
Lecture 6
Map Reduce II

Alexander Schönhuth

Bielefeld University
April 27, 2023



LEARNING GOALS TODAY

I Understand how to put the paradigm into effect in practice

I Understand the fundamental algorithms supported by
MapReduce

I Get to know idea of workflow systems and some examples



Map Reduce: Reminder



DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Adopted from mmds.org

I Replicating each chunk (at least) twice and putting copies to
different nodes prevents damage due to failure

I Fill servers up; computations are carried out immediately by
chunk servers

mmds.org


MAPREDUCE: WORKFLOW SUMMARY

Summary
Here < k, v > refers to intermediate key-value pair earlier

Upon sorting key-value pairs are hashed

Adopted from mmds.org

mmds.org


EXAMPLE: COUNTING WORDS IN DOCUMENTS

Code for Map and Reduce tasks

map(key, value)
// key: document name, value: text of document

foreach word w in value:
emit(w,1)

reduce(key, values)
// key: a word, values: an iterator over counts
result = 0
foreach count v in values:

result += v
emit(key, result)



Map Reduce: Execution



MAPREDUCE: HOST SIZE EXAMPLE

I Input: Large web corpus with metadata file
I Metadata file has entries: (URL, size, date,...)
I URL’s belong to hosts; hosts may control several URL’s
I Host of URL can be determined

I Would like to determine size for each host
I Size of a host is sum of the sizes of its URL’s

I Map: For each entry, key-value pair: < host(URL), size >

I Reduce: Add up sizes for each host



MAPREDUCE: LANGUAGE EXAMPLE

I Input: Many (possibly large) documents

I Goal: Count all 5-word sequences

I Map: Extract < 5− word− sequence, 1 > as key-value pairs

I Reduce: Add up counts (= 1’s) across 5-word-sequence keys
I There may be several identical key-value pairs per document
I + number of appearances of 5-word-sequence in document



MAPREDUCE: LANGUAGE EXAMPLE II

I Input: Many (possibly large) documents

I Goal: Count all 5-word sequences

I Alternative Map:
I Generate only one < 5− word− sequence, count > per document
I count is number of appearances of sequences in document

I Alternative Reduce:
I Add up counts across 5-word-sequence keys
I One key per document where value is count in document



MAPREDUCE: COMBINERS

I ’Alternative Map’ reflects strategy for associative Reduce tasks

I In that case, some Reduce work can be performed in Map step

I Adding is associative and commutative:

(a + b) + c = a + (b + c)
a + b = b + a

I So, the Map task can generate < key, count > per document
instead of just count times many < key, 1 > key-value pairs



MAPREDUCE: SKEW

I Skew: Runtime of Reduce tasks can vary substantially

I Runtime depends on number of key-value pairs

I Nodes have to carry out several Reduce tasks

I Goal: Achieve that runtime per node is similar

I Strategy: Random assignment of keys to Reduce tasks
I Random assignment balances out skew
I The more Reduce tasks, the more balanced by random assignment



MAPREDUCE: EXECUTION

Execution of MapReduce program: overview

Adopted from mmds.org

mmds.org


MAPREDUCE: EXECUTION

I User needs to design Map and Reduce tasks
I One Map task per data chunk

+ Each node holds several chunks
+ Many more Map tasks than nodes

I Varying Reduce tasks: control number of intermediate files
I One Master node

I Master keeps track of status of tasks (idle, in process, completed)

I Worker signals Master termination; gets assigned a new task

I Master keeps track of location and sizes of files

I Node Failures:
I When Worker nodes fail, Master reassigns tasks to other nodes
I When Master node fails, entire process needs to be restarted



Map Reduce: Algorithms



MAPREDUCE: ALGORITHMS

I MapReduce does not necessarily cater to every problem that
profits from parallelization

I Example: Online retail sales: searches for products, recording sales
I Require little computation, but modify underlying databases
I MapReduce never (!) modifies original data (chunks themselves)

I Original Purpose: Multiplying matrices for PageRank (Google)
I Matrix-vector multiplication
I Matrix-matrix multiplication

I Databases: Relational algebra operations
I Selection, projection
I Union, intersection, difference
I Natural join



MAPREDUCE: MATRIX-VECTOR MULTIPLICATION I

Let M = (mij) ∈ Rm×n, v = (v1, ..., vn) ∈ Rn, for (very) large m,n.
We would like to compute Mv = x:m11 . . . m1n

...
. . .

