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Introduction

• Antibodies' role in the immune system
• Complementarity-determining regions (CDRs)



Background - I 

• Traditional Computational Approaches 
• Rely on sampling algorithms over hand-crafted and statistical energy 

functions
• Inefficicent and stuck in local optima 
• Not effectively model relationship between CDR sequences and their 3D 

structure. 



Background - II

• Generative Models for Antibody Design 
• Recent models such as those proposed by Saka et al. (2021), Akbar et al. 

(2022) and Jin et al. (2022) focus on generating antibody sequences. 
• These Models use language models or other generative techniques to 

produce new antibody sequences.
• Do not generate antibodies specifically tailored to the 3D structures of 

antigens.
• Lack of ability to model complex interactions.



Background - III

• Jin et al.'s CDR Sequence-Structure Co-Design Model
• This model focuses on designing antibodies to neutralize specific 

pathogens like SARS-CoV-2.
• The model is not generalizable to arbitrary antigens. 
• It does not consider the orientation of amino acids.



Problem Definition

• The proposed method jointly models the distribution of CDR 
sequences and their corresponding 3D structures.

• Challenges: 
• large search space
• need for high specificity
• structural precision
• generalizable approach



Proposed Solution - I

The diffusion-based generative model is introduced with following 
capabilities:
Joint Sampling of CDR Sequences and Structures

• The model generates CDRs by considering the 3D structure of antigen.



Proposed Solution - II

Atomic-Level Design with Side-Chain Packing 
• The model predicts side-chain orientations to achieve atomic-resolution 

accuracy.



Proposed Solution - III

Iterative Refinement Process
• The model employs an iterative update process that allows for continuous 

refinement of amino acid types, positions and orientations. 
• The sequence-structure space more efficiently

• Avoiding to become trapped in local optima



Proposed Solution - IV

Flexible and Customizable Design Process
• The diffusion model allows iterative updates, enabling constraints and 

customizations during design process. 
• This approach can be used in various tasks:

• Sequence-structure co-design
• Fix-backbone CDR design 
• Optimization of existing antibodies to enhance binding affinity.



Method – I – Model Framework

• The model designed to jointly sample CDR sequences and their 
corresponding 3D structures.

• Key components;
• Diffusion Probabilistic Models
• Equivarant Neural Networks



Method – II – Diffusion Probabilistic Model 

Two Markov chains in the process;
• The forward diffusion process

• It gradually adds noise to the data, transforming it into a simpler 
distribution. The process goes from t=0 to t=T.

• The time t=0 represents the observed sequences and structures of CDRs 
and t=T represents samples from the prior distribution.

• The generative (backward) diffusion process
• It starts from the simple distribution and iteratively refines it to generate 

samples from the target distribution. The generative diffusion goes 
backward from t=T to t=0.



Method – III – Input Data

• Protein Complex
• An antigen and an antibody framework

• Initial CDR Configuraiton 
• The model starts with an arbitrary sequence of CDRs, including their 

positions and orientations. 



Method – IV – Definitions and Notations

• Amino acids in a protein are represented by;
• type
• position of the C⍺ atom
• orientation

• The type is denoted as  si.
• The possible types are drawn from the set;



Method – V – Definitions and Notations

• The position of amino acid represented by the coordinate of its C⍺
atom, denoted as  xi. 

• The orientation is described by Oi, which is a rotation matrix from 
the SO(3). 

• The type is denoted as  si.
• The antibody-antigen complex is described by the set;



Method – VI – Definitions and Notations

• The CDR is generated consists of  m amino acids, with indices 
ranging from  l+1 to  l+m
• where  l is the starting index of the CDR 

• Each amino acid in the CDR is represented by a set of 
components;



Method – VII – Initialization 

• The process begins with a random sequence. This includes;
• Amino Acid Sequence: A random selection of amino acids is made to 

form the initial CDR sequence.
• Positions and Orientations: The model assigns initial spatial positions and 

orientations to the amino acids in the CDR.



Method – VIII – Iterative Update Process

• Information Aggregation
• Iterative Refinement 

• The model iteratively updates the parameters for each amino acid in the 
CDR.
• Amino Acid Type: The model predicts the most suitable amino acid for each position
• Position: The position of each amino acid is adjusted to optimize the fit
• Orientation: The orientation of the side chains of amino acids is also updated



Method – IX – Diffusion Process

• Multimodel Diffusion for Amino Acid Types
• The forward diffusion process is defined by Hoogeboom et al. 

