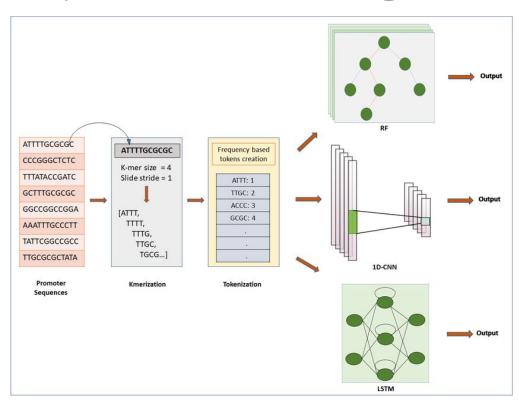
Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling

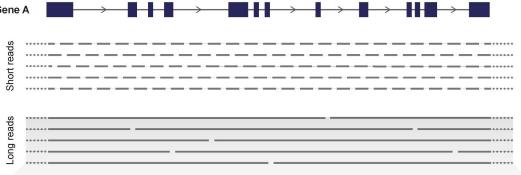
Advanced Biomedicine Seminar

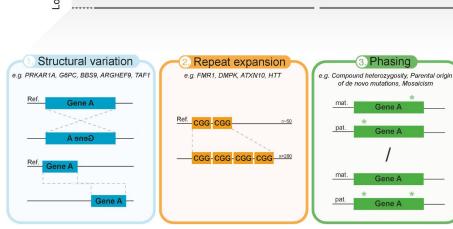

28/11/2024 - John Shahla

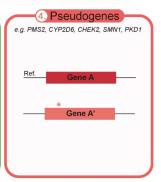
Roadmap


- Definitions
- Motivation
- Models
- Results

Definitions

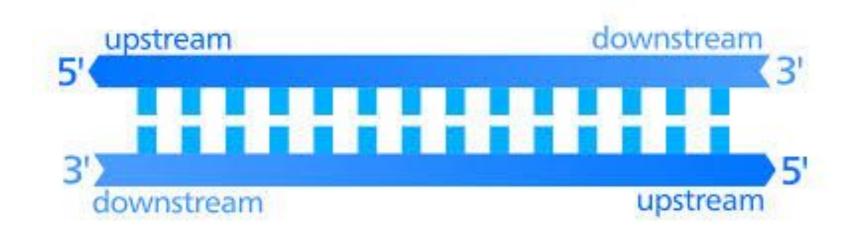

DNA Structure




DNA Sequence Modelling

Long-Range DNA Sequencing

Bi-Directional Sequencing



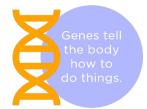
Reverse Complementarity (RC)

Writing sequences

- Written 5′-3′
 - □ ATGGGTAGCGGTCATGATAC
- □ Complement
 - □ TACCCATCGCCAGTACTATG
- □ Reverse (inverse)
 - □ CATAGTACTGGCGATGGGTA
- □ Reverse complement
 - □ GTATCATGACCGCTACCCAT

Upstream and downstream

Phenotypes


Genotype: DNA


Phenotype: Thumbprint

Genotype: DNA

Phenotype: Height

Caduceus use

Variant effect prediction: a task to detect whether a genetic mutation influences a phenotype

Motivation

- Bi-Directionality
- Reverse Complementarity
- Long-Range Dependencies
- Limitations of Existing Models