...
mmn . . . mmn

×
v1

...
vn

 =

x1
...

xm

 ∈ Rm (1)

that is

xi =

n∑
j=1

mijvj (2)

for each i = 1, ...,m.



MAPREDUCE: MATRIX-VECTOR MULTIPLICATION I

Let M = (mij) ∈ Rm×n, v = (v1, ..., vn) ∈ Rn, for (very) large m,n.
We would like to compute Mv =: x = (x1, ..., xm) ∈ Rm

xi =

n∑
j=1

mijvj (3)

Assumptions:

I M, v stored as files in DFS

I coordinates i, j of entries mij discoverable
I possible through explicit storage (i, j,mij)

I coordinates j of entries vj discoverable (store (j, vj))



MAPREDUCE: MATRIX-VECTOR MULTIPLICATION II

Compute xi =
∑n

j=1 mijvj for each i = 1, ...,m

Map

1. Take in suitably sized chunk of M and (entire) v
I Chunk of M = horizontal slice of M:mi11 . . . mi1n

...
. . .

...
mi21 . . . mi2n

 (4)

that is, submatrix of M on subset of rows 1 ≤ i1 < i2 ≤ m
I Processing chunk enables computation of xi, i = i1, ..., i2

2. Generate key-value pairs

(i,mijvj) for i1 ≤ i ≤ i2, 1 ≤ j ≤ n



MAPREDUCE: MATRIX-VECTOR MULTIPLICATION II

Compute xi =
∑n

j=1 mijvj for each i = 1, ...,m

Map

1. Take in suitably sized chunk of M and (entire) v

2. Generate key-value pairs (i,mijvj)

Reduce

1. Sum all values of pairs with key i

2. When processing chunk with i = i1, ..., i2, yields xi, i = i1, ..., i2



MAPREDUCE: MATRIX-VECTOR MULTIPLICATION III

Compute xi =
∑n

j=1 mijvj for each i = 1, ...,m

Situation: Vector v too large to fit in main memory
Solution: Cut both M and v into stripes, process (chunks of) stripes

Adopted from mmds.org

mmds.org


MAPREDUCE: MATRIX-VECTOR MULTIPLICATION III

Adopted from mmds.org

Map

I Take in suitably sized chunk of stripe of M and stripe of v

I Generate key-value pairs (i,mijvj)

Reduce

I Sum all values of pairs with key i, yielding xi

mmds.org


MAPREDUCE: RELATIONAL ALGEBRAS

MapReduce: Operations on large-scale data in database queries

I Reminder: Relational Model
I A relation is a table with
I column headers called attributes
I rows called tuples
I We write R(A1,A2, ...,An) for a

relation R with attributes
A1,A2, ...,An Relation Links(From, To)

From mmds.org

mmds.org


MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

I Selection: Apply condition C and select only tuples (rows) from
R that satisfy C, denoted σC(R)

I Choose only rows from R that refer to links leaving from or
leading to a particular URL

I Example: Choose only rows leading to ’url3’
I Yields smaller subtable as a result

I Projection: Choose a subset S of columns from R to generate new
table πS(R)

I Generate table with only URL’s that have incoming links
+ Project to ’To’ column

I Resulting table has only one column
+ All URL’s in one-column table have link from other URL



MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

Selection σC(R)

I Map: For each tuple t in R check whether C applies
I If yes, generate key-value pair (t, t)
I If not, do nothing
I Example: Selecting rows leading to ’url3’

+ Generate tuples ((url1, url3), (url1, url3)) and
((url2, url3), (url2, url3))

I Reduce: Reflects identity function, turns key-value pairs into output



MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

Projection πS(R)

I Map: For each tuple t ∈ R compute tuple t′ by removing attributes not
from S. Generate key-value pair (t′, t′)

I Example: Project to ’To’ column
+ Generate pairs
((url2), (url2)), ((url3), (url3)), ((url3), (url3)), ((url4), (url4))

I Reduce: Two different t may turn into identical t′ (example: ’url3’), so
there may be identical key-value pairs (t′, t′), the system turns into
(t′, [t′, ..., t′]) by grouping; output just (t′, t′), yielding one key-value
pair for each t′



