Graph Neural Networks in Biology: Glossary

Alexander Schönhuth Luna Pianesi

Bielefeld University April 15, 2024

OUTLINE

Neural Networks

Deep Learning

Neural Network

Neurons

Weights

Width

Depth

Activation function

Perceptron

Multi-layer perceptron (MLP)

Training a neural network

Data

Loss function

Optimizer

Backpropagation

OUTLINE

Graph Neural Networks

Graph

Nodes

Edges

Adjacency matrix

Attributes

Neighbours

Invariance

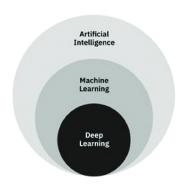
Equivariance

Graph neural network

DISCLAIMER

This glossary is intended to help you have an **overview** of deep learning and graph neural network concepts that will be needed for this seminar.

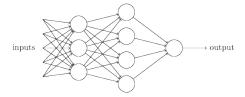
The provided definitions are not mathematically formal, but are purposefully **discursive** for the sake of those who are not very familiar with this field. Links attached in each slide contain additional resources and more formal contents.


Neural networks

DEEP LEARNING

Definition:

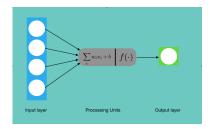
Deep learning is a subset of machine learning focusing on artificial neural networks. "Deep" refers to the many layers constituting neural networks


- ▶ https://www.ibm.com/topics/deep-learning
- https:
 //uk.mathworks.com/discovery/deep-learning.html

NEURAL NETWORK

Definition:

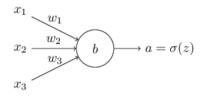
A neural network is a nonlinear, parameterized function with restricted output range


https://diposit.ub.edu/dspace/bitstream/2445/180441/ 2/tfm_lichtner_bajjaoui_aisha.pdf (pages 5 and 6)

NEURONS

Definition:

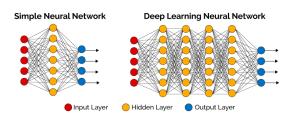
A neuron is a composition of an activation function with a linear function; it is the basic processing unit of a neural network


▶ https://en.wikipedia.org/wiki/Neural_circuit

WEIGHTS

Definition:

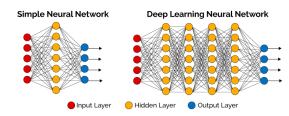
Weights are real numbers associated to each connection between neurons in a neural network and represent the strength of the connection or influence that a neuron has on another. Weights are the parameters that are adjusted during the training of neural network to improve its prediction performance


https:
 //deepai.org/machine-learning-glossary-and-terms/
weight-artificial-neural-network

WIDTH

Definition:

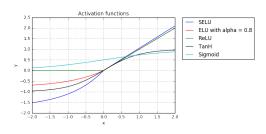
The width is the number of neurons in a hidden layer of a neural network


https://proceedings.neurips.cc/paper_files/paper/ 2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf

DEPTH

Definition:

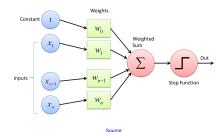
The depth is the number of layers in a neural network


https://proceedings.neurips.cc/paper_files/paper/ 2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf

ACTIVATION FUNCTION

Definition:

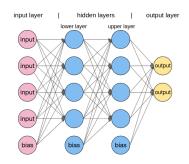
Also called "nonlinearity", the activation function of a node in a neural network is a nonlinear function that calculates the output of the node based on its individual inputs and their weights


▶ https://en.wikipedia.org/wiki/Activation_function

PERCEPTRON

Definition:

A perceptron is an algorithm that performs linear binary classification. A perceptron can solve the AND gate problem but not the XOR gate problem

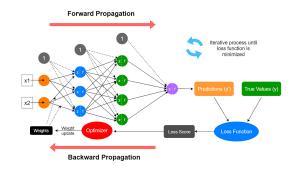

- ▶ https://brilliant.org/wiki/perceptron/
- https://sefiks.com/2020/01/04/ a-step-by-step-perceptron-example/

MULTI-LAYER PERCEPTRON

Definition:

A multi-layer perceptron can be constructed by combining multiple single-layer perceptrons and can thus perform nonlinear classification. A MLP can solve the XOR problem

- https://towardsdatascience.com/ perceptrons-logical-functions-and-the-xor-problem-37ca5025790a
- https://www.deeplearningbook.org/contents/mlp.html (pages 167-172)



TRAINING A NEURAL NETWORK

Definition:

Training a neural network means to update the weights of the network so as to have better predictions. Ingredients needed:

- Data
- Loss function
- Optimizer
- Backpropagation

https://medium.com/data-science-365/ overview-of-a-neural-networks-learning-process-61690a502fa

DATA

What type of data?

