

ProgrammingNumerical Data Analysis & Visualization

Luna Pianesi

Faculty of Technology, Bielefeld University

Recap

Reading from file

Dynamic: read from file with name requested by prompt

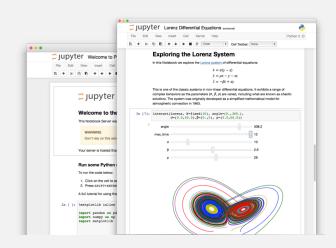
```
fName = input('Input_file:_')
lines = list()
f = open(fName)
for line in f:
lines.append(line)
```


File formats

Unstructured data

Text

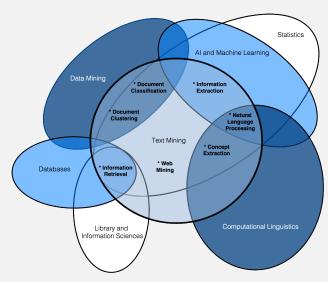
Structured data


- **►** XML
- JSON
- Tables
- Matrices

Jupyter Notebook

Why use Jupyter Notebook in Data Science?

- Simultaneous documentation & analysis
- Step-by-step processing
- Ensures reproducability



Text mining

Relies on Natural Language Processing (NLP)

Main (constitutive) tasks:

- Document summarization, clustering & classification
- Information extraction
- Information discovery

source: Miner, Gary. Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications. 1st ed. Amsterdam: Academic Press, 2012.

Data Visualization Numerical Data Analysis with NumPy Modeling Experimental Data

Matplotlib: Visualization with Python

- de-facto standard library for scientific visualizations
- many third party packages built on top of Matplotlib
- comprehensive library for creating static, animated, and interactive visualizations

source: https://matplotlib.org/

Matplotlib: Visualization with Python

Lines, bars and markers

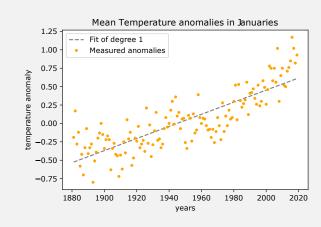
Grouped bar chart

with labels

variables

Plotting the CSD Demo

erence of two signals


Data Visualization Numerical Data Analysis with NumPy

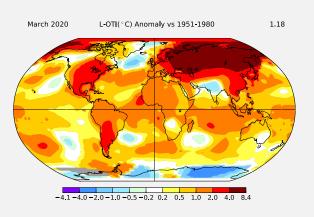
Modeling Experimental Data

Numerical analysis

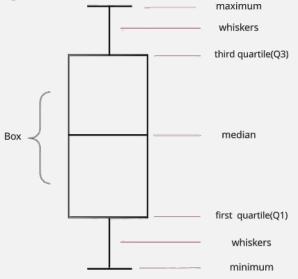
- Numerical data: anything measurable
- Methods:
 - Interpolation and regression
 - Solving differential equations
 - Optimization

N-dimensional array: numpy.ndarray

Array data structure

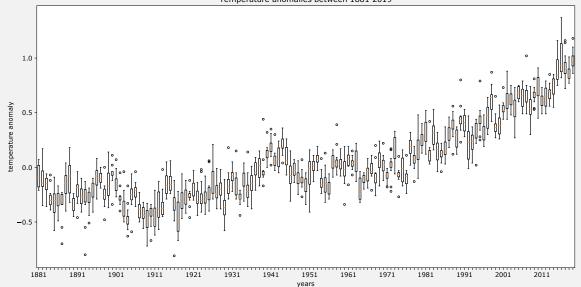

- immutable
- n-dimensional
- very storage efficient
- can store only data of same type

Data Visualization Numerical Data Analysis with NumPy Modeling Experimental Data


NASA's GISS Surface Temperature Analysis

- https://data.giss.nasa. gov/gistemp
- Collection of temperature data from thousands of meteorological stations
- Data represents anomalies, i.e., deviations from mean temperature measured in 1951-1980

Box (whisker) plot



source: https://en.wikipedia.org/wiki/Box_plot

Whisker plot of GISS data

Temperature anomalies between 1881-2019

Further material on methods in Data Science

MIT Course 6.0002, Lectures on Understanding Experimental Data:

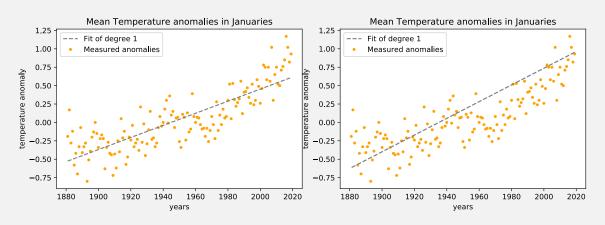
- https://www.youtube.com/v/vIFKGF11Cn8
- https://www.youtube.com/v/fQvg-hh9dUw

