
Lecture 8
MapReduce IV & Link Analysis I

Alexander Schönhuth

Bielefeld University
May 11, 2023



TODAY

Overview
I Understand the definition of communication cost
I Understand the definition of wall clock time
I Get to know theory and intuition of complexity theory for MapReduce
I PageRank: Introduction, Definition

Learning Goals: Understand these topics and get familiarized



The Communication-Cost Model: Reminder



COMMUNICATION COST & WALL-CLOCK TIME

DEFINITION [COMMUNICATION COST]:

I The communication cost of a task is the size of the input it receives

I The communication cost of an algorithm is the sum of the
communication costs of its tasks

DEFINITION [WALL-CLOCK TIME]:
The wall-clock time is defined to be the time for the entire parallel
algorithm to finish.



R(A,B) ./ S(B,C) ./ T(C,D) IN ONE MAPREDUCE

Let p be the probability that an R- and an S-tuple agree on B, matching the
probability for an S- and a T-tuple to agree on C.

I Hash B- and C-values, using functions h and g
I Let b and c be the number of buckets for h and g

I Let k be the number of Reducers; require that bc = k
I Each reducer corresponds to a pair of buckets
I Reducer corresponding to bucket pair (i, j) joins tuples

R(u, v), S(v,w),T(w, x) whenever h(v) = i, g(w) = j

I Hence Map tasks send R- and T-tuples to more than one reducer
I R-tuples R(u, v) go to all reducers (h(v), y), y = 1, ..., c

+ goes to c reducers
I T-tuples T(w, x) go to all reducers (z, g(w)), z = 1, ..., b

+ goes to b reducers



MULTIWAY JOIN: ONE MAPREDUCE II

Sixteen reducers for a 3-way join
Adopted from mmds.org

I h(v) = 2, g(w) = 1 [in Figure: v = R.B,w = S.C]

I S-tuple S(v,w) goes to reducer for key (2, 1)

I R-tuple R(u, v) goes to reducers for keys (2, 0), ..., (2, 3)

I T-tuple T(w, x) goes to reducers for keys (0, 1), ..., (3, 1)

mmds.org


MULTIWAY JOIN: ONE MAPREDUCE III

Communication cost:

I Moving tuples to proper reducers is sum of
I s to send tuples S(v,w) to (h(v), g(w))
I rc to send tuples R(u, v) to (h(v), y) for each of the c possible

g(w) = y
I bt to send tuples T(w, x) to (z, g(w)) for each of the b possible

h(b) = z

I Additional (constant) cost r + s + t to make each tuple input to
one of the Map tasks (constant)



MULTIWAY JOIN: ONE MAPREDUCE III

Communication cost:

I Goal: Select b and c, subject to bc = k, to minimize s + cr + bt

I Using Lagrangian multiplier λ makes solving for
I r− λb = 0
I t− λc = 0

I It follows that rt = λ2bc, that is rt = λ2k, yielding further λ =
√

rt
k

I So, minimum communication cost at c =
√

kt
r and b =

√
kr
t

I Substituting into s + cr + bt yields s + 2
√

krt

I Adding r + s + t yields r + 2s + t + 2
√

krt, which is usually
dominated by 2

√
krt



Complexity Theory for MapReduce



MAPREDUCE: COMPLEXITY THEORY

Idea

I Reminder: A “reducer” is the execution of a Reduce task on a
single key and the associated value list

I Important considerations:
I Keep communication cost low
I Keep wall-clock time low
I Execute each reducer in main memory

I Intuition:
I The less communication, the less parallelism, so
I the more wall-clock time
I the more main memory needed

I Goal: Develop encompassing complexity theory



Reducer Size and Replication Rate



REDUCER SIZE: INFORMAL EXPLANATION

Reducer size: maximum length of list [v,w,...] after grouping keys
Adopted from mmds.org

mmds.org


REDUCER SIZE

DEFINITION [REDUCER SIZE]:
The reducer size q is the upper bound on the number of values to
appear in the list of a single key.

Motivation

I Small reducer size forces to have many reducers

I Further creating many Reduce tasks implies high parallelism,
hence small wall-clock time

I Small reducer size enables to have all data in main memory



REPLICATION RATE

DEFINITION [REPLICATION RATE]:
The replication rate r is the number of all key-value pairs generated by
Map tasks, divided by the number of inputs.

