Lecture 8
 MapReduce IV \& Link Analysis I

Alexander Schönhuth

Bielefeld University
May 11, 2023

TODAY

Overview

- Understand the definition of communication cost
- Understand the definition of wall clock time
- Get to know theory and intuition of complexity theory for MapReduce
- PageRank: Introduction, Definition

Learning Goals: Understand these topics and get familiarized

The Communication-Cost Model: Reminder

Communication Cost \& Wall-Clock Time

Definition [Communication Cost]:

- The communication cost of a task is the size of the input it receives
- The communication cost of an algorithm is the sum of the communication costs of its tasks

Definition [Wall-Clock Time]:
The wall-clock time is defined to be the time for the entire parallel algorithm to finish.

$R(A, B) \bowtie S(B, C) \bowtie T(C, D)$ In One MApReduce

Let p be the probability that an R - and an S-tuple agree on B, matching the probability for an S - and a T-tuple to agree on C.

- Hash B- and C-values, using functions h and g
- Let b and c be the number of buckets for h and g
- Let k be the number of Reducers; require that $b c=k$
- Each reducer corresponds to a pair of buckets
- Reducer corresponding to bucket pair (i, j) joins tuples

$$
R(u, v), S(v, w), T(w, x) \text { whenever } h(v)=i, g(w)=j
$$

- Hence Map tasks send R - and T-tuples to more than one reducer
- R-tuples $R(u, v)$ go to all reducers $(h(v), y), y=1, \ldots, c$ goes to c reducers
- T-tuples $T(w, x)$ go to all reducers $(z, g(w)), z=1, \ldots, b$ geos to b reducers

Multiway Join: One MapReduce II

Sixteen reducers for a 3-way join
Adopted from mmds.org

- $h(v)=2, g(w)=1$ [in Figure: $v=R . B, w=S . C]$
- S-tuple $S(v, w)$ goes to reducer for key $(2,1)$
- R-tuple $R(u, v)$ goes to reducers for keys $(2,0), \ldots,(2,3)$
- T-tuple $T(w, x)$ goes to reducers for keys $(0,1), \ldots,(3,1)$

Multiway Join: One MapReduce III

Communication cost:

- Moving tuples to proper reducers is sum of
- s to send tuples $S(v, w)$ to $(h(v), g(w))$
- $r c$ to send tuples $R(u, v)$ to $(h(v), y)$ for each of the c possible $g(w)=y$
- bt to send tuples $T(w, x)$ to $(z, g(w))$ for each of the b possible $h(b)=z$
- Additional (constant) cost $r+s+t$ to make each tuple input to one of the Map tasks (constant)

Multiway Join: One MapReduce III

Communication cost:

- Goal: Select b and c, subject to $b c=k$, to minimize $s+c r+b t$
- Using Lagrangian multiplier λ makes solving for
- $r-\lambda b=0$
- $t-\lambda c=0$
- It follows that $r t=\lambda^{2} b c$, that is $r t=\lambda^{2} k$, yielding further $\lambda=\sqrt{\frac{r t}{k}}$
- So, minimum communication cost at $c=\sqrt{\frac{k t}{r}}$ and $b=\sqrt{\frac{k r}{t}}$
- Substituting into $s+c r+b t$ yields $s+2 \sqrt{k r t}$
- Adding $r+s+t$ yields $r+2 s+t+2 \sqrt{k r t}$, which is usually dominated by $2 \sqrt{k r t}$

Complexity Theory for MapReduce

MapReduce: Complexity Theory

Idea

- Reminder: A "reducer" is the execution of a Reduce task on a single key and the associated value list
- Important considerations:
- Keep communication cost low
- Keep wall-clock time low
- Execute each reducer in main memory
- Intuition:
- The less communication, the less parallelism, so
- the more wall-clock time
- the more main memory needed
- Goal: Develop encompassing complexity theory

Reducer Size and Replication Rate

Reducer Size: Informal Explanation

Reducer size: maximum length of list [$\mathrm{v}, \mathrm{w}, \ldots$.$] after grouping keys$ Adopted from mmds.org

Reducer Size

Definition [Reducer Size]:
The reducer size q is the upper bound on the number of values to appear in the list of a single key.

