Lecture 6
 Map Reduce II

Alexander Schönhuth

Bielefeld University April 27, 2023

Learning Goals Today

- Understand how to put the paradigm into effect in practice
- Understand the fundamental algorithms supported by MapReduce
- Get to know idea of workflow systems and some examples

Map Reduce: Reminder

Distributed File Systems: Mode of Operation

Chunk server 1

Chunk server 2

Chunk server 3

Chunk server N

Adopted from mmds.org

- Replicating each chunk (at least) twice and putting copies to different nodes prevents damage due to failure
- Fill servers up; computations are carried out immediately by chunk servers

MapReduce: Workflow Summary

Summary

Here $\langle k, v\rangle$ refers to intermediate key-value pair earlier
Upon sorting key-value pairs are hashed

Example: Counting Words in Documents

Code for Map and Reduce tasks

```
map(key, value)
// key: document name, value: text of document
    foreach word w in value:
        emit (w, 1)
reduce(key, values)
// key: a word, values: an iterator over counts
    result = 0
    foreach count v in values:
        result += v
    emit(key, result)
```


Map Reduce: Execution

MapReduce: Host Size Example

- Input: Large web corpus with metadata file
- Metadata file has entries: (URL, size, date,...)
- URL's belong to hosts; hosts may control several URL's
- Host of URL can be determined
- Would like to determine size for each host
- Size of a host is sum of the sizes of its URL's
- Map: For each entry, key-value pair: < host(URL), size >
- Reduce: Add up sizes for each host

MapReduce: Language Example

- Input: Many (possibly large) documents
- Goal: Count all 5 -word sequences
- Map: Extract <5 - word - sequence, $1>$ as key-value pairs
- Reduce: Add up counts (= 1's) across 5-word-sequence keys
- There may be several identical key-value pairs per document
number of appearances of 5-word-sequence in document

MapReduce: Language Example II

- Input: Many (possibly large) documents
- Goal: Count all 5-word sequences
- Alternative Map:
- Generate only one <5 - word - sequence, count $>$ per document
- count is number of appearances of sequences in document
- Alternative Reduce:
- Add up counts across 5-word-sequence keys
- One key per document where value is count in document

MapReduce: Combiners

- 'Alternative Map' reflects strategy for associative Reduce tasks
- In that case, some Reduce work can be performed in Map step
- Adding is associative and commutative:

$$
\begin{aligned}
(a+b)+c & =a+(b+c) \\
a+b & =b+a
\end{aligned}
$$

- So, the Map task can generate $<$ key, count $>$ per document instead of just count times many $<k e y, 1>$ key-value pairs

MApReduce: Skew

- Skew: Runtime of Reduce tasks can vary substantially
- Runtime depends on number of key-value pairs
- Nodes have to carry out several Reduce tasks
- Goal: Achieve that runtime per node is similar
- Strategy: Random assignment of keys to Reduce tasks
- Random assignment balances out skew
- The more Reduce tasks, the more balanced by random assignment

MapReduce: Execution

Execution of MapReduce program: overview

MApREDUCE: EXECUTION

- User needs to design Map and Reduce tasks
- One Map task per data chunk Each node holds several chunks Many more Map tasks than nodes
- Varying Reduce tasks: control number of intermediate files
- One Master node
- Master keeps track of status of tasks (idle, in process, completed)
- Worker signals Master termination; gets assigned a new task
- Master keeps track of location and sizes of files
- Node Failures:
- When Worker nodes fail, Master reassigns tasks to other nodes
- When Master node fails, entire process needs to be restarted

Map Reduce: Algorithms

MapReduce: Algorithms

- MapReduce does not necessarily cater to every problem that profits from parallelization
- Example: Online retail sales: searches for products, recording sales
- Require little computation, but modify underlying databases
- MapReduce never (!) modifies original data (chunks themselves)
- Original Purpose: Multiplying matrices for PageRank (Google)
- Matrix-vector multiplication
- Matrix-matrix multiplication
- Databases: Relational algebra operations
- Selection, projection
- Union, intersection, difference
- Natural join

