Programming

Winter 2023

Exercises

Number 03, Submission Deadline: November 8, 2pm, 2023

1 Conditions and comparisons

Being able to correctly manipulate condition and comparison operators is very important for executing useful and correct loops. Let's have a short recap:

- The if statement may be combined with operators such as equality (==), greater than $(>=)$, smaller than $(<=)$ and not equal $(!=)$ to obtain comparison statements that act as conditions and are evaluated as Boolean values;
- In turn, we can combine conditions using the keywords and and or;
- Conditions are evaluated as Boolean values, thus can either be True or False;
- The syntax of the if statement is (note the colon): if condition : expression;
- When we make use of the else statement, we are referring to all the cases in which the previous if statement evaluates to False, for instance: if we want to compare someone's age (age < 5), the else statement will evaluate when age >= 5;
- If we want to evaluate multiple cases, we can make use of the elif clause (where elif is short for "else if").

1. Use an if-\{elif\}*-else clause to evaluate if a variable is $<0,>25$ or if the length to its type conversion to string is $==2$. Provide an output for each case using string formatting to insert the value of your variable.

2 For loops

1. Create a for loop that sums numbers from 17 to 113 (included) using the range () function;
2. Create a for loop that outputs the numbers from 1 to 10 backwards;
3. Create a for loop that counts how many odd numbers are up to 15 (included);
4. Create a for loop that counts how many vowels are in the word "programming" using continue;
5. Use a for loop to compute the arithmetic mean of the following list of numbers:

$$
[87,98,95,9,80,70,1,43,92,23]
$$

3 While loops

1. Create a while loop that sums numbers up to 113 (included);
2. Create a while loop that outputs the number of times that a number can be divided by 2 before it becomes less or equal than 5 . Use the quotient operator first and then do the same but with the floored quotient operator;
3. Python provides a module called random for generating pseudo-randomized numbers. Use the random() function of this module to sample pseudo-random floating point numbers from the interval $[0,1)$. Use a while-loop to count the number of samples needed to receive a pseudo-random number that is smaller than a given threshold value a, e.g., say $a=0.1$.

Important:

Please submit your solution as (adequately commented) Python file or Jupyter Notebook.

