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Long Context

Human Genome has 3.2B nucleotides

Lots of focus on long context in natural language / code
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Background

Nucleotides in a DNA sequence ACGTACGTCGTACGTC...

Previous work:

- typically context length of 512 - 4k tokens
- resolution: usually tokens are not on “nucleotides-level” -> “K-mers” (3-5 nucleotides)

Problems:

- long context is computationally expensive
- “SNPs” (Single-Nucleotide Polymorphisms): variation at a single nucleotide in the
DNA sequence



Perplexity vs Context

PPL vs Context on the Human Genome
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Figure 1.2: Pretraining on the human reference
genome using longer sequences leads to better perplex-
ity (improved prediction of next token).



HyenaDNA Block Architecture
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Figure 1.3: HyenaDNA block architecture. A Hyena operator is composed of long convolutions and element-
wise gate layers. The gates are fed projections of the input using dense layers and short convolutions. The
long convolutions are parameterized implicitly via an MLP that produces the convolutional filters. The
convolution itself is evaluated using a Fast Fourier Transform convolution with time complexity O(L log, L).



Runtime

Runtime vs Context (log-scale)
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Figure 4.1: Runtime (forward & backward pass) for
Transformer and HyenaDNA: 2 layers, width=128, gra-
dient checkpointing, batch size=1, A100 80GB. At 1M
tokens HyenaDNA is 160x faster than Transformer.



Single Nucleotide Resolution

Table 4.1: GenomicBenchmarks Top-1 accuracy (%) for pretrained

HyenaDNA, DNABERT and Transformer (GPT from 4.1), and the pre-
vious SotA baseline CNN (scratch).

DATASET CNN DNABERT GPT HYENADNA
Mouse Enhancers 69.0 66.9 80.1 85.1
Coding vs Intergenomic 87.6 92.5 88.8 91.3
Human vs Worm 93.0 96.5 95.6 96.6
Human Enhancers Cohn 69.5 74.0 0.0 74.2
Human Enhancers Ensembl 68.9 85.7 83.5 89.2
Human Regulatory 93.3 88.1 91.5 93.8
Human Nontata Promoters 84.6 85.6 7.7 96.6

Human OCR Ensembl 68.0 riim | 73.0 80.9




Ultralong-Range Genomics

- single-nucleotide polymorphisms (SNPs)
- quantifying the functional effects of non-coding variants

Table 4.3: Chromatin profile prediction Median AU-
ROC computed over three categories: Transcription factor
binding profiles (TF), DNase I-hypersensitive sites (DHS)
and histone marks (HM).

AUROC
MODEL PAraMS LEN TF DHS HM
DeepSEA 40 M 1k 95.8 92.3 85.6
BigBird 110 M 8k 96.1 92.1 88.7

7 M 1k 96.4 93.0 &86.3

riEnaliN 35M 8k 955 917 89.3




Species classification

- DNA sequences from 5 different
species

- struggle on shorter sequences of
length 1024

Table 4.5: Species classification Top-1
accuracy (%) for 5-way classification (hu-
man, lemur, mouse, pig, hippo). The
X symbol indicates infeasible training
time.

MODEL LeENn Acc

Transformer 1k 554
HyenaDNA 1k 61.1

Transformer 32k 88.9
HyenaDNA 32k 934

Transformer 250k X
HyenaDNA 250k 979

Transformer 450k X
HyenaDNA 450k 99.4

Transformer 1M X
HyenaDNA 1M 99.5




Sequence length warm-up

Test Acc (%) vs. Training Time
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Figure 3.2: Sequence length warm-up reduces the
training time of HyenaDNA at sequence length
450k by 40% and boosts accuracy by 7.5 points
on species classification.



Task Adaptation with Soft Prompt Tokens
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Figure 1.1: HyenaDNA recipe for long-range foundation models in genomics. The HyenaDNA architecture is a
simple stack of Hyena operators (Poli et al., 2023) trained using next token prediction. (See Fig. 1.3 for block
diagram of architecture). We introduce a new sequence length scheduling technique to stabilize training, and
provide a method to leverage the longer context length to adapt to novel tasks without standard fine-tuning
by filling the context window with learnable soft prompt tokens.



Fine Tuning HyenaDNA

Tasks:

- ldentify Enhancer Regions in a DNA
Sequence
- Species classification

Receipt:

- Pretrained Model: HyenaDNA

- Input DNA Sequence

- Soft Prompt Tokens

- Fine-Tuning:
- Soft Prompt tokens are optimized for the

task

- Output: Probability scores for:
- each nucleotide being part of an enhancer
- dna being each species

Example:

Input: ACGTACGTCGTACGTC...
->[0.1,0.2,0.3,04, ..]]

- Soft Prompt: [P1, P2, P3]

> P1 =[0.01, -0.05, 0.07, ...], P2 =[0.1, 0.03,
-0.02, ...], P3 =[0.05, 0.07, -0.01, ..]