MAPREDUCE: RELATIONAL ALGEBRA OPERATIONS

I Union, Intersection, Difference: Set operations applied to sets of
tuples from two relations R and S

I Imagine two tables, for links leaving from URL’s in Europe and
North America

I Intersection: compute set of URL’s that have incoming links from
both Europe and North America

I Natural Join: Generate new table by joining tuples from two
tables R and S when agreeing on attributes shared by two tables,
yielding a new table R ./ S

I Imagine two tables of links, one with links from Europe to Asia
LEA, and one from Asia to North America LAN

I Join two URL pairs when ’To’ from first table agrees with ’From’
from second table

I This yields table LEA ./ LAN with three columns



RELATIONAL ALGEBRA OPERATIONS

Union, Intersection

I Map: For each tuple t from both R and S generate key-value pair
(t, t)

I Reduce: After grouping, there will be two kinds of pairs: either
(t, [t]) or (t, [t, t])

I For Union, output everything
I For Intersection, output (t, t) only for (t, [t, t])

Difference

I Map: For a tuple t in R, generate key-value pair (t,R), and for
tuple t in S generate key-value pair (t,S) (use single bits for
distinguishing R,S)

I Reduce: After grouping, three cases: (t, [R]), (t, [R,S]), (t, [S]).
Output (t, t) only for (t, [R])



RELATIONAL ALGEBRA OPERATIONS

Natural Join R(A,B) ./ S(B,C):

“(a, b) from R and (b, c) from S get (a, b, c) in R(A,B) ./ S(B,C)”

I Map: For each tuple t = (a, b) from R, generate key-value pair
(b, (R, a)). For each tuple (b, c) from S, generate (b, (S, c)).

I Reduce: After grouping, each key value b has list of values
being either of the form (R, a) or (S, c)

I Construct all pairs of values where first component is like (R, a)
and second component is like (S, c), yielding triples
(b, (R, a), (S, c))

I Turn triples into triples (a, b, c) being output



RELATIONAL ALGEBRA OPERATIONS

General Natural Join on more than 3 attributes
Do like for relations with two attributes, by considering

I Type A attributes: in R, but not in S

I Type B attributes: both in R,S

I Type C attributes: in S, but not in R



MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (mij) ∈ Rm×n,N = (njl) ∈ Rn×k, for (very) large m,n, k.
We would like to compute MN ∈ Rm×k where (MN)il =

∑n
j=1 mijnjl

I Map:
I For each mij, generate all possible key-value pairs ((i, l), (M, j,mij)
I For each njl, generate all possible key-value pairs ((i, l), (N, j, njl)
I Thereby, M and N reflect single bit, e.g. M↔ 0,N ↔ 1

Remark: There are more efficient ways to multiply matrices using
Natural Join (2.3.9)



MAPREDUCE: MATRIX-MATRIX MULTIPLICATION

Let M = (mij) ∈ Rm×n,N = (njl) ∈ Rn×k, for (very) large m,n, k.
We would like to compute MN ∈ Rm×k where (MN)il =

∑n
j=1 mijnjl

I Map:
I For each mij and njl, generate all possible key-value pairs

((i, l), (M, j,mij) and ((i, l), (N, j, njl)

I Reduce: Need to work on list of values of keys (i, l):
I Sort values [which are either (M, j,mij) or (N, j, njl)] by j
I Yields

(M, 1,mi1), (N, 1, n1l), (M, 2,mi2), (N, 2, n2l), ..., (M, n,min), (N, n, nnl)
(5)

I After sorting, multiply each of two consecutive values mij, njl
I Add up all the products + yields

∑n
j=1 mijnjl

Remark: There are more efficient ways to multiply matrices using
Natural Join (2.3.9)



Workflow Systems



WORKFLOW SYSTEMS: INTRODUCTION

I Workflow systems generalize MapReduce

I Just as much as MapReduce:
I They’re built on distributed file systems
I They orchestrate large numbers of tasks with only small input

provided by the user
I They automatically handle failures

I In addition:
I Single tasks can do other things than just Map or Reduce
I Tasks interact in more complex ways



WORKFLOW SYSTEMS: FLOW GRAPH

I A function represents arbitrary functionality within a workflow
I and not just ’Map’ or ’Reduce’

I Functions are represented as nodes of the flow graph

I Arcs a→ b for two functions a, b mean that the output of
function a is provided to function b as input