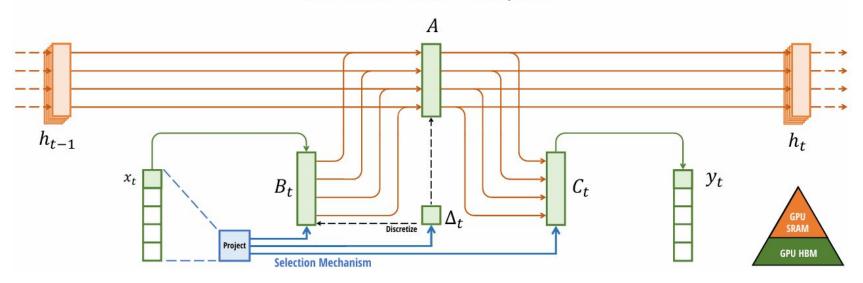
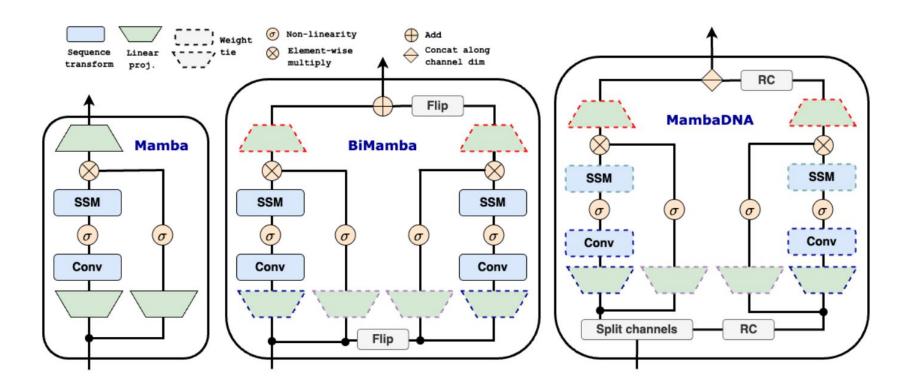
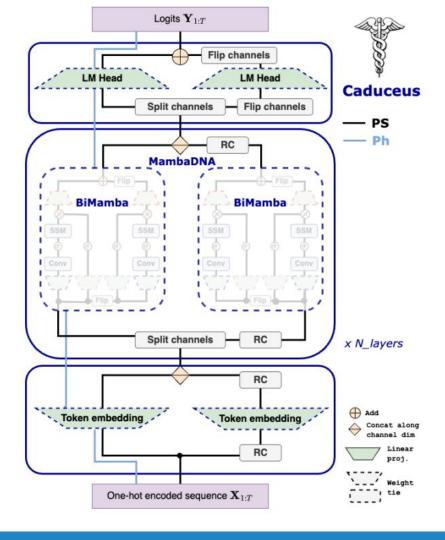
Models

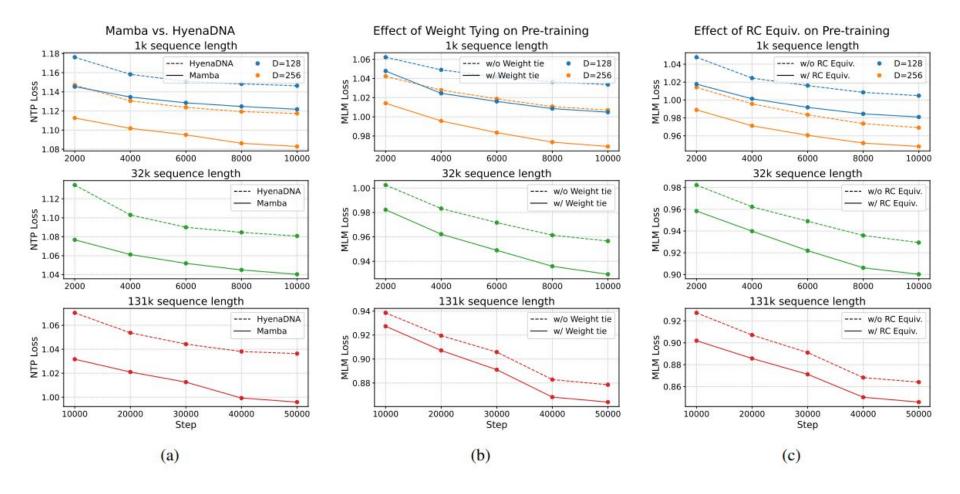
Mamba

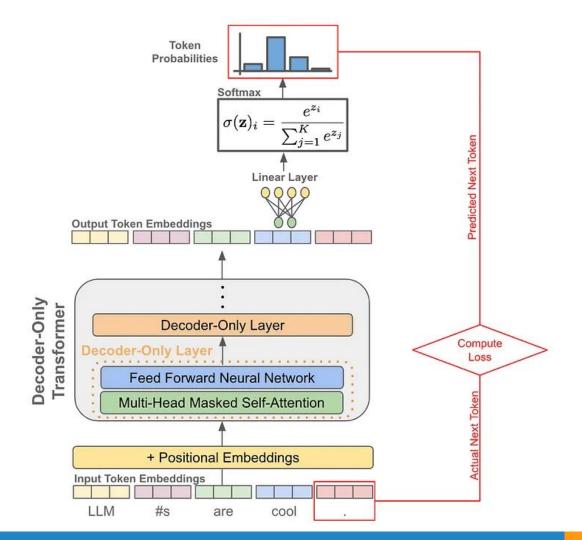
- Processes DNA in long-range sequences.
- Recognizes reverse complement strands.