Motivating Example

I One-pass matrix multiplication algorithm:
I Matrices involved are n× n
I Reminder: Key-value pairs for MN are ((i, k), (M, j,mij)), j = 1, ..., n

and ((i, k), (N, j, njk)), j = 1, ..., n

I Replication rate r is equal to n:
I Inputs are all mij and njk
I For each mij, one generates key-value pairs for (i, k), k = 1, ..., n
I For each njk, one generates key-value pairs for (i, k), i = 1, ..., n

I Reducer size is 2n: for each key (i, k) there are n values from
each mij and n values from each njk



EXAMPLE: SIMILARITY JOIN

Situation

I Given large set X of elements

I Given similarity measure s(x, y) for measuring similarity
between x, y ∈ X

I Measure is symmetric: s(x, y) = s(y, x)

I Output of the algorithm: all pairs x, y where s(x, y) ≥ t for
threshold t

I Exemplary input: 1 million images (i,Pi) where
I i is ID of image
I Pi is picture itself
I Each picture is 1MB



EXAMPLE: SIMILARITY JOIN

MapReduce: Bad Idea

I Use keys (i, j) for pair of pictures (i,Pi), (j,Pj)

I Map: generates ((i, j), [Pi,Pj]) as input for
I Reduce: computes s(Pi,Pj) and decides whether s(Pi,Pj) ≥ t
I Reducer size q is small: 2 MB; expected to fit in main memory
I However, each picture makes part of 999 999 key-value pairs, so

r = 999 999

I Hence, number of bytes communicated from Map to Reduce is

106 × 999 999× 106 = 1018

that is one exabyte

,



EXAMPLE: SIMILARITY JOIN

MapReduce: Better Idea

I Group images into g groups, each of 106/g pictures

I Map: For each (i,Pi) generate g− 1 key-value pairs
I Let u be group of Pi
I Let v be one of the other groups
I Keys are sets {u, v} (set, so no order!)
I Value is (i,Pi)
I Overall: ({u, v}, (i,Pi)) as key-value pair

I Reduce: Consider key {u, v}
I Associated value list has 2× 106

g values
I Consider (i,Pi) and (j,Pj) when i, j are from different groups
I Compute s(Pi,Pj)
I Compute s(Pi,Pj) for Pi,Pj from same group on processing keys
{u, u + 1}



EXAMPLE: SIMILARITY JOIN

MapReduce: Better Idea

I Replication rate is g− 1

I Each input element (i,Pi) is turned into g− 1 key-value
pairs

I Reducer size is 2× 106

g

I Number of values on list for reducer
I This yields 2× 106

g × 106 bytes stored at Reducer node



EXAMPLE: SIMILARITY JOIN

MapReduce: Better Idea

I Example g = 1000:
I Input is 2 GB, fits into main memory
I Communication cost:

(103 × 999)︸ ︷︷ ︸
number of reducers

× (2× 103 × 106)︸ ︷︷ ︸
reducer size

≈ 1015 (1)

I 1000 times less than brute-force
I Half a million reducers: maximum parallelism at Reduce nodes

I Computation cost is independent of g
I Always all-vs-all comparison of pictures
I Computing s(Pi,Pj) for all i, j



MapReduce: Graph Model



MAPREDUCE: GRAPH MODEL

Goal: Proving lower bounds on replication rate as function of
reducer size, for many problems. Therefore:

Graph Model:

I Graph describes how outputs depend on inputs

I Reducers operate independently: each output has one reducer
that receives all input required to compute output

I Model foundation:
I There is a set of inputs
I There is a set of outputs
I Outputs depend on inputs: many-to-many relationship



MAPREDUCE: GRAPH MODEL EXAMPLE

Graph for similarity join with four pictures
Adopted from mmds.org

mmds.org


MAPREDUCE: GRAPH MODEL MATRIX

MULTIPLICATION

Graph Model Matrix Multiplication

I Multiplying n× n matrices M and N makes
I 2n2 inputs mij, njk, 1 ≤ i, j, k ≤ n
I n2 outputs pik := (MN)ik, 1 ≤ i, k ≤ n

I Each output pik needs 2n inputs mi1,mi2, ...,min and n1k,n2k, ...,nnk

I Each input relates to n outputs: e.g. mij to pi1, pi2, ..., pin



MAPREDUCE: GRAPH MODEL MATRIX

MULTIPLICATION II

Input-output relationship graph for multiplying 2x2 matrices

Adopted from mmds.org

mmds.org


MAPREDUCE: MAPPING SCHEMAS

A mapping schema with a given reducer size q is an assignment of
inputs to reducers such that

I No reducer receives more than q inputs

I For every output, there is a reducer that receives all inputs
required to generate the output

Consideration: The existence of a mapping schema for a given q
characterizes problems that can be solved in a single MapReduce job
at reducer size q.



