable 'el'

5 for el in my_tuple:
6 msg = 'element: {}'.format(el)
7 print(msg)



for-Loop: Iteration over ordered collections

Programming (Loops): For loops 9

Loop over indices with range

1 # tuple filled with arbitrary elements
2 my_tuple = (1, 2.0, 'text', list(), dict())
3

4 # for-loop over my_tuple with control
variable 'i'

5 for i in range(len(my_tuple)):
6 el = my_tuple[i]
7 msg = 'element {}: {}'.format(i, el)
8 print(msg)



for-Loop: Iteration over ordered collections

Programming (Loops): For loops 10

Update list in for-loop

1 # list filled with arbitrary elements
2 my_list = [1, 2.0, 'text', list(), dict()]
3

4 # for-loop over my_list with control
variable 'i'

5 for i in range(len(my_list)):
6 # update element with index i
7 my_list[i] = 'element {}: {}'.format(i,

my_list[i])
8 print(my_list[i])



for-Loop: Iteration over ordered collections

Programming (Loops): For loops 11

Loop over indices and elements with enumerate

1 # list filled with arbitrary elements
2 my_list = [1, 2.0, 'text', list(), dict()]
3

4 # for-loop over my_list with control
variables 'i' and 'el'

5 for i, el in enumerate(my_list):
6 # update element with index i
7 my_list[i] = 'element {}: {}'.format(i,

el)
8 print('old: {}, new: {}'.format(el,

my_list[i]))



for-Loop: Iteration over unordered collections

Programming (Loops): For loops 12

Loop over elements of a set

1 # set filled with arbitrary elements
2 my_set = {1, 1, 1, 2.0, 'text'}
3

4 # for-loop over my_set with control variable
'el'

5 for el in my_set:
6 msg = 'element: {}'.format(el)
7 print(msg)



for-Loop: Iteration over unordered collections

Programming (Loops): For loops 13

Loop over keys of a dict

1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # for-loop over keys of my_dict with control
variable 'key'

5 for key in my_dict:
6 val = my_dict[key]
7 msg = 'key: {}, value: {}'.format(key ,

val)
8 print(msg)



for-Loop: Iteration over unordered collections

Programming (Loops): For loops 14

Loop over items of a dict

1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # for-loop over items of my_dict with
control variables 'key', 'val'

5 for key , val in my_dict.items():
6 msg = 'key: {}, value: {}'.format(key ,

val)
7 print(msg)



Programming (Loops): While loops 15

For loops

While loops



Conditional iteration

Programming (Loops): While loops 16

Another type of loop in Python: while
Loops until condition becomes False

1 x = 5
2 while x > 0:
3 print(x)
4 x -= 1 # shorthand for x = x - 1

Special keywords in loops:

continue: aborts current iteration and continues with the next

break: aborts loop completely



Quiz

Programming (Loops): While loops 17

What does the instruction tuple(range(3)) return?

[1, 2, 3] (1, 2, 3) (0, 1, 2)

�

(0, 1, 2, 3)

Let x be any integer, how many times is the print statement in

the follwing for-loop executed?

1 for i in range(x):
2 for j in range(i):
3 print((i, j))

(
x
2

)
times



Quiz

Programming (Loops): While loops 17

What does the instruction tuple(range(3)) return?

[1, 2, 3] (1, 2, 3) (0, 1, 2)� (0, 1, 2, 3)

Let x be any integer, how many times is the print statement in

the follwing for-loop executed?

1 for i in range(x):
2 for j in range(i):
3 print((i, j))

(
x
2

)
times



Programming (Loops): Recap 18

Recap



Summary

Programming (Loops): Recap 19

for and while


	Recap
	Loops
	For loops
	While loops
	Recap

