Graph Neural Networks in Biology: Introduction

Alexander Schönhuth
Luna Pianesi

Bielefeld University April 09, 2024

Graph Neural Networks: Motivation

Neural Networks

Neurons

Linear + Activation Function

$$
\text { output }=a\left(w^{T} \cdot x+b\right)
$$

Note: replace f in Figure by a !

Neuron: linear function followed by activation function

Examples

- Linear regression:

$$
a=\mathrm{Id}
$$

a is identity function

- Perceptron:

$$
a(x)= \begin{cases}1 & x \geq 0 \\ 0 & x<0\end{cases}
$$

a is step function

Neural Networks

Concatenating Neurons

Neural Networks

ARCHITECTURES (CHART FROM 2016)

Deep Neural Networks

Simple Neural Network

Input Layer

Deep Learning Neural Network

Width $=$ Number of nodes in a hidden layer
Depth $=$ Number of hidden layers Deep $=$ depth ≥ 8 (for historical reasons)

Neural Networks

Formal Definition

- Let $\mathbf{x}^{l} \in \mathbb{R}^{d(l)}$ be all outputs from neurons in layer l, where $d(l)$ is the width of layer l.
- Let $y \in V$ be the output.
- Let $\mathbf{x}=: \mathbf{x}^{0}$ be the input.
- Then

$$
\mathbf{x}^{l}=\mathbf{a}^{l}\left(\mathbf{W}^{(l)} \mathbf{x}^{l-1}+\mathbf{b}^{l}\right)
$$

where $\mathbf{a}^{l}()=.\left(a_{1}^{l}(),. \ldots, a_{d(l)}^{l}().\right), \mathbf{W}^{(l)} \in \mathbb{R}^{d(l) \times d(l-1)}, \mathbf{b}^{l} \in \mathbb{R}^{d(l)}$

- The function f representing a neural network with L layers (with depth L) can be written

$$
y=f\left(\mathbf{x}^{0}\right)=f^{(L)}\left(f^{(L-1)}\left(\ldots\left(f^{(1)}\left(\mathbf{x}^{(0)}\right)\right) \ldots\right)\right)
$$

where $\mathbf{x}^{l}=f^{(l)}\left(\mathbf{x}^{l-1}\right)=\mathbf{a}^{\mathbf{l}}\left(\mathbf{W}^{(\mathbf{1})} \mathbf{x}^{l-1}+\mathbf{b}^{\mathbf{l}}\right)$

TRAINING: BACKPROPAGATION

- E.g. let X be a set of images, labels 1 and 0: tree or not
- Let

$$
f_{(\mathbf{w}, \mathbf{b})}: X \rightarrow\{0,1\} \quad \text { and } \quad \hat{f}: X \rightarrow\{0,1\}
$$

be the network function $\left(f_{\mathbf{w}, \mathbf{b}}\right)$ and the true function (\hat{f})

- $L\left(f_{(\mathbf{w}, \mathbf{b})}, \hat{f}\right)$ loss function, differentiable in network parameters \mathbf{w}, \mathbf{b}
- Back Propagation: Minimize $L(f, \hat{f})$ through gradient descent

Heavily parallelizable!

- Decisive: Ratio number of parameters and training data

Why Neural Networks?

Why Neural Networks?

Given an (unknown) functional relationship $f: \mathbb{R}^{d} \rightarrow V$, why should we learn f by approximating it with a neural network?

Practical, Intuitive Consideration

Deep Learning

Intuitive Explanation

- Face recognition: decompose classification task into subtasks

Deep Learning is Intuitive

- Face recognition: decompose subtask (eye recognition) into sub-subtasks
- Subtasks are composed into overall task "layer by layer"

Running Example: MNIST CLASSIFICATION

 Data, Function

$$
\begin{equation*}
f: \mathbb{R}^{28 \times 28=784} \longrightarrow\{0,1, \ldots, 9\} \tag{1}
\end{equation*}
$$

Running Example

Model Class: NN with 1 hidden layer

Running Example

together makes

Neurons of hidden layer recognize characterizing parts of digit

Theoretical Consideration

The Universal Approximation Theorem

First version formulated by George Cybenko in 1989.
Theorem A feedforward network with a single hidden layer containing a finite number of neurons can approximate any nonconstant, bounded and continuous function with arbitrary closeness, as long as there are enough hidden nodes.

Why Deep Learning?

Rule of Thumb

One needs approximately

as many training data

 as there are parametersin the class of models

More Layers

Motivation

- We save on neurons/parameters, while increasing number of steps, by increasing depth!

If you are curious about a working example: watch Lecture 02 by Prof. Schönhuth here https://gds.techfak.uni-bielefeld. de/teaching/2022winter/bioadl

Why Deep Learning

- We need only $O(n+1)$ (and not $O(2 n))$ parameters to model a constellation with $2 n$ steps and one symmetry axis
- Hence, we only need $O(n+1)$ training data, and not $O(2 n)$ (like SVM or Nearest Neighbour)
- In general $O\left(n^{l}\right)$ (symmetric) steps need only $O(n l)$ training data
- This illustrates why deeper NNs can deal with symmetry invariance in images

Why Deep Learning

Theorem (Universal Approximation; Montufar (2014))
Let f be an NN with d inputs, 1 hidden layers (depth l) of width n each. Then the number of differently labeled regions is

$$
\begin{equation*}
O\left(\binom{n}{d}^{d(l-1)} n^{d}\right) \tag{2}
\end{equation*}
$$

That is, the number of regions that can receive different labels is exponential in the depth (the number of hidden layers) l.