- Combined Input: [P1, P2, P3, 0.1, 0.2, 0.3, 0.4,
]

- Predictions: [0.01, 0.85, 0.10, 0.90, ...]
(Species A, Species B, ...)



Summary

- Sequence length of up to 1 million turned out to be beneficial.

- Observing single nucleotides as individual tokes is important.

- Using long convolutions is especially more efficient the longer
the sequence gets

- “Warm-up” learns shorts sequences first and then gradually
increases the length leading to better performance faster and in
the end.



Thank you for Listening!



Hyperparameters used for Training

Table A.3: GenomicBenchmarks hyperparameters for HyenaDNA and the baseline Transformer (GPT from
4.1), which uses FlashAttention (Dao et al., 2022a).

TRANSFORMER ~ HyenaDNA

Layers 2 2
Width 128 128
Parameters 529k 436k
Learning rate 1-6e™* 1-6e~*
Weight decay (model) 0-0.2 0-0.2
Weight decay (Hyena layers) - 0
Embed dropout 0-0.2 0.0-0.3
Resid dropout 0-0.2 0-0.3
Num heads 8 -
Optimizer AdamW
Optimizer momentum B1, B2 = 0.9, 0.999
LR scheduler Cosine decay
Batch size 128-1024
Training epoch 100

Reverse complement aug. true/false

Sequence lengths 200-4800




Table 1. Genomic Benchmarks. Top-1 accuracy (1) across 5-fold cross-validation (CV) for pretrained HyenaDNA, Mamba NTP, Caduceus
models, and a supervised CNN baseline (trained from scratch). Best values per task are bolded, second best are italicized. Error bars

indicate the difference between the maximum and minimum values across 5 random seeds used for CV.

CNN HYENADNA MAMBA VCV;‘ODESES CADUCEUS-PH  CADUCEUS-PS

(264K) (436K) (468K) (470K) (470K) (470K)
MOUSE ENHANCERS 0.715 £0.087 0.780 £+0.025 0.743 £0.054 0.770 £0.058 0.754 £0.074 0.793 +0.058
CODING VS. INTERGENOMIC 0.892 +0.008 0.904 4+0.005 0.904 +0.004 0.908 +0.003 0.915 +0.003 0.910 4+0.003
HUMAN VS. WORM 0.942 +0.002 0.964 +0.002 0.967 £0.002 0.970 4+0.003 0.973 4+0.001 0.968 +0.002
HUMAN ENHANCERS COHN 0.702 £0.021 0.729 +0.014 0.732 £+0.029 0.741 £+0.008 0.747 4+0.004 0.745 +0.007
HUMAN ENHANCER ENSEMBL 0.744 4+0.122 0.849 40.006 0.862 +0.008 0.883 +0.002 0.893 +0.008 0.900 40.006
HUMAN REGULATORY 0.872 +0.005 0.869 +0.012 0.814 +0.211 0.871 +0.007 0.872 +0.011 0.873 +0.007
HuUMAN OCR ENSEMBL 0.698 +0.013 0.783 +0.007 0.815 £+0.002 0.818 +0.003 0.828 +0.006 0.818 +0.006
HUMAN NONTATA PROMOTERS 0.861 +0.009 0.944 +0.002 0.933 £+0.007 0.933 +0.006 0.946 +0.007 0.945 4+0.010

Table A.4: GenomicBenchmarks Top-1 accuracy (%) GPT is the causal Transformer from 4.1,

HyenaDNA k-mer uses a 6-mer tokenizer, and HyenaDNA bidirection is a bidirectional version of the Hyena

operator.
MODEL GPT' GPT HyenaDiA HysnaDng TUSMRDNA - HyemaDNA. - ppr prpm
k-mer bidirection
Pretrained no yes no yes no no yes
Mouse Enhancers 79.3 79.3 84.7 85.1 81.8 80.6 66.9
Coding vs Intergenomic 89.3 91.2 90.9 91.3 86.7 90.3 92.5
Human vs Worm 94.8 96.6 96.4 96.6 92.9 95.9 96.5
Human Enhancers Cohn 67.7 72.9 72.9 74.2 69.8 72.1 74.0
Human Enhancers Ensembl  79.0 88.3 85.7 89.2 88.0 85.9 85.7
Human Regulatory 90.2 91.8 90.4 93.8 90.2 89.1 88.1
Human Nontata Promoters 85.2 90.1 93.3 96.6 83.5 88.5 85.6
Human OCR Ensembl 68.3 79.9 78.8 80.9 70:2 75.3 75:1




Some more References...

Video-presentation of the paper:
https://youtu.be/haSKAC1fPX07?si=v28n75mdSjTURvay
Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling:

https://arxiv.orq/pdf/2403.03234

Articles:
- https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna

- https://aibusiness.com/ml/hyenadna-a-large-lanqguage-model-trained-on-huma
n-genome-sequences
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