DrugDAGT: Drug-Drug Interaction Prediction using Dual-Attention Graph Transformer

Paper by Chen et al.

BMC Biology (2024)

2024

Paper by Chen et al. (BMC Biology (2024)) DrugDAGT: Drug-Drug Interaction Prediction

2024

1/33

1 Problem: Drug-Drug Interactions

- 2 Technical Background
- 3 DrugDAGT Architecture
- Implementation Details
- 5 Results & Impact

Critical Clinical Problem:

- Multi-drug treatments increasing
- Drug-Drug Interactions (DDIs) can result in:
 - Unexpected pharmacological outcomes
 - Adverse drug events
 - Treatment complications

Current Limitations:

- Clinical trials: expensive, time-consuming
- Limited coverage of drug combinations
- Need for predictive approaches

Why Molecules Are Complex:

- Multiple interaction points
- Various binding mechanisms
- Complex 3D structures
- Dynamic behaviors

Computational Challenges:

- Capturing local and global structure
- Maintaining chemical validity
- Balancing complexity vs. interpretability

Evolution of DDI Prediction

Historical Approaches:

Rule-Based Systems

- Expert-crafted rules
- Limited coverage

Output: Statistical Methods

- Pattern matching
- Correlation analysis

3 Machine Learning Era

- Feature engineering
- Basic neural networks

Current State-of-Art:

- Graph Neural Networks
- Attention Mechanisms
- Deep Learning Models

DrugDAGT: A New Approach

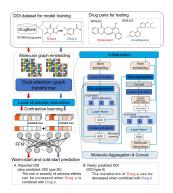


Figure: Complete pipeline of DrugDAGT

Key Innovations:

- Dual-attention mechanism for both local and global views
- Chemical knowledge integration via matrices
- Enhanced learning through contrastive approach

Problem: Drug-Drug Interactions

2 Technical Background

3 DrugDAGT Architecture

Implementation Details

5 Results & Impact

Paper by Chen et al. (BMC Biology (2024)) DrugDAGT: Drug-Drug Interaction Predictior

Why Molecular Structure Matters for DDIs

Drugs interact through their structural components:

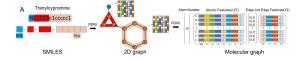
- Atoms: Basic units with specific properties
- Bonds: Define molecular shape and flexibility
- Electron distributions: Determine interaction potential

These properties influence:

- Binding site compatibility
- Interaction strength
- Metabolic processing

From SMILES to Graphs:

- Nodes: Atoms
- Edges: Bonds
- Features: Chemical properties Feature Encoding:

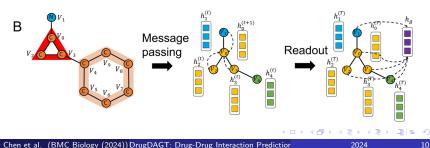


- Atom Features (127D (Charge, Hybridization, ...))
- Bond Features (14D (Bond Type, Ring membership, ...))
- Spatial Information

Message Passing Implementation

Core Algorithm:

for each iteration t do Update bond messages Apply bond attention Update atom features Apply atom attention end for



Message Passing Details

1. Initialization Phase:

 $h_{ij}^0 = \sigma(W_0(M_i \| E_{ij}))$

where M_i : atom features, E_{ij} : bond features

2. Message Passing Phase:

Bond Message Update:

$$r_{ij}^{t} = \sum_{x \in N(i)} h_{xi}^{t-1} - h_{ji}^{t-1}$$

Attention Application:

$$t_{ii}^t = \alpha_{bond}(r_{ii}^t) + r_{ii}^t$$

Hidden State Update:

$$h_{ij}^t = \sigma(h_{ij}^0 + W_t t_{ij}^t)$$

3. Atom-Level Updates:

$$\begin{aligned} x_i &= \sigma(W_T \| (M_i, \sum_{j \in N(i)} h_{ij}^T)) \\ h_i &= \alpha_{atom}(x_i, A_c, A_a, A_d) + x_i \end{aligned}$$

Chemical Matrix Integration

Three Key Matrices:

• Adjacency (A): Topology

$$A_{ij} = egin{cases} 1 & ext{if bonded} \ 0 & ext{otherwise} \end{cases}$$

• Distance (D): Spatial

$$D_{ij} = \text{spatial}_{distance}(i, j)$$

• Coulomb (C): Electronic

$$C_{ij} = \begin{cases} 0.5 Z_i^{2.4} & i = j \\ \frac{Z_i Z_j}{|R_i - R_j|} & i \neq j \end{cases}$$

where:

 Z_i is the atomic number corresponding to Cartesian coordinates R_i

Paper by Chen et al. (BMC Biology (2024)) DrugDAGT: Drug-Drug Interaction Prediction

12/33

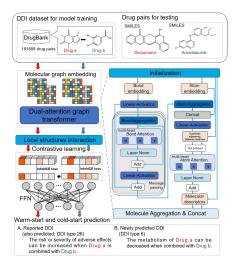
1 Problem: Drug-Drug Interactions

2 Technical Background

4 Implementation Details

5 Results & Impact

DrugDAGT: Architecture Overview



Three Core Components:

< □ > < □ > < □ > < □ > < □ > < □ >

2024

- Dual-attention graph transformer
- Chemical matrix integration
- Contrastive learning module

Figure: Complete DrugDAGT Framework

ELE DOG

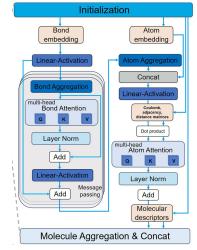
14 / 33

Bond-Level (Local View):

- Fast attention variant
- O(n) complexity
- Chemical environment focus

Atom-Level (Global View):

- Matrix-enhanced attention
- Long-range interactions
- Chemical property awareness



Dual-attention mechanism

Fast Bond Attention

Fast Attention Steps:

1. Global Query Formation:

$$egin{aligned} lpha_{b_k} &= \mathsf{softmax}(q_{b_k} w_q/\sqrt{d}) \ q_{global} &= \sum_k lpha_{b_k} q_{b_k} \end{aligned}$$

2. Key-Value Interaction:

$$egin{aligned} p_{b_k} &= q_{global} \cdot k_{b_k} \ \gamma_{b_k} &= ext{softmax}(p_{b_k} w_{b_k} / \sqrt{d}) \ k_{global} &= \sum_k \gamma_{b_k} q_{global} \end{aligned}$$

3. Final Update:

$$c_{b_k} = g_{b_k} w_v + q_{b_k}$$

$$O_b = \text{LayerNorm}([c_1, ..., c_{2N}])$$

Key Benefits:

- Avoids quadratic complexity via global aggregation
- Maintains chemical meaning through residual connections
- Captures both local and global bond interactions
- Enables stable training through normalization

16 / 33

Matrix-Enhanced Atom Attention

Integration of Chemical Knowledge:

- Each attention head specializes
- Combines different chemical aspects
- Maintains interpretability

Head Specialization:

Heads 0,1:
$$A_{total} = \frac{QK^T}{\sqrt{d_k}} + f_s A_{adj}$$

Heads 2,3: $A_{total} = \frac{QK^T}{\sqrt{d_k}} + f_s D_{dist}$
Heads 4,5: $A_{total} = \frac{QK^T}{\sqrt{d_k}} + f_s C_{coulomb}$

where $f_s = 0.45$ is the scaling factor

Benefits:

- Captures multiple interaction types
- Balances different chemical aspects
- Provides interpretable attention patterns

17 / 33

Multi-Class DDI Prediction Architecture

Problem Setup:

- 86 DDI types classification
- Multi-label prediction
- Balanced training strategy

Model Output Layer:

$$p(y|d_1, d_2) = \operatorname{softmax}(\mathsf{FFN}([h_{d1} \| h_{d2}]))$$

where:

- *h_{di}*: Drug representations
- FFN: 2-layer network (800 ightarrow 86)
- Output: 86-dim probability vector

Loss Function:

$$egin{aligned} \mathcal{L}_{total} &= \mathcal{L}_{CE} + 0.05 \cdot \mathcal{L}_{contrast} \ \mathcal{L}_{CE} &= -\sum_{c=1}^{86} y_c \log(p_c) \end{aligned}$$

Contrastive Learning Enhancement

Concept:

- Generate different views
- Maximize similarity of same drug
- Minimize similarity between different drugs

Implementation:

$$h' = h + 0.1 \cdot \operatorname{sign}(h) \odot rac{\epsilon}{|\epsilon|}$$

where $\epsilon \sim \mathcal{N}(0, I)$ Loss Function:

$$\mathcal{L}_{contrast} = -\log rac{\exp(\mathrm{sim}(z_i, z_j)/ au)}{\sum_k \mathbf{1}_{[k
eq i]} \exp(\mathrm{sim}(z_i, z_k)/ au)}$$

Critical Details:

- Temperature $\tau = 0.1$
- Normalized features
- Batch-wise negative sampling
- Memory-efficient implementation