Selective State Space Model

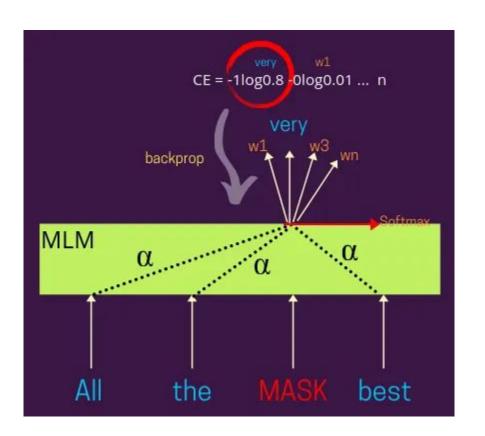
with Hardware-aware State Expansion


Figure 1: (**Overview**.) Structured SSMs independently map each channel (e.g. D = 5) of an input x to output y through a higher dimensional latent state h (e.g. N = 4). Prior SSMs avoid materializing this large effective state (DN, times batch size B and sequence length L) through clever alternate computation paths requiring time-invariance: the (Δ , A, B, C) parameters are constant across time. Our selection mechanism adds back input-dependent dynamics, which also requires a careful hardware-aware algorithm to only materialize the expanded states in more efficient levels of the GPU memory hierarchy.

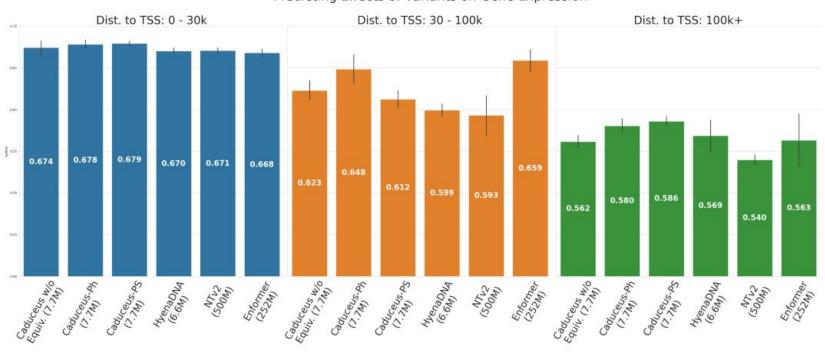


Caduceus



Results

Genomics Benchmarks


	CNN (264K)	HYENADNA (436K)	Мамва (468к)	CADUCEUS w/o Equiv. (470k)	CADUCEUS-PH (470K)	CADUCEUS-PS (470K)
Mouse Enhancers	0.715 ± 0.087	0.780 ± 0.025	0.743 ± 0.054	0.770 ± 0.058	0.754 ± 0.074	0.793 ±0.058
CODING VS. INTERGENOMIC	0.892 ± 0.008	0.904 ± 0.005	0.904 ± 0.004	0.908 ± 0.003	0.915 ± 0.003	0.910 ± 0.003
HUMAN VS. WORM	0.942 ± 0.002	0.964 ± 0.002	0.967 ± 0.002	0.970 ± 0.003	0.973 ± 0.001	0.968 ± 0.002
HUMAN ENHANCERS COHN	0.702 ± 0.021	0.729 ± 0.014	0.732 ± 0.029	0.741 ± 0.008	0.747 ± 0.004	0.745 ± 0.007
HUMAN ENHANCER ENSEMBL	0.744 ± 0.122	0.849 ± 0.006	0.862 ± 0.008	0.883 ± 0.002	0.893 ± 0.008	0.900 ± 0.006
HUMAN REGULATORY	0.872 ± 0.005	0.869 ± 0.012	0.814 ± 0.211	0.871 ± 0.007	0.872 ± 0.011	0.873 ± 0.007
HUMAN OCR ENSEMBL	0.698 ± 0.013	0.783 ± 0.007	0.815 ± 0.002	0.818 ± 0.003	0.828 ± 0.006	0.818 ± 0.006
HUMAN NONTATA PROMOTERS	0.861 ± 0.009	0.944 ± 0.002	0.933 ± 0.007	0.933 ± 0.006	0.946 ± 0.007	0.945 ± 0.010