Deep Learning

Assumptions

- Model classes make certain assumptions about properties of the functions they aim to approximate
- Many model classes (such as Nearest Neighbors and SVM's) require local consistency and smoothness: nearby points are likely to receive the same label
- Deep neural networks make further assumptions such as invariance to shifts, rotations and mirroring

ImAGENET AND ILSVRC

Dataset and First Results

ImageNet examples: "beading plane", "brown root rot fungus", "scalded milk", "common roundworm"

- ImageNet dataset: 16 million full color images; 20000 categories
- Starting point: Le, Ranzato, Monga, Devin, Chen, Corrado, Dean \& Ng: "Building high-level features using large scale unsupervised learning", 2012, https://ai.google/research/pubs/pub38115 achieved 15.3 \% test accuracy
- ILSVRC: Image-Net Large-Scale Visual Recognition Challenge
- 2012: 1000 categories; Training 1.2 million images; Validation 50000 images; Test 150000 images

Going Deeper

Graph Neural Networks: Introduction

Graphs

GRAPHS: InTRODUCTION

From https://mathinsight.org/network_introduction

Directed Graph

From https://mathinsight.org/network_introduction

Graphs, Adjacency Matrix: Definition

DEFINITION [GRAPH]:
A graph $G=(V, E)$ has vertices V and edges $E \subset V \times V$. If G is directed, the order $(i, j):=\left(v_{i}, v_{j}\right) \in E$ matters (and edges are often referred to as arcs). If G is undirected, (i, j) can be considered unordered, so $(i, j)=(j, i)$.

Definition [AdJacency Matrix]:
Let $G=(V, E)$ be a graph with vertices V and (directed) edges E. The adjacency matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq|V|}$ is defined by

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

Remark: If G is undirected, $a_{i j}=1$ implies $a_{j i}=1$. Hence A is symmetric.

Adjacency Matrix: Example

Definition [ADJAcency Matrix]:
Let $G=(V, E)$ be a graph with vertices V and (directed) edges E. The adjacency matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq|V|}$ is defined by

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

$$
A=\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From https://mathinsight.org/network_introduction

Graphs: Storing Information

Graphs: Storing Information I

Graphs can store information in various ways

Vertex attributes
From https://distill.pub/2021/gnn-intro/

Graphs: Storing Information II

Graphs can store information in various ways

Edge attributes
From https://distill.pub/2021/gnn-intro/

Graphs: StoringInformation III

Graphs can store information in various ways

Global attributes
From https://distill.pub/2021/gnn-intro/

Graphs: StoringInformation IV

Graphs can store information in various ways

Vertex (or node) embedding

Edge (or link) attributes and embedding

Global (or master node) embedding ————

Embeddings: vector-valued information From https://distill.pub/2021/gnn-intro/

Graphs: Examples

GRAPHS: ImAGES

Graph and adjacency matrix of an image
From https://distill.pub/2021/gnn-intro/

Graphs: TEXTS

Graph and adjacency matrix of a piece of text
From https://distill.pub/2021/gnn-intro/

Graphs: Social Networks

Graph and adjacency matrix displaying interactions in karate club From https://distill.pub/2021/gnn-intro/

Graphs: Molecules

Graph and adjacency matrix of a molecule From https://distill.pub/2021/gnn-intro/

Graphs: Learning Tasks

Graph Level Tasks

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & & 0 & 0
\end{array}\right]
$$

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Structures in molecule graphs. Two rings (red) or not (black).
From https://distill.pub/2021/gnn-intro/

- Labels reflect statements about the entire graph.
- If unknown, determine using machine learning.

Node Level Tasks

Karate club: Allegiance to either Mr. Hi (red) or John A. (gray) From https://distill.pub/2021/gnn-intro/

- Labels reflect statements about individual nodes.
- Some may be known. Others not: determine using ML.

Edge Level Tasks

Fight scene in image: elements (two fighters, arbiter, audience, mat). Labels: relationships.

```
From https://distill.pub/2021/gnn-intro/
```

- Labels reflect statements about edges, so indicate relationships.
- Some relationships known. If not known: determine using ML.

Graphs: Machine Learning Challenges

Neural Networks and Graphs

- Techniques for certain graphs available:
- Images = Grids: Convolutional neural networks
- Text = Sequences: Recurrent neural networks, attention networks
- Techniques for arbitrary graphs desirable:
- Social networks: vary (heavily) by application
- Molecules: plenty of different structures
- Other applications: manifold interaction networks
- Motivation: Extend existing techniques to general graphs
- Issue: Get rid of regularity as a necessary condition

General Graphs: Input

- Neural networks usually expect well-arranged input:
- Rectangular, grid-like input
- Sequence type input
- Arrangement in terms of graph-type evaluation obvious
- Graphs may harbor four types of information:
- Node information
- Edge information
- Global information
- Connectivity

How to exploit them by appropriately arranging input?

Challenge: Representing Input


```
Nodes
[0,1,1,0,0,1,1,1]
Edges
[2,1,1,1,2,1,1]
Adjacency List
[[1,0], [2, 0], [4, 3], [6, 2],
[7, 3], [7, 4], [7, 5]]
Global
1
```

Suitable way of storing graph information. Colors: different information.
From https://distill.pub/2021/gnn-intro/

- Nodes: node information
- Edges: edge information
- Global: global information
- Adjacency List: connectivity information

Challenge: Permutation Invariance

From https://distill.pub/2021/gnn-intro/

- Graphs are permutation invariant
- Goal: Exploit data in permutation invariant way

Thanks for your attention!