1 Problem: Drug-Drug Interactions

- 2 Technical Background
- 3 DrugDAGT Architecture
- Implementation Details
 - 5 Results & Impact

Architecture Details:

- Hidden size: 800
- Message passing steps: 5
- Attention heads: 6
- Head dimension: 133
- FFN layers: $[800*2 \rightarrow 800 \rightarrow 86]$

Training Configuration:

- Batch size: 200
- Learning rate schedule: NoamLR
- Gradient clipping: Yes
- Early stopping: AUPR

Data Statistics:

- 1706 unique drugs
- 191,808 DDI pairs
- 86 interaction types
- Train/Val/Test: 8:1:1

Critical Implementation Decisions

Memory Management:

- Fast attention for O(n) complexity
- Batch size optimization
- Efficient matrix operations

• Chemical Validity:

- Sign-preserving noise
- Matrix normalization
- Structure-aware pooling

• Numerical Stability:

- Layer normalization
- Gradient clipping
- Careful scaling factors

22 / 33

1 Problem: Drug-Drug Interactions

- 2 Technical Background
- 3 DrugDAGT Architecture
- 4 Implementation Details

5 Results & Impact

Method	AUPR	F1	PRE	REC	AUC
GMPNN-CS	0.8347	0.7854	0.799	0.7915	0.9928
Molormer	0.8634	0.8113	0.8157	0.833	0.9941
SA-DDI	0.8693	0.8257	0.8408	0.8297	0.9959
DrugDAGT	0.8959	0.8807	0.8941	0.8857	0.9975

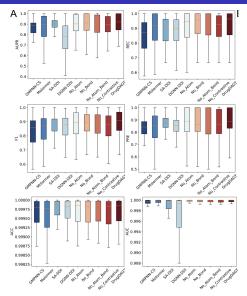
Table: Comparison with state-of-the-art methods

- Consistent improvement across all metrics
- Strong performance in both warm-start and cold-start scenarios
- Robust across different DDI types

Ablation Analysis

Component Contributions:

- Bond attention: +2.1
- Atom attention: +1.8
- Chemical matrices: +1.6
- Contrastive learning: +1.4



Impact of different components

Attention Analysis and Interpretation

Visualization Process:

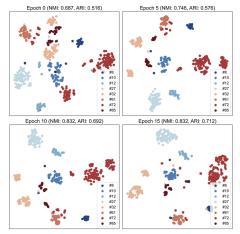
- Extract attention weights
- Normalize per atom/bond
- Map to molecular structure

Interpretation Metrics:

- NMI: Cluster quality
- ARI: Clustering accuracy

Key Findings:

- Functional group focus
- Interaction site detection
- Chemical validity verification



t-SNE embedding plot

26 / 33

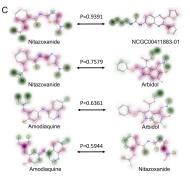
Case Study: COVID-19 Drug Combinations

Dataset:

- 73 drug interactions
- 12 validated synergistic pairs
- Focus on Nitazoxanide combinations

Key Findings:

- Identified known synergies
- Predicted new combinations
- Matched experimental validation



COVID-19 analysis

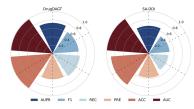
27 / 33

Current Impact:

- State-of-the-art DDI prediction
- Interpretable insights
- Practical clinical relevance

Future Work:

- 3D structural information
- Multi-drug combinations
- Temporal interaction effects



Performance summary

28 / 33

Thank You for Your Attention

Code: github.com/codejiajia/DrugDAGT

Paper by Chen et al. (BMC Biology (2024)) DrugDAGT: Drug-Drug Interaction Prediction

2024

★ ∃ >

Image: A matrix

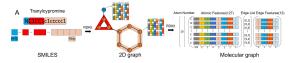
Feature Engineering Details

Atom Features (127D):

- Atomic number (1-100)
- Degree (0-5)
- Formal charge (-2 to +2)
- Hybridization state
- Aromaticity
- H-bond features

Bond Features (12D):

- Bond type
- Conjugation
- Ring membership
- Stereochemistry



Scenario Definition:

- New drugs not in training
- No historical interaction data
- Structure-based prediction only

Results:

- AUPR: 0.8247
- F1: 0.7954
- Comparison with baselines

Common Error Types:

- Rare interaction mechanisms
- Complex structural patterns
- Limited training examples

Current Limitations:

- 2D structure only
- Static representation
- Binary interaction prediction

33 / 33