Privacy in Healthcare: Introduction

Alexander Schönhuth

Bielefeld University April 11, 2023

WHO ARE WE?

- Research group "Genome Data Science" https://gds.techfak.uni-bielefeld.de
- Coordinates:

Prof. Dr. Alexander Schönhuth email: aschoen@cebitec.uni-bielefeld.de office: UHG U10-128

Organization

MODULES

Lecture part of modules

- 39-Inf-BDS Biomedical Data Science for Modern Healthcare Technology (graded, "benotete Prüfungsleistung")
 - See here https://ekvv.uni-bielefeld.de/sinfo/ publ/modul/308594662

PRESENTATION, REPORTS, PAPERS

► Presentations:

- Individual presentations
- ► To last for approx. 30 minutes, followed by discussion
- Present contents of scientific paper
- ► Reports:
 - Reports summarize contents of paper
 - Reports 8-12 pages
- Papers:
 - Papers: some already available, list will be completed
 - Papers available via Wiki:

https://gds.techfak.uni-bielefeld.de/ teaching/2023summer/privacy

Schedule

- Organization and introduction: *today*
- ► How to present (brief): *Apr 18* (online)
- ► How to write (brief): *Apr* 25 (hybrid)

Schedule II

▶ **Presentations:** *from May 16* (earlier possible if desired)

- Up to two presentations per week
- Block seminar day possible as well (yet TBD)

Technical Report: *after presentation:*

- Each report 8-12 pages
- Optimally, report profits from feedback provided after presentation
- Drafts can be submitted for discussion
- Improving drafts based on feedback
- Submission deadline: July 31

Privacy in Healthcare: Overview

EXAMPLE: LONG RANGE FAMILIAL SEARCHES

From www.stern.de

- ► Investigators uploaded crime scene sample to GEDmatch
 - GEDmatch contains 1 million DNA profiles
- ► GEDmatch search identified a third-degree cousin
- Genealogical search identified the perpetrator

EXEMPLARY ISSUES

From www.stern.de

- ► Access control:
 - Who has permission to run database searches?
 - How to organize access control?

► Multiparty computation:

- Several parties share data to run computations
- Each party's data should stay private
- Everyone can use data to get anonymous summaries

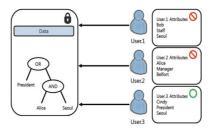
EXEMPLARY ISSUES

From www.stern.de

- ► Homomorphic encryption:
 - Encrypt data such that computations on encrypted data is possible
- ► Differential privacy frameworks:
 - Individual data should make no difference during analysis

Access Control

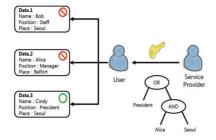
ACCESS CONTROL



Key aggregate cryptography:

"Master" distributes key to potential users

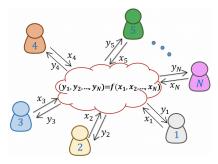
ACCESS CONTROL



- ► Attribute based access control:
 - Keys depend on data characteristics

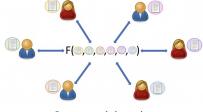
ACCESS CONTROL

From [Lee et al., 2015]


- ► Role based access control:
 - Keys depend on user properties

Multiparty Computation

MULTIPARTY COMPUTATION I


See www.mdpi.com

► Multiparty computation principle:

- *N* parties provide data $x_1, ..., x_N$
- Values $y_1, ..., y_N$ are computed
- User providing x_i receives y_i (only)

MULTIPARTY COMPUTATION II

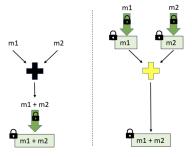
See www.esat.kuleuven.be

► Multiparty computation healthcare:

- Patients / doctors provide individual records
- Individual analysis based on all records
- Patients / doctors receive individual analysis results

Homomorphic Encryption

HOMOMORPHIC ENCRYPTION I



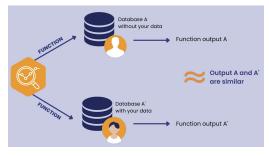
See www.linksight.nl

- ► Homomorphic encryption motivation:
 - Important operations still possible after encryption
 - Decrypting data unnecessary
 - Allows users to carry out queries anonymously

HOMOMORPHIC ENCRYPTION II

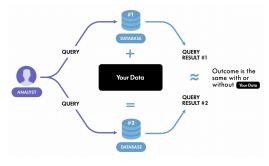
See akd13.github.io

► Homomorphic encryption principle:


- Encryption and queries are mathematical operations
- Exchanging these operations should lead to same results

Differential Privacy

DIFFERENTIAL PRIVACY I



► Differential privacy principle:

- Database A contains individual data, Database A' does not
- Running function returns same result on A and A'
- Individual data makes no difference, so remains unidentifiable

DIFFERENTIAL PRIVACY II

See www.winton.com

► Differential privacy practice:

- Analyst runs (specially tailored) query on database with and without individual records
- Outcomes do not differ: individual records remain anonymous

Thanks for your attention!

