
Bielefeld University
Faculty of Technology

Genome Data Science
M.Sc. Luna Pianesi

Programming

Winter 2023

Exercises

Number 02, Submission Deadline: November 1, 2pm, 2023

1. String formatting. Often, computational results are reported in form of text, where (6 P)
several pieces of information are composed into a single sentence, e.g.: “The sum of
4 + 10 + 28 is 42”. Python provides a convenient way of constructing such strings
through the use of place holders, as shown here by two examples:

a = 4

b = 10

c = 28

first example

my_string = ' The sum of {} + {} + {} is {} ' .format(a, b, c, a + b + c)

print(my_string)

second example (notice the leading "f" in front ot the string !)

my_string2 = f ' The sum of {a} + {b} + {c} is {a + b + c} '
print(my_string2)

Read the “Guide to the Newer Python String Format Techniques” at https://

realpython.com/python-formatted-output/ to inform yourself about the format()
function and f-strings.

(a) Find the formatting instruction (using the format() function) that produced
the following textual output for the numbers 12, 2947, and 60948.651:

␣␣␣␣12

␣2,947

60␣ ,948.65

Make sure to use the same formatting instruction to print the requested text
for each of the numbers.
Hint: you can assign values to variables according to how punctuation splits
them.

(b) Explain in detail the formatting instructions that have been used in the follow-
ing statement:

'{{ {1:2f}-{0:010.2f}:{1:b} }}'.format(1234.5678, 23)

(c) Provide a meaningful output formatting for the following list of books using
f-strings:

books = [

{ ' title ' : ' To Kill a Mockingbird ' , ' author ' : ' Harper Lee ' ,
' isbn ' : 9780062420701 , ' price ' : 12.99} ,

{ ' title ' : ' Pride and Prejudice ' , ' author ' : ' Jane Austen ' ,
' isbn ' : 9781909621657 , ' price ' : 7.19},

{ ' title ' : ' 1984 ' , ' author ' : ' George Orwell ' ,
' isbn ' : 9781328869333 , ' price ' : 10}]

Hint: make use of list and dictionary indexing.

https://realpython.com/python-formatted-output/
https://realpython.com/python-formatted-output/

2. Length function. Python has a builtin2 function called len() through which the (2 P)
length of an instance of a data type can be computed, e.g. len(['this list has

one element']) returns 1. Which of the data types that you learned in the lecture
are valid input of the function?

3. In the lecture, you got a very brief introduction into Python’s slice notation for (2 P)
ordered collections and strings. For example, my_list[:3] will return the first three
elements of the list my_list. Inform yourself about the capabilities of the slice
notation to answer the following questions:

(a) How to extract the last three elements of a list?

(b) How to extract all elements of odd positions of a list?

4. Set. Which data types can be stored in a set? (1 P)

5. Implicit Boolean conversion. In Python, the conversion of non-Boolean data types (3 P)
in Boolean expressions is implicit, as illustrated in the following:

• False or 'This is a text' evaluates to 'This is a text',

• 12 and 13 evaluates to 13,

• 0 or (None and 'This is a text' and False) evaluates to None

To understand this behavior of Python, remember that Python evaluates statements
from left to right. Also, Python makes use of lazy-evaluation, i.e., it stops the
evaluation of the expression as early as its result becomes obvious. For instance,
in the third example, the expression 'This is a text' and False is not evaluated,
because None already falsified the and conjunctions.

Evaluate the following Boolean expression and explain your result. Specify the po-
sition at which Python stops the evaluation:

(a) 1 and 'Hello World' or ' '

(b) age = 17

age > 16 and ' You can buy beer ' or ' No alcoholic ' + \

' beverages for minors , sorry '

(c) ('a' and 0) and (False or (-1 and 4 > 10))

6. Elif clauses. Next to if and if-else clauses, Python also allows if-{elif}∗ and (1 P)
if-{elif }∗-else clauses, where the expression {elif}∗ means that the “elif” statement
can be repeated an arbitrary number of times. The elif clause allows to make case
distinctions such as the one shown in the following example:

a = ' Jane '
if a == ' Mary ' :

print(' Gotcha! I knew it was you , Mary ')
elif a == ' John ' :

print(' John! What a surprise! ')
elif a == ' Jane ' :

print(' Of all people , I expected you the least , Jane! ')
else:

print(' Sorry , but I \ ' m lost. Who are you? ')

1white spaces () are only visualized for your convenience
2“builtin” means that this function is provided per se

Use the if-{elif }∗-else clause to check the type a given variable a. Similar to the
example above, do four case distinctions to check three types of your choice. Use
the print function to reveal the variable’s type in a full sentence.

Important:
Please submit your solution as adequately commented Jupyter notebook or pdf.

