## Missing Values and Imputation in Healthcare Data: Can Interpretable Machine Learning help?

Alexander Hüdepohl

December 19, 2024

Alexander Hüdepohl

Missing Values and Imputation in Healthcare

December 19, 2024

## Outline

#### Motivation

#### 2 Related Work

- 3 Backround/Definitions
- 4 Testing for MCAR with EBM
- 5 Missing Values in Healthcare Data
- **6** Detecting and avoiding potential risks of missing value imputations

#### 7 Conclusion

< ∃⇒

#### **Motivation**

A D N A B N A B N A B N

2

- missing values are a fundamental problem in data science and omnipresent in most datasets
- handling missing values can have a significant impact on ML models and corresponding results
- in medical applications, poor handling of missing data can lead to incorrect predictions and affect critical healthcare decisions

- common preprocessing step: deleting rows or columns with missing values
- works only if:
  - missingness ratio is small
  - missing values are completely at random (MCAR)
- in other cases, deleting rows/columns may change the data distribution and introduce bias

- missing values are categorized into three types:
  - Image of the matrix of the
  - 2 missing at Random (MAR)
  - In missing not at Random (MNAR)
- different types of missingness require different handling methods:
  - data cleaning and deletion
  - 2 imputation (e.g. mean, median, unique value)
  - advanced methods like MICE, MissForest, and KNN Imputer

## Why interpretability matters for missing values

- many imputation methods are black-box models
- users cannot easily recognize potential harms
- black-box models are hard to debug or explain
- interpretable ML provides new opportunities:
  - insights into missingness causes
  - detecting and avoiding risks
- glass-box models (e.g. EBM) combine high accuracy and interpretability

#### **Related Work**

2

- generative imputation methods:
  - placing strong assumptions on underlying data distribution, not all are testable
  - can introduce bias
- discriminative imputation methods (MICE, MissForest, KNN Imputer)

## Challenges in existing methods

#### MissForest:

- sensitive to initialized values
- KNN Imputer:
  - requires careful hyperparameter tuning (k)
  - struggles with high-dimensional datasets
- lack of interpretability:
  - cannot explain causes of missingness
  - no insights into imputation risks

- provide a new perspective:
  - gain new insights on missingness mechanisms
  - better understand causes of missingness
  - detect risks introduced by imputation methods
- EBMs advantages:
  - visualize relationships via shape functions
  - identify anomalies such as spikes caused by imputation

## **Backround/Definitions**

э

→

#### Definitions

#### missing completely at random (MCAR)

- the missingness is unrelated to the data (same for all samples)
- example: A survey respondent accidentally skips a question

#### missing at random (MAR)

- the probability of missingness of a feature is determined from the observed values of the other features
- example: Older patients are less likely to report their income

#### missing not at random (MNAR)

- the probability of missingness is also related to unobserved values in the data
- example: Patients with depression avoid answering mental health questions

## Missing value imputation

#### MissForest

- initial guess for missing value using mean imputation
- sorts features according to missing rate
- fits random forest iteratively to predict and impute each missing feature from other features until value converges

#### KNN Imputation

- imputes missing values by mean value of K nearest neighbors in training set
- distance of two samples is measured on non-missing features on both samples
- choose good distance metric and fine tune hyperparameter K

- input sample denoted as (x,y)
  - x is p dimensional feature vector
  - y is the target
- GAM:  $g(E[y]) = \beta_0 + f_1(x_1) + f_2(x_2) + \dots + f_p(x_p)$
- $\beta_0$ : Intercept
- $f'_i s$ : shape functions
- g: link function (identity for regression, logistic for classification)

ヨト イヨト ニヨ

#### EBM shape function and density plot



- uses bagged ensembles of boosted depth-restricted tree to represent each  $f_j$
- Tree-based ensemble learning improves performance of GAMs
- EBM's shape functions have more representational power and better capture fine detail (GAM uses splines)
- EBM improves accuracy by adding pairwise interactions:  $g(E[y]) = \beta_0 + \sum_{j=1}^{p} f_j(x_j) + \sum_{k=1}^{K} f_k(x_{k1}, x_{k2})$