I Note: The same function could be used by many tasks



WORKFLOW SYSTEMS

Figure: More complex workflow than MapReduce

Adopted from mmds.org

mmds.org


WORKFLOW SYSTEMS: ACYCLIC FLOW GRAPH

I It is easier to deal with acyclic flow graphs
I This means that one cannot return to functions

I Blocking Property: tasks only generate output upon completion
I Blocking property easily applicable only in acyclic workflows

I Simple Example of Workflow: Cascades of Map-Reduce jobs
I Output of Map jobs generated only after all Map tasks are

completed
I Reduce can work only on complete output anyway



POPULAR WORKFLOW SYSTEMS

I Spark: developed by UC Berkeley

I TensorFlow: Google’s system, primarily developed for neural
network computations

I Pregel: also by Google, for handling recursive (i.e. cyclic)
workflows

I Snakemake: easy-to-use workflow system, inspired by MakeFile
logic/functionality



SPARK

I State-of-the-art workflow system:
I Very efficient with failures
I Very efficient in grouping tasks among nodes
I Very efficient in scheduling execution of functions

I Basic concept: Resilient Distributed Dataset (RDD)
I Generalizes key-value pair type of data: RDD is a file of objects of

one type
I Distributed: broken into chunks held at different nodes
I Resilient: recoverable from losses of (even all) chunks

I Transformations (steps of functions) turn RDD into others

I Actions turn other data (from surrounding file system) into
RDD’s and vice versa



SPARK: TRANSFORMATIONS

Remark: For the following, consider equivalent methods in Python

I Map takes a function as parameter and applies it to every
element of an RDD, generating a new one

I Turns one object into exactly another object, but not several ones
I Remember: Map from MapReduce generates several key-value

pairs from one object

I Flatmap is like Map from MapReduce, and generalizes it from
key-value pairs to general object types (not implemented in
Python)

I Filter takes a predicate as input
I Predicate is true or false for elements of RDD
I So RDD is filtered for objects for which predicate applies
I Yields a ’filtered RDD’



SPARK: REDUCE AND RELATIONAL DATABASE

OPERATIONS

I Reduce is an action, and takes as parameter a function that
I applies to two elements of a particular type T
I returns one element of type T
I and is applied repeatedly until a single element remains
I Works for associative and commutative operations

I Many Relational Database Operations are implemented in Spark:
I Process RDD’s reflecting tuples of relations
I Examples: Join, GroupByKey



SPARK: IMPLEMENTATION DETAILS

I Spark is similar like MapReduce in handling data (chunks are
called splits)

I Lazy evaluation allows to apply several transformations
consecutively to splits:

I No intermediate formation of entire RDD’s
I Contradicts blocking property, because partial output is passed on

to new functions

I Resilience (despite lazy evaluation) is maintained by lineages of
RDD’s

I Beneficial trade-off of more complex recovery of failures versus
greater speed overall

I Note that greater speed reduces probability of failures



TENSORFLOW

I Open-source system developed (initially) by Google for
machine-learning applications

I Programming interface for writing sequences of steps

I Data are tensors, which are multidimensional matrices

I Power comes from built-in operations applicable to tensors



RECURSIVE WORKFLOWS

Examples:

I Calculating fixed-points (Mv̄ = v̄ for a matrix M and v) by
iterative application of M to v

v→Mv→M2v→ ...→Mtv→Mt+1v→ ...
t→∞→ v̄ (6)

I Gradient descent, e.g. required in TensorFlow for determining
optimal sets of parameters for machine learning models

I Lack of blocking property:
I Flow graphs have cycles
I Tasks may provide their output as input to other tasks whose

output in turn results in more input to the first task
I So generation of output only when task is done does not work
I Recovery from failures needs to be reorganized



TRANSITIVE CLOSURE: DEFINITION

DEFINITION [TRANSITIVE CLOSURE]:
Let R(X,Y) be a relation.

I R(X,Y) is transitive if (x, z) ∈ R and (z, y) ∈ R imply that
(x, y) ∈ R as well

I The transitive closure R(X,Y) of R(X,Y) is the smallest set of tuples
to be added to R(X,Y) that renders the resulting set of tuples
transitive



RECURSIVE WORKFLOWS: EXAMPLE

I Directed graph stored as relation E(X,Y), listing arcs from X to Y

I Want to compute relation P(X,Y), listing paths from X to Y

I P is transitive closure of E

I Reminder:
I Natural Join P(X,Z) ./ P(Z,Y), for given x ∈ X, y ∈ Y generates

(x, z, y) for all applicable z ∈ Z, so possibly generates several
(x, z1, y), (x, z2, y), ...

