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Single-Cell Perturbations

e chemical or genetic effects can influence the phenotypes of cells and
altering their functions
e heterogeneity of cells makes predictions of cellular responses difficult

e data from treated and control cells:
o lterative Indirect Immunofluorescence Imaging (4i)
m measure the abundance and localization of proteins
m antibodies tagged with a fluorescent dye
o single-cell RNA sequencing

e problem: observations are unpaired
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Optimal Transport Theory

Problem: how to transport one distribution

clz,y)
to another by minimizing the cost? k N 'I L
! 4 200

Definition (transport map): X

A measurable map T : X — Y is said to transport a probability measure p € P(X)
to a probability measure v € P(Y) if:

v(B) = w(T'(B)) for all measurable sets B C Y’
where T ! (B) = {z € X : T(z) € B} is the preimage of B under 7.

Notation: Tl ,_,

Monge’s Optimal Transport Problem:
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Optimal Transport Theory

Monge's Problem is not always solvable

Solution: Kantorovich-Problem, which is a relaxation of Monge's Problem

s 2
W(Ila V) = Vgl:"n [E(X,Y)~y ” X— Y”2,

(v)
I' is the space of all probability measures on X x Y, with
Y(A xY) = pu(A) and y(X x B) = v(B) for compact AC X,BCY

—— Source distribution

—— Target distribution
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Optimal Transport Theory

e dual of Kantorovich is defined as:
W(u,v) = B IE,,[g(x) 1+ E,[f)]
o, :={@g.f) e '@ x L) : g(x) L)< > 11X = Y13, V(. y)du @ dvace.|

e the dualis constrained and concave and can further be simplified to:
Wy, v) = —[E["x”z + Ibfllz] min E [ 00 + Ey [f)]

Cuy
where ®is the set of all convex functions in L*(dy) x L*(dv)

Jr(x) = max,(y, x) — f(y)

e further approximated (min-max formulation):

W(p,v) = max m¢in Cuy —Eu[(z, Vg(z)g) — f(Vg(2)g)s] —Eu[f()s]



Input Convex Neural Networks (ICNN)

e Dbased on feed-forward networks
e function =z — f(z)s €R with 6= W, 4,b)
is convex if:
o activation functions are convex and

non-decreasing
o W; is non-negative

W(p,v) = mgxmdfn Cuv —E,[(z, Vg(x)s) — f(Vg(2)g)e] — Ev[f(¥)e]

e optimized using two ICNNs (for gand ¢ )
e the optimal transport map is:

T =Vg
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Evaluation Methods and Metrics

o /,feature means: distance between means of the observed and predicted

distributions
e r,feature means: correlation of the means of the observed and predicted

distributions
e kernel maximum mean discrepancy (MMD): measures distance of two

distributions

MMD(p, g; §) = Exx [0, X")] + Eyy [0, Y)] - Z[Ex,y[¢(x9y)]

e uniform manifold approximation and projection (UMAP): dimension reduction
technique used for visualisation



a b ; c
Sox9 S5 aTUuB Trametinib® CellOT cAE scGen Identity
1992 “ 1 = TR L)
= | CellOT o *‘,‘:;; M 5P
T 01 1 5 '}-,, i L T o 1 oo
g Identity ° . vy 4 & P g R
(= 0 o g e ¢ R U i > 4‘?,;
o g 4 -~ Y ¥ f;w'—‘(
41 dat 0 1 2 0o 1 2 Observed £ e L S I L o
I data :;ERK PAKT oAE
3 02 l \ g 3
o
:g K 050 4 scGen E
01+ =
g ' 0.25 PopAlign g
0- f T T T T T T
3 0 2550 75 0O 02 04 06 08 10 107 10"
i CollOT | o Gontrol  feature means — <« MMD ® Predicted cells + Measured cells |UMAP
== Treated == cAE == scGen
d e
NRG1 ARHGAP26 Trametinib®™¥#-s=a CellOT cAE scGen Identity

CellOT Lo o
: v o
1 Identity E S

0 - Observed

Trametinib*“
w
o 4 wn
o
N
&

RNA seq data

Gavinostat™®  Trametinib®V"*1 ==

PPMIE TEX14 CAE
g 37 6 - t
k= scGen
g 2 - v »S?' - g;““
£ i 2 4 PopAlign %! ‘ .
: - ' e T4
O o 0 - 0 02 04 06 08 10 ’ L. &
o 2 4 o 2 a4 2 faatiite means = <« MMD e Predicted cells + Measured cells [UMAP
== CellOT == Control
mm Treated == cAE == scGen

CellOT applied to predict the responses of cell populations to cancer treatments using a proteomic
dataset consisting of two melanoma cell lines (M130219 and M130429)




Subpopulation-Specific Drug Effects
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Subpopulation-Specific Drug Effects
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cl.CASP3 is an apoptosis marker(form of programmed cell death)




CellOT - On Unseen Patients

e out of sample (0.0.s) setting compared against independent-identically
distributed (i.i.d.) setting
e peripheral blood mononuclear cell droplet scRNA-seq dataset

e response of eight patients with lupus to interferon (IFN)-B,
o  apotent cytokine that induces genome-scale changes in immune cell transcriptional profiles

e three considered genes that are connected with autoimmune diseases
o CXCL11,CCL2 and APOBEC3A
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CellOT - Differentiation Process of Cells
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Thank you for your Attention!
Any Questions?