Motivation

- Small reducer size forces to have many reducers
- Further creating many Reduce tasks implies high parallelism, hence small wall-clock time
- Small reducer size enables to have all data in main memory

Replication Rate

Definition [Replication Rate]:
The replication rate r is the number of all key-value pairs generated by Map tasks, divided by the number of inputs.

Motivating Example

- One-pass matrix multiplication algorithm:
- Matrices involved are $n \times n$
- Reminder: Key-value pairs for $M N$ are $\left((i, k),\left(M, j, m_{i j}\right)\right), j=1, \ldots, n$ and $\left((i, k),\left(N, j, n_{j k}\right)\right), j=1, \ldots, n$
- Replication rate r is equal to n :
- Inputs are all $m_{i j}$ and $n_{j k}$
- For each $m_{i j}$, one generates key-value pairs for $(i, k), k=1, \ldots, n$
- For each $n_{j k}$, one generates key-value pairs for $(i, k), i=1, \ldots, n$
- Reducer size is $2 n$: for each key (i, k) there are n values from each $m_{i j}$ and n values from each $n_{j k}$

Example: Similarity Join

Situation

- Given large set X of elements
- Given similarity measure $s(x, y)$ for measuring similarity between $x, y \in X$
- Measure is symmetric: $s(x, y)=s(y, x)$
- Output of the algorithm: all pairs x, y where $s(x, y) \geq t$ for threshold t
- Exemplary input: 1 million images $\left(i, P_{i}\right)$ where
- i is ID of image
- P_{i} is picture itself
- Each picture is 1 MB

Example: Similarity Join

MapReduce: Bad Idea

- Use keys (i, j) for pair of pictures $\left(i, P_{i}\right),\left(j, P_{j}\right)$
- Map: generates $\left((i, j),\left[P_{i}, P_{j}\right]\right)$ as input for
- Reduce: computes $s\left(P_{i}, P_{j}\right)$ and decides whether $s\left(P_{i}, P_{j}\right) \geq t$
- Reducer size q is small: 2 MB ; expected to fit in main memory
- However, each picture makes part of 999999 key-value pairs, so

$$
r=999999
$$

- Hence, number of bytes communicated from Map to Reduce is

$$
10^{6} \times 999999 \times 10^{6}=10^{18}
$$

that is one exabyte

$$
0
$$

Example: Similarity Join

MapReduce: Better Idea

- Group images into g groups, each of $10^{6} / g$ pictures
- Map: For each $\left(i, P_{i}\right)$ generate $g-1$ key-value pairs
- Let u be group of P_{i}
- Let v be one of the other groups
- Keys are sets $\{u, v\}$ (set, so no order!)
- Value is $\left(i, P_{i}\right)$
- Overall: $\left(\{u, v\},\left(i, P_{i}\right)\right)$ as key-value pair
- Reduce: Consider key $\{u, v\}$
- Associated value list has $2 \times \frac{10^{6}}{g}$ values
- Consider $\left(i, P_{i}\right)$ and $\left(j, P_{j}\right)$ when i, j are from different groups
- Compute $s\left(P_{i}, P_{j}\right)$
- Compute $s\left(P_{i}, P_{j}\right)$ for P_{i}, P_{j} from same group on processing keys $\{u, u+1\}$

Example: Similarity Join

MapReduce: Better Idea

- Replication rate is $g-1$
- Each input element $\left(i, P_{i}\right)$ is turned into $g-1$ key-value pairs
- Reducer size is $2 \times \frac{10^{6}}{g}$
- Number of values on list for reducer
- This yields $2 \times \frac{10^{6}}{g} \times 10^{6}$ bytes stored at Reducer node

Example: Similarity Join

MapReduce: Better Idea

- Example $g=1000$:
- Input is 2 GB, fits into main memory
- Communication cost:

$$
\begin{equation*}
\underbrace{\left(10^{3} \times 999\right)}_{\text {number of reducers }} \times \underbrace{\left(2 \times 10^{3} \times 10^{6}\right)}_{\text {reducer size }} \approx 10^{15} \tag{1}
\end{equation*}
$$

- 1000 times less than brute-force
- Half a million reducers: maximum parallelism at Reduce nodes
- Computation cost is independent of g
- Always all-vs-all comparison of pictures
- Computing $s\left(P_{i}, P_{j}\right)$ for all i, j