MAPPING SCHEMA: EXAMPLE

Consider computing similarity of p pictures, divided into g groups.

I Number of outputs:
(p

2

)
=

p(p−1)
2 ≈ p2

2

I Reducer receives 2p/g inputs
+ necessary reducer size is q = 2p/g

I Replication rate is r = g− 1 ≈ g:

r = 2p/q

+ r inversely proportional to q which is common

I In a mapping schema for reducer size q = 2p/g:
I Each reducer is assigned exactly 2p/g inputs
I In all cases, every output is covered by some reducer



MAPPING SCHEMAS: NOT ALL INPUTS PRESENT

Example: Natural Join R(A,B) ./ S(B,C), where many possible tuples
R(a, b),S(b, c) are missing.

I Theoretically q = |A| · |C| because of keys b ∈ B where
I (a, b) ∈ R for all a ∈ A
I (b, c) ∈ S for all c ∈ C

I But in practice many tuples (a, b), (b, c) are missing for each b, so
q possibly much smaller than |A| · |C|

Main Consideration: One can decrease q because of the missing inputs,
without that inputs do no longer fit into main memory in practice



MAPPING SCHEMAS: LOWER BOUNDS ON

REPLICATION RATE

Technique for proving lower bounds on replication rates

1. Prove upper bound g(q) on how many outputs a reducer with q
inputs can cover + may be difficult in some cases

2. Determine total number of outputs O

3. Let there be k reducers with qi < q, i = 1, ..., k inputs
+ observe that

∑k
i=1 g(qi) needs to be no less than O

4. Manipulate the inequality
∑k

i=1 g(qi) ≥ O to get a lower bound
on
∑k

i=1 qi

5. Dividing the lower bound on
∑k

i=1 qi by number of inputs is
lower bound on replication rate



LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM

I Recall that r ≤ 2p/q was upper bound on replication rate for
all-pairs problem

I Here: Lower bound on r that is half the upper bound



LOWER BOUNDS: EXAMPLE ALL-PAIRS PROBLEM

I Steps from slide before:
I Step 1: reducer with q inputs cannot cover more than

(q
2

)
≈ q2/2

outputs
I Step 2: overall

(p
2

)
≈ p2/2 outputs must be covered

I Step 3: So, the inequality approximately evaluates as

k∑
i=1

q2
i /2 ≥ p2/2 ⇐⇒

k∑
i=1

q2
i ≥ p2

I Step 4: From q ≥ qi, we obtain

q
k∑

i=1

qi ≥ p2 ⇐⇒
k∑

i=1

qi ≥
p2

q

I Step 5: Noting that r = (
∑k

i=1 qi)/p, we obtain

r ≥ p
q

which is half the size of upper bound



PageRank
Introduction



PAGERANK: OVERVIEW

I Motivation of PageRank definition: history of search engines

I Concept of random surfers foundation of PageRank’s
effectiveness

I Taxation (“recycling of random surfers”) allows to deal with
problematic web structures



HISTORY: EARLY SEARCH ENGINES

I Early search engines
I Crawl the (entire) web
I List all terms encountered in an inverted index
I An inverted index is a data structure that, given a term, provides

pointers to all places where term occurs

I On a search query (a list of terms)
I pages with those terms are extracted from the index
I ranked according to use of terms within pages
I E.g. the term appearing in the header renders page more

important
I or the term appearing very often



TERM SPAM

I Spammers exploited this to their advantage

I Simple strategy:
I Add terms thousands of times to own webpages
I Terms can be made hidden by using background color
I So pages are listed in searches that do not relate to page contents
I Example: add term “movie” 1000 times to page that advertizes

shirts

I Alternative strategy:
I Carry out web search on term
I Copy-paste highest ranked page into own page
I Upon new search on term, own page will be listed high up

I Corresponding techniques are referred to as term spam



PAGERANK’S MOTIVATION: FIGHTING TERM SPAM

IDEA:
I Simulate random web surfers

I They start at random pages
I They randomly follow web links leaving the page
I Iterate this procedure sufficiently many times
I Eventually, they gather at “important” pages

I Judge page also by contents of surrounding pages
I Difficult to add terms to pages not owned by spammer



PAGERANK’S MOTIVATION: FIGHTING TERM SPAM

JUSTIFICATION

I Ranking web pages by number of in-links does not work
I Spammers create “spam farms” of dummy pages all linking to one page

I But, spammers’ pages do not have in-links from elsewhere

+ Random surfers do not wind up at spammers’ pages
I (Non-spammer) page owners place links to pages they find helpful
I Random surfers indicate which pages are likely to visit