(2021);

• onehot - a function converts amino acid types to 20 dimentional vector
• 𝛽𝑡

𝑡𝑦𝑝𝑒 is the probability of resampling



Method – X – Diffusion Process

• Multimodel Diffusion for Amino Acid Types
• The generative diffusion process is defined as;

• 𝐹 𝑅ᵗ, 𝐶 𝑗 is a neural network model
• The structure context and CDR state are taken from previous step as an input
• It predicts the probability amino acid type for j-th amino acid in CDR



Method – XI – Diffusion Process

• Diffusion for C⍺ Coordinates
• The coordinates of the C⍺ atoms are scaled and shifted 

• The distribution aligns more closely with a standard normal distribution

• The forward diffusion for normalized C⍺ coordinate xj;

• 𝛽𝑝𝑜𝑠
𝑡 controls the rate of diffusion 



Method – XII – Diffusion Process

• Diffusion for C⍺ Coordinates
• The generative diffusion process by Ho et al. is defined as;

• G 𝑅ᵗ, 𝐶 𝑗 is neural networks that predict the standard Gaussian noise



Method – XIII – Diffusion Process

• SO(3) Denoising for Amino Acid Orientations
• The formulation differs from diffusion models but follow similar 

ideas.

• IGSO(3) denotes the isotropic Gaussian distribution on SO(3)
• The ScaleRotmodifies the rotation matrix

• 𝛽𝑜𝑟𝑖
𝑡 is the variance 



Method – XIV – Diffusion Process

• SO(3) Denoising for Amino Acid Orientations
• The conditional distribution used for generative process is defined 

as;

• H 𝑅ᵗ, 𝐶 𝑗 is neural networks that denoises the orientation 



Method – XV – Neural Networks 

• The use of neural network architectures for the diffusion process in 
modeling CDR states. 

• The goal is to encode the CDR state and denoise three components: 
• amino acid types (F)
• positions (G)
• orientations (H)

• Multiple Layer Perceptrons (MLPs) for encoding
• They are used to generate embeddings for individual amino acids and pairs. 

• The single one encodes amino acid type, torsional angles, and 3D coordinates
• The pairwise one captures the distances and dihedral angles between amino acid pairs.



Method – XVI – Neural Networks 

• IPA Network
• The IPA (orientation-aware roto-translation invariant) network transforms 

the embeddings into hidden representations and captures the 
environment of each amino acid.

• Denoising MLPs 
• Three MLPs denoise:

• Amino acid types: Outputs a 20-dimensional vector for posterior probabilities.
• 3D positions: Predicts changes in Cα coordinates 
• Orientations: Predicts a SO(3) vector



Method – XVII – Reconstruction of CDR

• After the iterative updates, reconstructing the CDR structure at 
atomic level.

• Side-Chain Packing Algorithms
• The algorithm takes the predicted orientations and positions of amino 

acids and pack them into a stable 3D structure.
• The generated CDRs are not only sequence-optimized but also structually 

viable. 



Evaluation Metrics

• Amino Acid Recovery Rate (AAR)
• It measures the sequence identity between the reference CDR sequences and the 

generated CDR sequences.

• Root Mean Square Deviation (RMSD)
• This metric assesses the structural similarity between the generated CDR structures and 

the original CDR structures. 

• Interface Binding Energy Improvement (IMP)
• IMP is the percentage of designed CDRs that exhibit lower (better) binding energy (ΔG) 

compared to the original CDRs.



Results - I
Sequence-Structure Co-design



Results - II
Fix-Backbone Sequence Design and Structure Prediction



Results - III

Antibody Optimisation 



Conclusion 

• Uses diffusion-based generative models to enhance the specificity 
and quality of antibody design.

• Combines CDR sequences with their 3D structures to ensure better 
compatibility with target antigens.

• Takes amino acid orientations into account, critical for accurate 
antibody-antigen interaction modeling.

• Iteratively refines amino acid types, positions, and orientations, 
improving exploration of the design space.

• Optimizes current antibodies to enhance binding affinity.
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