MapReduce: Graph Model

MapReduce: Graph Model

Goal: Proving lower bounds on replication rate as function of reducer size, for many problems. Therefore:

Graph Model:

- Graph describes how outputs depend on inputs
- Reducers operate independently: each output has one reducer that receives all input required to compute output
- Model foundation:
- There is a set of inputs
- There is a set of outputs
- Outputs depend on inputs: many-to-many relationship

MapReduce: Graph Model Example

Graph for similarity join with four pictures
Adopted from mmds.org

MapReduce: Graph Model Matrix MUltiplication

Graph Model Matrix Multiplication

- Multiplying $n \times n$ matrices M and N makes
- $2 n^{2}$ inputs $m_{i j}, n_{j k}, 1 \leq i, j, k \leq n$
- n^{2} outputs $p_{i k}:=(M N)_{i k}, 1 \leq i, k \leq n$
- Each output $p_{i k}$ needs $2 n$ inputs $m_{i 1}, m_{i 2}, \ldots, m_{i n}$ and $n_{1 k}, n_{2 k}, \ldots, n_{n k}$
- Each input relates to n outputs: e.g. $m_{i j}$ to $p_{i 1}, p_{i 2}, \ldots, p_{i n}$

MapReduce: Graph Model Matrix Multiplication II

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]
$$

Input-output relationship graph for multiplying 2×2 matrices
Adopted from mmds.org

MapReduce: Mapping Schemas

A mapping schema with a given reducer size q is an assignment of inputs to reducers such that

- No reducer receives more than q inputs
- For every output, there is a reducer that receives all inputs required to generate the output

Consideration: The existence of a mapping schema for a given q characterizes problems that can be solved in a single MapReduce job at reducer size q.

MApping Schema: Example

Consider computing similarity of p pictures, divided into g groups.

- Number of outputs: $\binom{p}{2}=\frac{p(p-1)}{2} \approx \frac{p^{2}}{2}$
- Reducer receives $2 p / g$ inputs necessary reducer size is $q=2 p / g$
- Replication rate is $r=g-1 \approx g$:

$$
r=2 p / q
$$

r inversely proportional to q which is common

- In a mapping schema for reducer size $q=2 p / g$:
- Each reducer is assigned exactly $2 p / g$ inputs
- In all cases, every output is covered by some reducer

Mapping Schemas: Not all Inputs Present

Example: Natural Join $R(A, B) \bowtie S(B, C)$, where many possible tuples $R(a, b), S(b, c)$ are missing.

- Theoretically $q=|A| \cdot|C|$ because of keys $b \in B$ where
- $(a, b) \in R$ for all $a \in A$
- $(b, c) \in S$ for all $c \in C$
- But in practice many tuples $(a, b),(b, c)$ are missing for each b, so q possibly much smaller than $|A| \cdot|C|$
Main Consideration: One can decrease q because of the missing inputs, without that inputs do no longer fit into main memory in practice

Mapping Schemas: LOWER BOUNDS ON Replication Rate

Technique for proving lower bounds on replication rates

1. Prove upper bound $g(q)$ on how many outputs a reducer with q inputs can cover may be difficult in some cases
2. Determine total number of outputs O
3. Let there be k reducers with $q_{i}<q, i=1, \ldots, k$ inputs observe that $\sum_{i=1}^{k} g\left(q_{i}\right)$ needs to be no less than O
4. Manipulate the inequality $\sum_{i=1}^{k} g\left(q_{i}\right) \geq O$ to get a lower bound on $\sum_{i=1}^{k} q_{i}$
5. Dividing the lower bound on $\sum_{i=1}^{k} q_{i}$ by number of inputs is lower bound on replication rate

Lower Bounds: Example All-Pairs Problem

- Recall that $r \leq 2 p / q$ was upper bound on replication rate for all-pairs problem
- Here: Lower bound on r that is half the upper bound

Lower Bounds: Example All-Pairs Problem

- Steps from slide before:
- Step 1: reducer with q inputs cannot cover more than $\binom{q}{2} \approx q^{2} / 2$ outputs
- Step 2: overall $\binom{p}{2} \approx p^{2} / 2$ outputs must be covered
- Step 3: So, the inequality approximately evaluates as

$$
\sum_{i=1}^{k} q_{i}^{2} / 2 \geq p^{2} / 2 \quad \Longleftrightarrow \quad \sum_{i=1}^{k} q_{i}^{2} \geq p^{2}
$$

