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The Drug-Drug Interaction Challenge

Critical Clinical Problem:

Multi-drug treatments increasing

Drug-Drug Interactions (DDIs) can result in:

Unexpected pharmacological outcomes
Adverse drug events
Treatment complications

Current Limitations:

Clinical trials: expensive, time-consuming

Limited coverage of drug combinations

Need for predictive approaches
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The Molecular Understanding Challenge

Why Molecules Are Complex:

Multiple interaction points

Various binding mechanisms

Complex 3D structures

Dynamic behaviors

Computational Challenges:

Capturing local and global structure

Maintaining chemical validity

Balancing complexity vs. interpretability
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Evolution of DDI Prediction

Historical Approaches:
1 Rule-Based Systems

Expert-crafted rules
Limited coverage

2 Statistical Methods
Pattern matching
Correlation analysis

3 Machine Learning Era
Feature engineering
Basic neural networks

Current State-of-Art:

Graph Neural Networks

Attention Mechanisms

Deep Learning Models
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DrugDAGT: A New Approach

Figure: Complete pipeline of DrugDAGT

Key Innovations:

Dual-attention mechanism for both local and global views

Chemical knowledge integration via matrices

Enhanced learning through contrastive approach
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Why Molecular Structure Matters for DDIs

Drugs interact through their structural components:

Atoms: Basic units with specific properties

Bonds: Define molecular shape and flexibility

Electron distributions: Determine interaction potential

These properties influence:

Binding site compatibility

Interaction strength

Metabolic processing
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Molecular Graph Representation

From SMILES to Graphs:

Nodes: Atoms

Edges: Bonds

Features: Chemical
properties

Feature Encoding:

Atom Features (127D (Charge, Hybridization, . . . ))

Bond Features (14D (Bond Type, Ring membership, . . . ))

Spatial Information
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Message Passing Implementation

Core Algorithm:

for each iteration t do
Update bond messages
Apply bond attention
Update atom features
Apply atom attention

end for
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Message Passing Details

1. Initialization Phase:

h0ij = σ(W0(Mi∥Eij))

where Mi : atom features,Eij : bond features

2. Message Passing Phase:

Bond Message Update:

r tij =
∑

x∈N(i)

ht−1
xi − ht−1

ji

Attention Application:

ttij = αbond(r
t
ij) + r tij

Hidden State Update:

htij = σ(h0ij +Wtt
t
ij)

3. Atom-Level
Updates:

xi = σ(WT∥(Mi ,
∑

j∈N(i)

hTij ))

hi = αatom(xi ,Ac ,Aa,Ad) + xi
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Chemical Matrix Integration

Three Key Matrices:

Adjacency (A): Topology

Aij =

{
1 if bonded

0 otherwise

Distance (D): Spatial

Dij = spatial distance(i , j)

Coulomb (C): Electronic

Cij =

{
0.5Z 2.4

i i = j
ZiZj

|Ri−Rj | i ̸= j

where:
Zi is the atomic number corresponding to Cartesian coordinates Ri
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DrugDAGT: Architecture Overview

Figure: Complete DrugDAGT Framework

Three Core
Components:

Dual-attention
graph
transformer

Chemical matrix
integration

Contrastive
learning module
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Dual-Attention Innovation

Bond-Level (Local View):

Fast attention variant

O(n) complexity

Chemical environment focus

Atom-Level (Global View):

Matrix-enhanced attention

Long-range interactions

Chemical property awareness

Dual-attention mechanism
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Fast Bond Attention

Fast Attention Steps:

1. Global Query Formation:

αbk = softmax(qbkwq/
√
d)

qglobal =
∑
k

αbkqbk

2. Key-Value Interaction:

pbk = qglobal · kbk
γbk = softmax(pbkwbk/

√
d)

kglobal =
∑
k

γbkqglobal

3. Final Update:

cbk = gbkwv + qbk
Ob = LayerNorm([c1, ..., c2N ])

Key Benefits:

Avoids quadratic complexity
via global aggregation

Maintains chemical meaning
through residual connections

Captures both local and
global bond interactions

Enables stable training
through normalization
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Matrix-Enhanced Atom Attention

Integration of Chemical Knowledge:

Each attention head specializes

Combines different chemical aspects

Maintains interpretability

Head Specialization:

Heads 0,1: Atotal =
QKT

√
dk

+ fsAadj

Heads 2,3: Atotal =
QKT

√
dk

+ fsDdist

Heads 4,5: Atotal =
QKT

√
dk

+ fsCcoulomb

where fs = 0.45 is the scaling factor

Benefits:

Captures multiple
interaction types

Balances different
chemical aspects

Provides interpretable
attention patterns
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Multi-Class DDI Prediction Architecture

Problem Setup:

86 DDI types classification

Multi-label prediction

Balanced training strategy

Model Output Layer:

p(y |d1, d2) = softmax(FFN([hd1∥hd2]))

where:

hdi : Drug representations

FFN: 2-layer network (800 → 86)

Output: 86-dim probability vector

Loss Function:
Ltotal = LCE + 0.05 · Lcontrast

LCE = −
86∑
c=1

yc log(pc)
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Contrastive Learning Enhancement

Concept:

Generate different views

Maximize similarity of same drug

Minimize similarity between different drugs

Implementation:

h′ = h + 0.1 · sign(h)⊙ ϵ

|ϵ|
where ϵ ∼ N (0, I )
Loss Function:

Lcontrast = − log
exp(sim(zi , zj)/τ)∑

k 1[k ̸=i ] exp(sim(zi , zk)/τ)

Critical Details:

Temperature τ = 0.1

Normalized features

Batch-wise negative sampling

Memory-efficient implementation
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Implementation Overview

Architecture Details:

Hidden size: 800

Message passing steps: 5

Attention heads: 6

Head dimension: 133

FFN layers: [800*2 → 800 →
86]

Training Configuration:

Batch size: 200

Learning rate schedule:
NoamLR

Gradient clipping: Yes

Early stopping: AUPR

Data Statistics:

1706 unique drugs

191,808 DDI pairs

86 interaction types

Train/Val/Test: 8:1:1
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Critical Implementation Decisions

Memory Management:
Fast attention for O(n) complexity
Batch size optimization
Efficient matrix operations

Chemical Validity:
Sign-preserving noise
Matrix normalization
Structure-aware pooling

Numerical Stability:
Layer normalization
Gradient clipping
Careful scaling factors
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Performance Overview

Method AUPR F1 PRE REC AUC

GMPNN-CS 0.8347 0.7854 0.799 0.7915 0.9928
Molormer 0.8634 0.8113 0.8157 0.833 0.9941
SA-DDI 0.8693 0.8257 0.8408 0.8297 0.9959
DrugDAGT 0.8959 0.8807 0.8941 0.8857 0.9975

Table: Comparison with state-of-the-art methods

Consistent improvement across all metrics

Strong performance in both warm-start and cold-start scenarios

Robust across different DDI types
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Ablation Analysis

Component Contributions:

Bond attention: +2.1

Atom attention: +1.8

Chemical matrices: +1.6

Contrastive learning: +1.4

Impact of different components
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Attention Analysis and Interpretation

Visualization Process:

1 Extract attention weights

2 Normalize per atom/bond

3 Map to molecular structure

Interpretation Metrics:

NMI: Cluster quality

ARI: Clustering accuracy

Key Findings:

Functional group focus

Interaction site detection

Chemical validity verification t-SNE embedding plot
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Case Study: COVID-19 Drug Combinations

Dataset:

73 drug interactions

12 validated synergistic pairs

Focus on Nitazoxanide combinations

Key Findings:

Identified known synergies

Predicted new combinations

Matched experimental validation
COVID-19 analysis
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Impact & Future Directions

Current Impact:

State-of-the-art DDI prediction

Interpretable insights

Practical clinical relevance

Future Work:

3D structural information

Multi-drug combinations

Temporal interaction effects

Performance summary
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Questions?

Thank You for Your Attention

Code:
github.com/codejiajia/DrugDAGT
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Feature Engineering Details

Atom Features (127D):

Atomic number (1-100)

Degree (0-5)

Formal charge (-2 to +2)

Hybridization state

Aromaticity

H-bond features

Bond Features (12D):

Bond type

Conjugation

Ring membership

Stereochemistry
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Cold-Start Performance

Scenario Definition:

New drugs not in training

No historical interaction data

Structure-based prediction only

Results:

AUPR: 0.8247

F1: 0.7954

Comparison with baselines
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Error Analysis and Limitations

Common Error Types:

Rare interaction mechanisms

Complex structural patterns

Limited training examples

Current Limitations:

2D structure only

Static representation

Binary interaction prediction

Paper by Chen et al. (BMC Biology (2024))DrugDAGT: Drug-Drug Interaction Prediction usingDual-Attention Graph Transformer2024 33 / 33


	Problem: Drug-Drug Interactions
	Technical Background
	DrugDAGT Architecture
	Implementation Details
	Results & Impact
	Appendix
	Backup Slides