MapReduce: Matrix-Vector Multiplication I

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, for (very) large m, n. We would like to compute $M v=x$:

$$
\left(\begin{array}{ccc}
m_{11} & \ldots & m_{1 n} \tag{1}\\
\vdots & \ddots & \vdots \\
m_{m n} & \ldots & m_{m n}
\end{array}\right) \times\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right) \in \mathbb{R}^{m}
$$

that is

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \tag{2}
\end{equation*}
$$

for each $i=1, \ldots, m$.

MapReduce: Matrix-Vector Multiplication I

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$, for (very) large m, n.
We would like to compute $M v=: x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \tag{3}
\end{equation*}
$$

Assumptions:

- M, v stored as files in DFS
- coordinates i, j of entries $m_{i j}$ discoverable
- possible through explicit storage $\left(i, j, m_{i j}\right)$
- coordinates j of entries v_{j} discoverable (store $\left(j, v_{j}\right)$)

MapReduce: Matrix-Vector Multiplication II

Compute $x_{i}=\sum_{j=1}^{n} m_{i j} v_{j}$ for each $i=1, \ldots, m$

Map

1. Take in suitably sized chunk of M and (entire) v

- Chunk of $M=$ horizontal slice of M :

$$
\left(\begin{array}{ccc}
m_{i_{1} 1} & \ldots & m_{i_{1} n} \tag{4}\\
\vdots & \ddots & \vdots \\
m_{i_{2} 1} & \ldots & m_{i_{2} n}
\end{array}\right)
$$

that is, submatrix of M on subset of rows $1 \leq i_{1}<i_{2} \leq m$

- Processing chunk enables computation of $x_{i}, i=i_{1}, \ldots, i_{2}$

2. Generate key-value pairs

$$
\left(i, m_{i j} v_{j}\right) \quad \text { for } \quad i_{1} \leq i \leq i_{2}, 1 \leq j \leq n
$$

MapReduce: Matrix-Vector Multiplication II

$$
\text { Compute } x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \text { for each } i=1, \ldots, m
$$

Map

1. Take in suitably sized chunk of M and (entire) v
2. Generate key-value pairs $\left(i, m_{i j} v_{j}\right)$

Reduce

1. Sum all values of pairs with key i
2. When processing chunk with $i=i_{1}, \ldots, i_{2}$, yields $x_{i}, i=i_{1}, \ldots, i_{2}$

MapReduce: Matrix-Vector Multiplication III

$$
\text { Compute } x_{i}=\sum_{j=1}^{n} m_{i j} v_{j} \text { for each } i=1, \ldots, m
$$

Situation: Vector v too large to fit in main memory
Solution: Cut both M and v into stripes, process (chunks of) stripes

Adopted from mmds.org

MapReduce: Matrix-Vector Multiplication III

Adopted from mmds.org

Map

- Take in suitably sized chunk of stripe of M and stripe of v
- Generate key-value pairs $\left(i, m_{i j} v_{j}\right)$

Reduce

\Rightarrow Sum all values of pairs with key i, yielding x_{i}

MapReduce: Relational Algebras

MapReduce: Operations on large-scale data in database queries

- Reminder: Relational Model
- A relation is a table with
- column headers called attributes
- rows called tuples
- We write $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ for a relation R with attributes $A_{1}, A_{2}, \ldots, A_{n}$

From	To
url1	url2
url1	url3
url2	url3
url2	url4
\ldots	\ldots

Relation Links(From, To)
From mmds.org

MapReduce: Relational Algebra Operations

- Selection: Apply condition C and select only tuples (rows) from R that satisfy C, denoted $\sigma_{C}(R)$
- Choose only rows from R that refer to links leaving from or leading to a particular URL
- Example: Choose only rows leading to 'url3'
- Yields smaller subtable as a result
- Projection: Choose a subset S of columns from R to generate new table $\pi_{S}(R)$
- Generate table with only URL's that have incoming links Project to ' To^{\prime} column
- Resulting table has only one column All URL's in one-column table have link from other URL