I Project πX,Y: all (x, z1, y), (x, z2, y), ... become one (x, y)



RECURSIVE WORKFLOWS: EXAMPLE

I Reminder:
I Natural Join P(X,Z) ./ P(Z,Y), for given x ∈ X, y ∈ Y generates

(x, z, y) for all applicable z ∈ Z, so possibly generates several
(x, z1, y), (x, z2, y), ...

I Project πX,Y: all (x, z1, y), (x, z2, y), ... become one (x, y)

I Algorithm:
I Start: P(X,Y) = E(X,Y)
I Iteration: Add to P tuples

πX,Y(P(X,Z) ./ P(Z,Y)) (7)

as pairs of nodes X and Y s.t. for some node Z there is path from X
to Z and from Z to Y



EXAMPLE: TRANSITIVE CLOSURE

P(a, b) corresponds to (a, b)

I n Join tasks, corresponding to
buckets of hash function h

I Tuple P(a, b) is assigned to
Join tasks h(a) and h(b)

I i-th Join task receives P(a, b)
I Store P(a, b) locally
I If h(a) = i look for tuples

P(x, a) and produce P(x, b)
I If h(b) = i look for tuples

P(b, y) and produce P(a, y) Transitive closure by recursive tasks
Adopted from mmds.org

mmds.org


EXAMPLE: TRANSITIVE CLOSURE

P(a, b) corresponds to (a, b)

I i-th Join task receives P(a, b)
I Store P(a, b) locally
I If h(a) = i look for tuples

P(x, a) and produce P(x, b)
I If h(b) = i look for tuples

P(b, y) and produce P(a, y)

I Additional explanation:
I h(a) = i, so (a, b) and (x, a)

get stored at Join task i ⇒
Generate (x, b)

I h(b) = i, so (a, b) and (b, y)
get stored at Join task i ⇒
Generate (a, y)

Transitive closure by recursive tasks
Adopted from mmds.org

mmds.org


RECURSIVE WORKFLOWS: EXAMPLE

I m Dup-elim tasks,
corresponding to buckets of
hash function g

I P(c, d) (as output of Join task)
is sent to Dup-elim task
j = g(c, d)

I Dup-elim task j checks
whether P(c, d) was received
before

I If yes, P(c, d) is ignored
(and not stored)

I If not, P(c, d) is stored
locally,

I and sent to Join tasks h(c)
and h(d)

Transitive closure by recursive tasks
Adopted from mmds.org

mmds.org


RECURSIVE WORKFLOWS: EXAMPLE

I Every Join task has m output
files

I Every Dup-elim task has n
output files

I Initially, tuples E(a, b) are sent
to Dup-elim tasks g(a, b)

Transitive closure by recursive tasks
Adopted from mmds.org

mmds.org


RECURSIVE WORKFLOWS: FAILURE HANDLING

I Iterated MapReduce: Application is repeated execution /
sequence of MapReduce job(s) (“HaLoop”)

I Spark Approach: Lazy evaluation, lineage mechanisms, option to
store intermediate results

I Bulk Synchronous Systems: Graph-based model using “periodic
checkpointing”



BULK SYNCHRONOUS SYSTEMS: PREGEL

I System views data as graph:
I Nodes (roughly) reflect tasks
I Arcs: from nodes whose output (messages) are input to other

nodes

I Supersteps:
I All messages received by any of the nodes from the previous

superstep are processed
I All messages generated are sent to their destinations

I Advantage: Sending messages means communication costs,
bundling them reduces costs

I Failure Management: Checkpointing entire computation by
making copy after each superstep

I May be beneficial to checkpoint periodically after number of
supersteps



SNAKEMAKE

I Create reproducible and scalable data analyses

I Workflows described in human readable, Python based
language

I Seamlessly scale to server, cluster, grid and cloud environments

I Integrating descriptions of required software, deployable to any
execution environment



MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 2.1–2.4

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Map Reduce / Workflow Systems II”

I See Mining of Massive Datasets 2.5–2.6

http://www.mmds.org/


EXAMPLE / ILLUSTRATION