#### Testing for MCAR with EBM

- (日)

э

- ∢ ⊒ →

## Testing for MCAR with EBM

- important to determine type of missingness (e.g. Little-test for MCAR)
- encode missing values with a unique value for the feature
- fit EBM that predicts the target and get a shape function
- leaf nodes split feature values into many bins, each bin has a prediction score (bins and scores form shape function)
- shape function rewritten as linear combination of a series of indicator variables denoting if feature values are withing bin, coefficient are corresponding scores of the bins:

$$f_j(x_j) = \sum_{k=0}^{B_j-1} \theta_{j,k} \cdot \mathbb{M}\{b_{j,k} < x_j \le b_{j,(k+1)}\},$$

 wald test (null hypothesis), shape functions centered with mean 0, if rejected we do not have MCAR (p-value < 0.05)</li>

#### Example & Comparison

#### EBM shape function to test for MCAR



#### Comparison with Little's method

| Type     | MCAR datasets↓ |       |       | MAR datasets↑ |       |       |
|----------|----------------|-------|-------|---------------|-------|-------|
| $p_m$    | 0.1            | 0.2   | 0.3   | 0.1           | 0.2   | 0.3   |
| Little's | 0.035          | 0.070 | 0.055 | 1.000         | 1.000 | 1.000 |
| Ours     | 0.080          | 0.005 | 0.005 | 0.910         | 0.885 | 0.890 |

#### **Missing Values in Healthcare Data**

3.5 3

## Missing values assumed normal

- in healthcare, it is common for feature values to be missing, because clinicians believed the patient was likely to be "normal"
- no patients in the data set with heart rates between 38 and 125; 91% are missing (coded as 0)
- when drawing the shape function, EBM will still make predictions in the range of missing values by interpolating from other bins



Figure: EBM shape function for heart rate (bpm)

Alexander Hüdepoh

22 / 33

## Predicting the missingness (case MAR, MNAR)



(b) "Systolic blood pressure" shape function when predicting missingness of "heart rate (HR)"

Figure: EBM shape functions for predicting the missingness of one feature using the others (x-axis: feature value, y-axis: contribution to missingness). The effects of the imputed group (orange) and the non-missing group (blue) are separated.

#### Test accuracy of predicting the missingness

| model | $p_m$ | linear              | curvilinear         | quadratic           |
|-------|-------|---------------------|---------------------|---------------------|
| LR    | 0.1   | $0.954 \pm 0.014$   | $0.902 \pm 0.016$   | $0.883 {\pm} 0.02$  |
| RF    |       | $0.943 \pm 0.014$   | $0.946 \pm 0.013$   | $0.883{\pm}0.02$    |
| KNN   |       | $0.895 \pm 0.013$   | $0.894 \pm 0.009$   | $0.881 \pm 0.021$   |
| EBM   |       | $0.956 {\pm} 0.015$ | $0.959 {\pm} 0.013$ | $0.881 \pm 0.02$    |
| LR    | 0.2   | $0.928 {\pm} 0.019$ | $0.839 {\pm} 0.034$ | $0.815 \pm 0.013$   |
| RF    |       | $0.911 \pm 0.019$   | $0.928 \pm 0.019$   | $0.831 {\pm} 0.017$ |
| KNN   |       | $0.813 \pm 0.024$   | $0.81 \pm 0.022$    | $0.812 \pm 0.008$   |
| EBM   |       | $0.930 {\pm} 0.019$ | $0.946 {\pm} 0.02$  | $0.822 \pm 0.016$   |
| LR    | 0.3   | $0.906 {\pm} 0.022$ | $0.809 {\pm} 0.054$ | $0.710 \pm 0.025$   |
| RF    |       | $0.887 \pm 0.021$   | $0.926 \pm 0.019$   | $0.812{\pm}0.03$    |
| KNN   |       | $0.744 \pm 0.032$   | $0.752 \pm 0.042$   | $0.711 \pm 0.016$   |
| EBM   |       | $0.908 {\pm} 0.022$ | $0.946{\pm}0.02$    | $0.795 \pm 0.03$    |