Nucleotide Transformer Tasks

	> 100M PARAM. MODELS			< 2M PARAM. MODELS		
	ENFORMER	DNABERT-2	NT-v2	HYENADNA	CADUCEUS-PH	CADUCEUS-PS
	(252M)	(117M)	(500M)	(1.6M)	(1.9M)	(1.9M)
Histone Markers						
Н3	0.719 ± 0.048	0.785 ± 0.033	0.784 ± 0.047	0.779 ± 0.037	0.815 ± 0.048	0.799 ± 0.029
H3K14AC	$0.288 {\pm} 0.077$	0.516 ± 0.028	0.551 ± 0.021	0.612±0.065	0.631 ± 0.026	0.541 ± 0.212
Н3к36мЕ3	0.344 ± 0.055	0.591 ± 0.020	0.625 ± 0.013	0.613±0.041	0.601 ± 0.129	0.609 ± 0.109
Н3к4ме1	0.291 ± 0.061	0.511 ± 0.028	0.550 ± 0.021	0.512 ± 0.024	0.523 ± 0.039	0.488 ± 0.102
Н3к4ме2	0.211 ± 0.069	0.336 ± 0.040	0.319 ± 0.045	0.455±0.095	0.487 ± 0.170	0.388 ± 0.101
Н3к4ме3	0.158 ± 0.072	0.352 ± 0.077	0.410 ± 0.033	0.549±0.056	0.544 ± 0.045	0.440 ± 0.202
Н3к79мЕ3	0.496 ± 0.042	0.613 ± 0.030	0.626 ± 0.026	0.672±0.048	0.697±0.077	0.676 ± 0.026
H3K9AC	0.420 ± 0.063	0.542 ± 0.029	0.562 ± 0.040	0.581±0.061	0.622±0.030	0.604 ± 0.048
H4	0.732 ± 0.076	0.796 ± 0.027	0.799 ± 0.025	0.763±0.044	0.811 ± 0.022	0.789 ± 0.020
H4AC	$0.273 {\pm} 0.063$	$0.463 {\pm} 0.041$	$0.495{\pm}0.032$	0.564 ± 0.038	0.621 ± 0.054	$0.525 {\pm} 0.240$
Regulatory Annotati	ion					
ENHANCER	0.451 ± 0.108	0.516 ± 0.098	0.548 ± 0.144	0.517±0.117	0.546 ± 0.073	0.491 ± 0.066
ENHANCER TYPES	0.309 ± 0.134	0.423 ± 0.051	0.424 ± 0.132	0.386±0.185	0.439±0.054	0.416 ± 0.095
PROMOTER: ALL	0.954 ± 0.006	0.971 ± 0.006	0.976±0.006	0.960±0.005	0.970 ± 0.004	0.967 ± 0.004
NONTATA	0.955 ± 0.010	0.972 ± 0.005	0.976±0.005	0.959±0.008	0.969 ± 0.011	0.968 ± 0.006
TATA	0.960 ± 0.023	$0.955 {\pm} 0.021$	0.966 ±0.013	0.944±0.040	$0.953 {\pm} 0.016$	0.957 ± 0.015
Splice Site Annotation	on					
ALL	0.848 ± 0.019	0.939 ± 0.009	0.983±0.008	0.956 ± 0.011	0.940 ± 0.027	$0.927 {\pm} 0.021$
ACCEPTOR	0.914 ± 0.028	0.975 ± 0.006	0.981±0.011	0.958±0.010	0.937 ± 0.033	0.936 ± 0.077
DONOR	0.906 ± 0.027	0.963 ± 0.006	0.985±0.022	0.949±0.024	0.948 ± 0.025	0.874 ± 0.289

Gene Expression

Predicting Effects of Variants on Gene Expression

Any Questions?

Thank you