- Step 4: From $q \geq q_{i}$, we obtain

$$
q \sum_{i=1}^{k} q_{i} \geq p^{2} \quad \Longleftrightarrow \quad \sum_{i=1}^{k} q_{i} \geq \frac{p^{2}}{q}
$$

- Step 5: Noting that $r=\left(\sum_{i=1}^{k} q_{i}\right) / p$, we obtain

$$
r \geq \frac{p}{q}
$$

PageRank
 Introduction

PageRank: Overview

- Motivation of PageRank definition: history of search engines
- Concept of random surfers foundation of PageRank's effectiveness
- Taxation ("recycling of random surfers") allows to deal with problematic web structures

History: Early Search Engines

- Early search engines
- Crawl the (entire) web
- List all terms encountered in an inverted index
- An inverted index is a data structure that, given a term, provides pointers to all places where term occurs
- On a search query (a list of terms)
- pages with those terms are extracted from the index
- ranked according to use of terms within pages
- E.g. the term appearing in the header renders page more important
- or the term appearing very often

TERM SpAM

- Spammers exploited this to their advantage
- Simple strategy:
- Add terms thousands of times to own webpages
- Terms can be made hidden by using background color
- So pages are listed in searches that do not relate to page contents
- Example: add term "movie" 1000 times to page that advertizes shirts
- Alternative strategy:
- Carry out web search on term
- Copy-paste highest ranked page into own page
- Upon new search on term, own page will be listed high up
- Corresponding techniques are referred to as term spam

PageRank's Motivation: Fighting Term Spam

IDEA:

- Simulate random web surfers
- They start at random pages
- They randomly follow web links leaving the page
- Iterate this procedure sufficiently many times
- Eventually, they gather at "important" pages
- Judge page also by contents of surrounding pages
- Difficult to add terms to pages not owned by spammer

PageRank's Motivation: Fighting Term Spam

JUSTIFICATION

- Ranking web pages by number of in-links does not work
- Spammers create "spam farms" of dummy pages all linking to one page
- But, spammers' pages do not have in-links from elsewhere

Random surfers do not wind up at spammers' pages

- (Non-spammer) page owners place links to pages they find helpful
- Random surfers indicate which pages are likely to visit Users are more likely to visit useful pages

PageRank: Definition

- PageRank is a function that assigns a real number to each (accessible) web page
- Intuition: The higher the PageRank, the more important the page
- There is not one fixed algorithm for computing PageRank
- There are many variations, each of which caters to particular issue

PageRank: Definition

- Consider the web as a directed graph
- Nodes are web pages
- Directed edges are links leaving from and leading to web pages

Hypothetical web with four pages
Adopted from mmds.org

PageRank: Definition

Random walking a web with four pages Adopted from mmds.org

- For example, a random surfer starts at node A
- Walks to B, C, D each with probability $1 / 3$
- So has probability 0 to be at A after first step

PageRank: Definition

Random walking a web with four pages Adopted from mmds.org

- Random surfer at B, for example, in next step
- is at A, D each with probability $1 / 2$
- is at B, C with probability 0

Web Transition Matrix: Definition

Definition [Web Transition Matrix]:

- Let n be the number of pages in the web
- The transition matrix $M=\left(m_{i j}\right)_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$ has n rows and columns
- For each $(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, n\}$
- $m_{i j}=1 / k$, if page j has k arcs out, of which one leads to page i
- $m_{i j}=0$ otherwise

$$
M=\left[\begin{array}{cccc}
0 & 1 / 2 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right]
$$

Transition matrix for web from slides before

PageRank Function: Definition

Definition [PageRank Function]:

- Let n be the number of pages in the web
- Let $p_{i}^{t}, i=1, \ldots, n$ be the probability that the random surfer is at page i after t steps
- The PageRank function for $t \geq 0$ is defined to be the vector

$$
p^{t}=\left(p_{1}^{t}, p_{2}^{t}, \ldots, p_{n}^{t}\right) \in[0,1]^{n}
$$

PageRank Function: Interpretation

- Usually, $p^{0}=(1 / n, \ldots 1 / n)$ for each $i=1, \ldots, n$
- So before the first iteration, the random surfer is at each page with equal probability
- The probability to be at page i in step $t+1$ is the sum of probabilities to be at page j in step t times the probability to move from page j to i
- That is, $p_{i}^{t+1}=\sum_{j=1}^{n} m_{i j} p_{j}^{t}$ for all i, t, or, in other words

$$
\begin{equation*}
p^{t+1}=M p^{t} \quad \text { for all } t \geq 0 \tag{2}
\end{equation*}
$$

- So, applying the web transition matrix to a PageRank function yields another one

PageRank Function: Markov Processes

$$
p^{t+1}=M p^{t} \quad \text { for all } t \geq 0
$$

- This relates to the theory of Markov processes
- Given that the web graph is strongly connected
- That is: one can reach any node from any other node
- In particular, there are no dead ends, nodes with no arcs out
- it is known that the surfer reaches a limiting distribution \bar{p}, characterized by

$$
\begin{equation*}
M \bar{p}=\bar{p} \tag{3}
\end{equation*}
$$

PageRank Function: Markov Processes

$$
M \bar{p}=\bar{p}
$$

- Further, because M is stochastic (= columns each add up to one)
- \bar{p} is the principal eigenvector, which is
- the eigenvector associated with the largest eigenvalue, which is one
- Principal eigenvector of M expresses where surfer will end up
- \bar{p}_{i} is the probability that the surfer is at page i after a long time
- Reasoning: The greater \bar{p}_{i}, the more important page i

DEFINITION [PAGERANK]:

$$
\bar{p}_{i} \text { is the PageRank of web page } i
$$

Pagerank Function: Computation

$$
M \bar{p}=\bar{p}
$$

- Consider the series

$$
\begin{equation*}
p^{0}, p^{1}=M p^{0}, p^{2}=M p^{1}=M^{2} p^{0}, p^{3}=M p^{2}=M^{3} p^{0}, \ldots \tag{4}
\end{equation*}
$$

- It holds that

$$
\begin{equation*}
M^{t} p^{0} \underset{t \rightarrow \infty}{\longrightarrow} \bar{p} \tag{5}
\end{equation*}
$$

- So, for computing \bar{p}, apply iterative matrix-vector multiplication until (approximate) convergence

PageRank Function: Computation

$$
M \bar{p}=\bar{p}
$$

- For computing \bar{p}, apply iterative matrix-vector multiplication

$$
\begin{equation*}
p^{0} \rightarrow M p^{0} \rightarrow M^{2} p^{0} \rightarrow M^{3} p^{0} \rightarrow \ldots \tag{6}
\end{equation*}
$$

until (approximate) convergence

- Example: Iterative application of transition matrix from above

$$
\left[\begin{array}{l}
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right],\left[\begin{array}{l}
9 / 24 \\
5 / 24 \\
5 / 24 \\
5 / 24
\end{array}\right],\left[\begin{array}{l}
15 / 48 \\
11 / 48 \\
11 / 48 \\
11 / 48
\end{array}\right],\left[\begin{array}{r}
11 / 32 \\
7 / 32 \\
7 / 32 \\
7 / 32
\end{array}\right], \ldots,\left[\begin{array}{l}
3 / 9 \\
2 / 9 \\
2 / 9 \\
2 / 9
\end{array}\right]
$$

Convergence to limiting distribution for four-node web graph
Adopted from mmds.org

PageRank Function: Computation

$$
M \bar{p}=\bar{p}
$$

- It holds that

$$
\begin{equation*}
M^{t} p_{0} \underset{t \rightarrow \infty}{\longrightarrow} \quad \bar{p} \tag{7}
\end{equation*}
$$

- So, for computing \bar{p}, apply iterative matrix-vector multiplication until (approximate) convergence
- In practice, working real web graphs
- 50-75 iterations do just fine
- For efficient computation, recall MapReduce based matrix-vector multiplication techniques

Materials / Outlook

- See Mining of Massive Datasets, chapters 2.4-2.5, 5.1
- As usual, see http://www.mmds.org/ in general for further resources
- Next lecture: "Link Analysis II"
- See Mining of Massive Datasets chapter 5.3-5.5