| model         | $p_m$ | linear              | curvilinear         | quadratic           |
|---------------|-------|---------------------|---------------------|---------------------|
| LR            | 0.1   | $0.957 \pm 0.013$   | $0.901 \pm 0.013$   | $0.886 {\pm} 0.017$ |
| RF            |       | $0.944 \pm 0.013$   | $0.948 \pm 0.011$   | $0.886 {\pm} 0.017$ |
| KNN           |       | $0.899 \pm 0.012$   | $0.898 \pm 0.01$    | $0.885 \pm 0.018$   |
| EBM           |       | $0.959{\pm}0.012$   | $0.963 {\pm} 0.011$ | $0.885 \pm 0.017$   |
| LR            |       | $0.928 \pm 0.018$   | $0.847 \pm 0.035$   | 0.817±0.010         |
| RF            | 0.2   | $0.910 \pm 0.016$   | $0.933 \pm 0.016$   | $0.828 {\pm} 0.012$ |
| KNN           |       | $0.816 \pm 0.024$   | $0.82 \pm 0.025$    | $0.813 \pm 0.008$   |
| EBM           |       | $0.931 {\pm} 0.017$ | $0.953 {\pm} 0.016$ | $0.819 {\pm} 0.012$ |
| LR            |       | $0.914 {\pm} 0.016$ | $0.805 \pm 0.048$   | $0.706 \pm 0.024$   |
| $\mathbf{RF}$ | 0.3   | $0.891 \pm 0.015$   | $0.925 \pm 0.015$   | $0.811 {\pm} 0.028$ |
| KNN           |       | $0.760 \pm 0.035$   | $0.764 \pm 0.039$   | $0.711 \pm 0.017$   |
| EBM           |       | $0.916 {\pm} 0.016$ | $0.949 {\pm} 0.015$ | $0.789 \pm 0.03$    |
|               |       |                     |                     |                     |

(a) datasets generated by MAR

(b) datasets generated by MNAR

∃ →

# Detecting and avoiding potential risks of missing value imputations

## Problem with bad imputations

- false imputations can influence references in a harmful way
  - for example creating artificial spikes in shape functions



- need to address two problems:
  - how to know the spike is at the mean
  - a how to detect spikes, given that the shape function itself can fluctuate
- first problem is easy to solve:
  - mean value is the same before and after mean imputation
  - Find the bin which covers the mean value and detect if that bin is a spike

## Procedure for detecting harmful imputations

- regarding the second problem:
  - need an algorithm to distinguish between spikes from mean imputation and natural fluctuations in shape functions
  - use second-order differences for all bins (spikes have extreme second-order differences)
  - run an outlier detection algorithm on the second-order differences (isolation forest)
- the algorithm predicts an anomaly score for each bin, and we choose a threshold so that around 5% of bins are detected as outliers
- potentially harmful mean imputations are predicted if bins covering the mean values are also detected as outliers

## Challenges with advanced imputation methods

- MissForest struggles with systematic biases:
  - $\bullet\,$  missing P/F ratio values for healthy patients lead to no real "healthy" observations in the data
  - thus MissForest might incorrectly assume that missing P/F values are similar to observed low values, as it is trained only on observed data and cannot infer that missing values indicate health
- impact of advanced methods:
  - harmful imputations can reduce predicted risk for riskier low-P/F-ratio patients, potentially leading to inadequate care
  - fluctuations in imputations can cause "little spikes" in EBM shape functions

#### Examples with advanced method imputations



#### (b) Shape functions for Urea

Alexander Hüdepoh

Missing Values and Imputation in Healthcare

#### Conclusion

3

## Capabilities of EBMs in addressing missing values

- detect and understand causes of missingness
- detect and avoid potential risks introduced by imputation methods:
  - predict missingness of features from other features
  - EBM interpretability helps users better understand the relationship between features and missingness
- editable to fix issues with minimal accuracy impact:
  - edits only affect small subsets of the model, preserving overall accuracy

Thank you for your attention! Any questions?

イロト イポト イヨト イヨト

2