Data used for deep learning can be of many various types: images, sequences, graphs, etc.

https:
//uk.mathworks.com/discovery/deep-learning.html

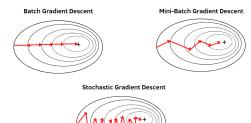
LOSS FUNCTION

Definition:

A loss function is a criterion according to which we can evaluate the quality of the predictions that a neural networks makes Mean squared error loss function

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2$$

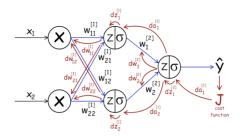
► Cross-entropy loss function $H(p,q) = -E_p [log q]$


- ▶ https://en.wikipedia.org/wiki/Loss_function
- https://en.wikipedia.org/wiki/Mean_squared_error
- ► https://en.wikipedia.org/wiki/Cross-entropy

OPTIMIZER

Definition:

An optimizer is a strategy to optimize the training of a neural network. The most frequently used one is called stochastic gradient descent

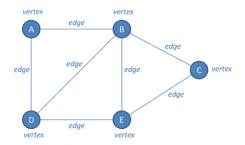

▶ https: //en.wikipedia.org/wiki/Stochastic_gradient_descent

BACKPROPAGATION

Definition:

Backpropagation is the mechanism through which we can propagate backwards the error signal obtained during training by a deep neural network to update its weights and in turn improve predictions

- https://towardsdatascience.com/ understanding-backpropagation-algorithm-7bb3aa2f95fd
- https://analyticsarora.com/ 8-unique-machine-learning-interview-questions-on-backpropagation/


Graph neural networks

GRAPH

Definition:

A graph is a pair $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} is a set of vertices and \mathcal{E} is a set of edges

- ► https://distill.pub/2021/gnn-intro/
- ▶ https: //en.wikipedia.org/wiki/Glossary_of_graph_theory

Nodes

Definition:

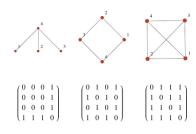
A node (also frequently called "vertex") is an abstract representation of an entity in a graph

https://en.wikipedia.org/wiki/Vertex_(graph_theory)

EDGES

Definition:

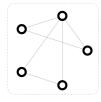
An edge is an abstract representation of a relationship between nodes in a graph. Edges can be undirected or directed


https://en.wikipedia.org/wiki/Glossary_of_graph_ theory#edge

ADJACENCY MATRIX

Definition:

The adjacency matrix is the most convenient way of storing and representing a graph. It has as many rows and as many columns as the number of nodes in the graph. An entry of the matrix is 1 is there is an edge between the two nodes under consideration, otherwise it is 0

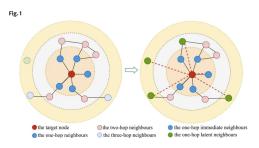

▶ https://mathworld.wolfram.com/AdjacencyMatrix.html

ATTRIBUTES

Definition:

Attributes are information that a node, edge or entire graph can carry

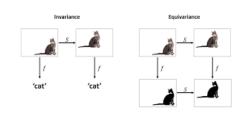
- V Vertex (or node) attributes
 e.g., node identity, number of neighbors
- E Edge (or link) attributes and directions e.g., edge identity, edge weight
- **U** Global (or master node) attributes e.g., number of nodes, longest path


► https://distill.pub/2021/gnn-intro/

NEIGHBOURS

Definition:

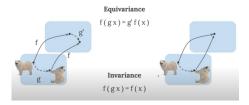
Said of nodes, neighbours indicate adjacent vertices


https://link.springer.com/article/10.1007/ s10115-023-01963-x

(PERMUTATION) INVARIANCE

Definition:

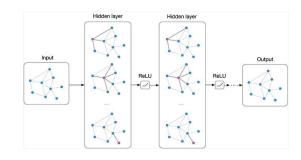
Permutation invariance is the concept indicating that the permutation of the nodes of the input graph does not affect the output


- https://proceedings.neurips.cc/paper_files/paper/ 2019/file/ea9268cb43f55d1d12380fb6ea5bf572-Paper.pdf
- https://www.doc.ic.ac.uk/~bkainz/teaching/DL/notes/ equivariance.pdf

(PERMUTATION) EQUIVARIANCE

Definition:

Permutation equivariance is the concept indicating that the permutation of the input permutes in turn the output


- https://proceedings.neurips.cc/paper_files/paper/ 2019/file/ea9268cb43f55d1d12380fb6ea5bf572-Paper.pdf
- https://datascience.stackexchange.com/questions/16060/ what-is-the-difference-between-equivariant-to-translation-and-invariant-to-tr

GRAPH NEURAL NETWORK

Definition:

A graph neural network (GNN) is a particular type of neural network that can handle graph structured objects by design

- ► https://distill.pub/2021/gnn-intro/
- ▶ https://theaisummer.com/Graph_Neural_Networks/

Happy learning!