Linear regression

Linear regression is a *linear* approach for modelling a predictive relationship between some parameters and a given input:

$$X = \begin{pmatrix} X_0 \\ X_1 \\ \vdots \\ X_{N-1} \end{pmatrix}, Y = \begin{pmatrix} Y_0 \\ Y_1 \\ \vdots \\ Y_{N-1} \end{pmatrix} \rightarrow \alpha = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{N-1} \end{pmatrix}$$

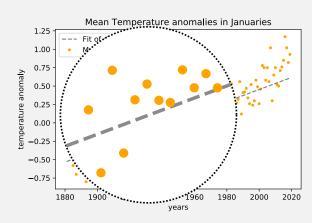
Estimator:


$$\hat{\mathbf{Y}} = \alpha_0 + \alpha_1 \mathbf{X} + \alpha_2 + \mathbf{X}^2 + \dots + \alpha_{N-1} \mathbf{X}^{N-1}$$

Simple linear regression: Estimate line, i.e, estimate α_0 , α_1 and set

$$\alpha_2 = \cdots = \alpha_{N-1} = 0$$

What criterion to optimize? (->Which line is better?)

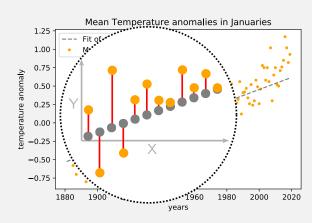


Optimization criteria

- Residual: difference predicted/observed | Y_i Ŷ_i |
- Possible minimization criteria:
 - Sum of residuals
 - Maximum
 - Variance of residuals

$$Var_{res} := \frac{1}{N} \sum_{i} \frac{(Y_i - \hat{Y}_i)^2}{(Y_i - \hat{Y}_i)^2} = E[(Y - \hat{Y})^2]$$

• Minimize Var_{res} = ordinary least squares optimization



Optimization criteria

- Residual: difference predicted/observed | Y_i Ŷ_i |
- Possible minimization criteria:
 - Sum of residuals
 - Maximum
 - Variance of residuals

$$Var_{res} := \frac{1}{N} \sum_{i} \frac{(Y_i - \hat{Y}_i)^2}{(Y_i - \hat{Y}_i)^2} = E[(Y - \hat{Y})^2]$$

Minimize Var_{res} = ordinary least squares optimization

Why least squares?

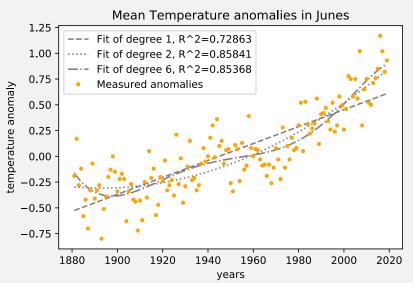
Three advantages:

- Penalizes large deviations from the observed data very strongly and sums over all data points;
- 2. Finding the polynomial that minimizes the variance can be done efficiently via least squares optimization methods;
- 3. Minimizing the variance guarantees that there is one and only one solution.

Coefficient of determination R^2

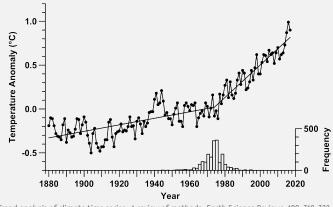
How to measure quality of fit?

Recall: Ordinary Least squares optimization minimizes Var_{res}


 R^2 is a normalized measure thereof:

$$R^2 := 1 - \frac{Var_{res}}{Var(Y)}$$

i.e, $R^2 \rightarrow 0$ bad fit, $R^2 \rightarrow 1$ good fit


Separated training from testing

The "break" model

- Combination of two linear functions
- Estimated break around year 1974 ± 5.9

source: Mudelsee, M. (2019). Trend analysis of climate time series: A review of methods. Earth Science Reviews, 190, 310–322.

Quiz

- True or false?
 - The residual is the distance between an observed and its predicted data point
 - Linear regression always minimizes the variance of residuals
 - Linear regression is the task of fitting a line to a set of data points
 - Ordinary least squares always minimizes the variance of residuals
- How does linear regression measure the distance between an observed and its predicted data point?

Quiz

- True or false?
 - The residual is the distance between an observed and its predicted data point
 true
 - Linear regression always minimizes the variance of residuals false
 - Linear regression is the task of fitting a line to a set of data points false
 - Ordinary least squares always minimizes the variance of residuals true
- How does linear regression measure the distance between an observed and its predicted data point?
 (a)

Recap

Summary

- Plots with matplotlib:
 - Line- and scatter plot
 - Histogram
 - Whisker (box) plot
- Numpy
 - ndarray data type
 - Vectorized operations, broadcasting
 - Curve fitting: polyfit()
- Realistic data analysis: climate trends

What comes next?

- Draw your first plots with matplotlib
- Further reading about NumPy: Chapter 2 of the "Python Data Science Handbook":
 - https://jakevdp.github.io/PythonDataScienceHandbook/
- Due date for this week's exercises is Wednesday, December 20, 2pm, 2023.

Next lecture: Pandas, applied machine learning, etc. ...