HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution

Eric Nguyen^{*,1}, Michael Poli^{*,1}, Marjan Faizi^{2,*}, Armin W. Thomas¹, Callum Birch Sykes³, Michael Wornow¹, Aman Patel¹, Clayton Rabideau³, Stefano Massaroli⁴, Yoshua Bengio⁴, Stefano Ermon¹, Stephen A. Baccus^{1,†}, Christopher Ré^{1,†}

November 15, 2023

Code available at https://github.com/HazyResearch/hyena-dna

presented by: Felix Dyck - felix.dyck@uni-bielefeld.de

05.12.24

Content

- Motivation
- Background
- HyenaDNA Block
- Experiments
- Sequence length warm-up
- Task Adaptation

Long Context

Human Genome has 3.2B nucleotides

Lots of focus on long context in natural language / code

Natural language, code

Background

Nucleotides in a DNA sequence ACGTACGTCGTACGTC...

Previous work:

- typically context length of 512 4k tokens
- resolution: usually tokens are not on "nucleotides-level" -> "K-mers" (3-5 nucleotides)

Problems:

- long context is computationally expensive
- "SNPs" (Single-Nucleotide Polymorphisms): variation at a single nucleotide in the DNA sequence

Perplexity vs Context

PPL vs Context on the Human Genome

Figure 1.2: Pretraining on the human reference genome using longer sequences leads to better perplexity (improved prediction of next token).

HyenaDNA Block Architecture

Figure 1.3: HyenaDNA block architecture. A Hyena operator is composed of long convolutions and elementwise gate layers. The gates are fed projections of the input using dense layers and short convolutions. The long convolutions are parameterized *implicitly* via an MLP that produces the convolutional filters. The convolution itself is evaluated using a Fast Fourier Transform convolution with time complexity $\mathcal{O}(L \log_2 L)$.

Runtime

Figure 4.1: Runtime (forward & backward pass) for Transformer and HyenaDNA: 2 layers, width=128, gradient checkpointing, batch size=1, A100 80GB. At 1M tokens HyenaDNA is **160x faster** than Transformer.

Single Nucleotide Resolution

Table 4.1: GenomicBenchmarks Top-1 accuracy (%) for pretrained HyenaDNA, DNABERT and Transformer (GPT from 4.1), and the previous SotA baseline CNN (scratch).

Dataset	CNN	DNABERT	GPT	HyenaDNA
Mouse Enhancers	69.0	66.9	80.1	85.1
Coding vs Intergenomic	87.6	92.5	88.8	91.3
Human vs Worm	93.0	96.5	95.6	96.6
Human Enhancers Cohn	69.5	74.0	70.5	74.2
Human Enhancers Ensembl	68.9	85.7	83.5	89.2
Human Regulatory	93.3	88.1	91.5	93.8
Human Nontata Promoters	84.6	85.6	87.7	96.6
Human OCR Ensembl	68.0	75.1	73.0	80.9

Ultralong-Range Genomics

- single-nucleotide polymorphisms (SNPs)
- quantifying the functional effects of non-coding variants

Table 4.3: Chromatin profile prediction Median AU-ROC computed over three categories: Transcription factor binding profiles (TF), DNase I-hypersensitive sites (DHS) and histone marks (HM).

Model	DADAMO	LEN	AUROC			
MODEL	T ARAMS	LEN	TF	DHS	HM	
DeepSEA BigBird	40 M 110 M	1k 8k	$95.8 \\ 96.1$	$92.3 \\ 92.1$	$\begin{array}{c} 85.6\\ 88.7\end{array}$	
HyenaDNA	7 M 3.5 M	1k 8k	96.4 95.5	93.0 91.7	86.3 89.3	

Species classification

- DNA sequences from 5 different species
- struggle on shorter sequences of length 1024

Table 4.5: Species classification Top-1 accuracy (%) for 5-way classification (human, lemur, mouse, pig, hippo). The ✗ symbol indicates infeasible training time.

Model	Len	Acc
Transformer HyenaDNA	$1 \mathrm{k}$ $1 \mathrm{k}$	$\begin{array}{c} 55.4 \\ 61.1 \end{array}$
Transformer HyenaDNA	32k 32k	$88.9 \\ 93.4$
Transformer	$250 \mathrm{k}$	×
HyenaDNA	$250 \mathrm{k}$	97.9
Transformer	450k	×
HyenaDNA	450k	99.4
Transformer	1M	X
HyenaDNA	1M	99.5

Sequence length warm-up

Figure 3.2: Sequence length warm-up reduces the training time of HyenaDNA at sequence length 450k by 40% and boosts accuracy by 7.5 points on species classification.

Task Adaptation with Soft Prompt Tokens

Figure 1.1: HyenaDNA recipe for long-range foundation models in genomics. The HyenaDNA architecture is a simple stack of Hyena operators (Poli et al., 2023) trained using next token prediction. (See Fig. 1.3 for block diagram of architecture). We introduce a new sequence length scheduling technique to stabilize training, and provide a method to leverage the longer context length to adapt to novel tasks without standard fine-tuning by filling the context window with learnable soft prompt tokens.

Fine Tuning HyenaDNA

Tasks:

- Identify Enhancer Regions in a DNA Sequence
- Species classification

Receipt:

- Pretrained Model: HyenaDNA
- Input DNA Sequence
- Soft Prompt Tokens
- Fine-Tuning:
 - Soft Prompt tokens are optimized for the task
- Output: Probability scores for:
 - each nucleotide being part of an enhancer
 - dna being each species

Example:

Input: ACGTACGTCGTACGTC...

-> [0.1, 0.2, 0.3, 0.4, ...]