+ Users are more likely to visit useful pages



PAGERANK: DEFINITION

I PageRank is a function that assigns a real number to each
(accessible) web page

I Intuition: The higher the PageRank, the more important the page

I There is not one fixed algorithm for computing PageRank

I There are many variations, each of which caters to particular
issue



PAGERANK: DEFINITION

I Consider the web as a directed graph
I Nodes are web pages
I Directed edges are links leaving from and leading to web pages

Hypothetical web with four pages
Adopted from mmds.org

mmds.org


PAGERANK: DEFINITION

Random walking a web with four pages
Adopted from mmds.org

I For example, a random surfer starts at node A

I Walks to B,C,D each with probability 1/3

I So has probability 0 to be at A after first step

mmds.org


PAGERANK: DEFINITION

Random walking a web with four pages
Adopted from mmds.org

I Random surfer at B, for example, in next step
I is at A,D each with probability 1/2
I is at B,C with probability 0

mmds.org


WEB TRANSITION MATRIX: DEFINITION

DEFINITION [WEB TRANSITION MATRIX]:

I Let n be the number of pages in the web

I The transition matrix M = (mij)1≤i,j≤n ∈ Rn×n has n rows and
columns

I For each (i, j) ∈ {1, ...,n} × {1, ...,n}
I mij = 1/k, if page j has k arcs out, of which one leads to page i
I mij = 0 otherwise

Transition matrix for web from slides before
Adopted from mmds.org

mmds.org


PAGERANK FUNCTION: DEFINITION

DEFINITION [PAGERANK FUNCTION]:

I Let n be the number of pages in the web

I Let pt
i , i = 1, ...,n be the probability that the random surfer is at

page i after t steps

I The PageRank function for t ≥ 0 is defined to be the vector

pt = (pt
1, p

t
2, ..., p

t
n) ∈ [0, 1]n



PAGERANK FUNCTION: INTERPRETATION

I Usually, p0 = (1/n, ...1/n) for each i = 1, ...,n

I So before the first iteration, the random surfer is at each page
with equal probability

I The probability to be at page i in step t + 1 is the sum of
probabilities to be at page j in step t times the probability to
move from page j to i

I That is, pt+1
i =

∑n
j=1 mijpt

j for all i, t, or, in other words

pt+1 = Mpt for all t ≥ 0 (2)

I So, applying the web transition matrix to a PageRank function
yields another one



PAGERANK FUNCTION: MARKOV PROCESSES

pt+1 = Mpt for all t ≥ 0

I This relates to the theory of Markov processes

I Given that the web graph is strongly connected
I That is: one can reach any node from any other node
I In particular, there are no dead ends, nodes with no arcs out

I it is known that the surfer reaches a limiting distribution p̄,
characterized by

Mp̄ = p̄ (3)



PAGERANK FUNCTION: MARKOV PROCESSES

Mp̄ = p̄

I Further, because M is stochastic (= columns each add up to one)
I p̄ is the principal eigenvector, which is
I the eigenvector associated with the largest eigenvalue, which is

one

I Principal eigenvector of M expresses where surfer will end up

I p̄i is the probability that the surfer is at page i after a long time

I Reasoning: The greater p̄i, the more important page i

DEFINITION [PAGERANK]:

p̄i is the PageRank of web page i



PAGERANK FUNCTION: COMPUTATION

Mp̄ = p̄

I Consider the series

p0, p1 = Mp0, p2 = Mp1 = M2p0, p3 = Mp2 = M3p0, ... (4)

I It holds that
Mtp0 −→

t→∞
p̄ (5)

I So, for computing p̄, apply iterative matrix-vector multiplication
until (approximate) convergence



PAGERANK FUNCTION: COMPUTATION

Mp̄ = p̄

I For computing p̄, apply iterative matrix-vector multiplication

p0 →Mp0 →M2p0 →M3p0 → ... (6)

until (approximate) convergence

I Example: Iterative application of transition matrix from above

Convergence to limiting distribution for four-node web graph
Adopted from mmds.org

mmds.org


PAGERANK FUNCTION: COMPUTATION

Mp̄ = p̄

I It holds that
Mtp0 −→

t→∞
p̄ (7)

I So, for computing p̄, apply iterative matrix-vector multiplication
until (approximate) convergence

I In practice, working real web graphs
I 50-75 iterations do just fine
I For efficient computation, recall MapReduce based matrix-vector

multiplication techniques



MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapters 2.4–2.5, 5.1

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Link Analysis II”

I See Mining of Massive Datasets chapter 5.3–5.5

http://www.mmds.org/