- Soft Prompt: [P1, P2, P3]

-> P1 = [0.01, -0.05, 0.07, ...], P2 = [0.1, 0.03, -0.02, ...], P3 = [0.05, 0.07, -0.01, ...]

- Combined Input: [P1, P2, P3, 0.1, 0.2, 0.3, 0.4, ...]
- Predictions: [0.01, 0.85, 0.10, 0.90, ...] (Species A, Species B, ...)

Summary

- Sequence length of up to 1 million turned out to be beneficial.
- Observing single nucleotides as individual tokes is important.
- Using long convolutions is especially more efficient the longer the sequence gets
- "Warm-up" learns shorts sequences first and then gradually increases the length leading to better performance faster and in the end.

Thank you for Listening!

Hyperparameters used for Training

Table A.3: GenomicBenchmarks hyperparameters for HyenaDNA and the baseline Transformer (GPT from 4.1), which uses FlashAttention (Dao et al., 2022a).

	TRANSFORMER	HyenaDNA		
Layers	2	2		
Width	128	128		
Parameters	529k	436k		
Learning rate	$1-6e^{-4}$	$1-6e^{-4}$		
Weight decay (model)	0 - 0.2	0 - 0.2		
Weight decay (Hyena layers)	-	0		
Embed dropout	0 - 0.2	0.0-0.3		
Resid dropout	0-0.2	0-0.3		
Num heads	8	1 L 1		
Optimizer	AdamW			
Optimizer momentum	$\beta_1,\beta_2=0.9,0.999$			
LR scheduler	Cosine decay			
Batch size	128-1024			
Training epoch	100			
Reverse complement aug.	$\mathrm{true}/\mathrm{false}$			
Sequence lengths	200-4800			

Table 1. Genomic Benchmarks. Top-1 accuracy (\uparrow) across 5-fold cross-validation (CV) for pretrained HyenaDNA, Mamba NTP, Caduceus models, and a supervised CNN baseline (trained from scratch). Best values per task are **bolded**, second best are *italicized*. Error bars indicate the difference between the maximum and minimum values across 5 random seeds used for CV.

	СNN (264к)	HyenaDNA (436k)	Мамва (468к)	CADUCEUS w/o Equiv. (470k)	Caduceus-Pн (470к)	CADUCEUS-PS (470k)
Mouse Enhancers	0.715 ± 0.087	$\textit{0.780} \pm 0.025$	0.743 ± 0.054	0.770 ± 0.058	0.754 ± 0.074	0.793 ± 0.058
CODING VS. INTERGENOMIC	0.892 ± 0.008	0.904 ± 0.005	0.904 ± 0.004	0.908 ± 0.003	0.915 ± 0.003	$\textit{0.910} \pm 0.003$
HUMAN VS. WORM	0.942 ± 0.002	0.964 ± 0.002	0.967 ± 0.002	$\textit{0.970} \pm 0.003$	0.973 ± 0.001	0.968 ± 0.002
HUMAN ENHANCERS COHN	0.702 ± 0.021	0.729 ± 0.014	0.732 ± 0.029	0.741 ± 0.008	0.747 ± 0.004	0.745 ± 0.007
HUMAN ENHANCER ENSEMBL	0.744 ± 0.122	0.849 ± 0.006	0.862 ± 0.008	0.883 ± 0.002	0.893 ± 0.008	0.900 ± 0.006
HUMAN REGULATORY	0.872 ± 0.005	0.869 ± 0.012	0.814 ± 0.211	0.871 ± 0.007	0.872 ± 0.011	0.873 ± 0.007
HUMAN OCR ENSEMBL	0.698 ± 0.013	0.783 ± 0.007	0.815 ± 0.002	0.818 ± 0.003	0.828 ± 0.006	0.818 ± 0.006
HUMAN NONTATA PROMOTERS	0.861 ± 0.009	0.944 ± 0.002	0.933 ± 0.007	0.933 ± 0.006	0.946 ± 0.007	$\textit{0.945} \pm 0.010$

Table A.4: GenomicBenchmarks Top-1 accuracy (%) GPT is the causal Transformer from 4.1, HyenaDNA k-mer uses a 6-mer tokenizer, and HyenaDNA bidirection is a bidirectional version of the Hyena operator.

Model	GPT	GPT	HyenaDNA	HyenaDNA	$\begin{array}{c} HyenaDNA \\ \mathrm{k-mer} \end{array}$	HyenaDNA bidirection	DNABERT
Pretrained	no	yes	no	yes	no	no	yes
Mouse Enhancers	79.3	79.3	84.7	85.1	81.8	80.6	66.9
Coding vs Intergenomic	89.3	91.2	90.9	91.3	86.7	90.3	92.5
Human vs Worm	94.8	96.6	96.4	96.6	92.9	95.9	96.5
Human Enhancers Cohn	67.7	72.9	72.9	74.2	69.8	72.1	74.0
Human Enhancers Ensembl	79.0	88.3	85.7	89.2	88.0	85.9	85.7
Human Regulatory	90.2	91.8	90.4	93.8	90.2	89.1	88.1
Human Nontata Promoters	85.2	90.1	93.3	96.6	83.5	88.5	85.6
Human OCR Ensembl	68.3	79.9	78.8	80.9	70.2	75.3	75.1

Some more References...

Video-presentation of the paper:

https://youtu.be/haSkAC1fPX0?si=v28n75mdSjTURvay

Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling:

https://arxiv.org/pdf/2403.03234

Articles:

- https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna
- <u>https://aibusiness.com/ml/hyenadna-a-large-language-model-trained-on-huma</u> <u>n-genome-sequences</u>