MapReduce: Relational Algebra Operations

Selection $\sigma_{C}(R)$

- Map: For each tuple t in R check whether C applies
- If yes, generate key-value pair (t, t)
- If not, do nothing
- Example: Selecting rows leading to 'url3' Generate tuples ((url1, url3), (url1, url3)) and ((url2, url3), (url2, url3))
- Reduce: Reflects identity function, turns key-value pairs into output

MapReduce: Relational Algebra Operations

Projection $\pi_{S}(R)$

- Map: For each tuple $t \in R$ compute tuple t^{\prime} by removing attributes not from S. Generate key-value pair $\left(t^{\prime}, t^{\prime}\right)$
- Example: Project to 'To' column E Generate pairs ((url2), (url2)), ((url3), (url3)), ((url3), (url3)), ((url4), (url4))
- Reduce: Two different t may turn into identical t^{\prime} (example: 'url3'), so there may be identical key-value pairs $\left(t^{\prime}, t^{\prime}\right)$, the system turns into ($t^{\prime},\left[t^{\prime}, \ldots, t^{\prime}\right]$) by grouping; output just $\left(t^{\prime}, t^{\prime}\right)$, yielding one key-value pair for each t^{\prime}

MapReduce: Relational Algebra Operations

- Union, Intersection, Difference: Set operations applied to sets of tuples from two relations R and S
- Imagine two tables, for links leaving from URL's in Europe and North America
- Intersection: compute set of URL's that have incoming links from both Europe and North America
- Natural Join: Generate new table by joining tuples from two tables R and S when agreeing on attributes shared by two tables, yielding a new table $R \bowtie S$
- Imagine two tables of links, one with links from Europe to Asia $L_{E A}$, and one from Asia to North America $L_{A N}$
- Join two URL pairs when 'To' from first table agrees with 'From' from second table
- This yields table $L_{E A} \bowtie L_{A N}$ with three columns

Relational Algebra Operations

Union, Intersection

- Map: For each tuple t from both R and S generate key-value pair (t, t)
- Reduce: After grouping, there will be two kinds of pairs: either $(t,[t])$ or $(t,[t, t])$
- For Union, output everything
- For Intersection, output (t, t) only for $(t,[t, t])$

Difference

- Map: For a tuple t in R, generate key-value pair (t, R), and for tuple t in S generate key-value pair (t, S) (use single bits for distinguishing R, S)
- Reduce: After grouping, three cases: $(t,[R]),(t,[R, S]),(t,[S])$. Output (t, t) only for $(t,[R])$

Relational Algebra Operations

Natural Join $R(A, B) \bowtie S(B, C)$:
" (a, b) from R and (b, c) from S get (a, b, c) in $R(A, B) \bowtie S(B, C)$ "

- Map: For each tuple $t=(a, b)$ from R, generate key-value pair $(b,(R, a))$. For each tuple (b, c) from S, generate $(b,(S, c))$.
- Reduce: After grouping, each key value b has list of values being either of the form (R, a) or (S, c)
- Construct all pairs of values where first component is like (R, a) and second component is like (S, c), yielding triples $(b,(R, a),(S, c))$
- Turn triples into triples (a, b, c) being output

Relational Algebra Operations

General Natural Join on more than 3 attributes
Do like for relations with two attributes, by considering

- Type A attributes: in R, but not in S
- Type B attributes: both in R, S
- Type C attributes: in S, but not in R

MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large m, n, k. We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$
- For each $n_{j l}$, generate all possible key-value pairs $\left((i, l),\left(N, j, n_{j l}\right)\right.$
- Thereby, M and N reflect single bit, e.g. $M \leftrightarrow 0, N \leftrightarrow 1$

Remark: There are more efficient ways to multiply matrices using Natural Join (2.3.9)

MapReduce: Matrix-Matrix Multiplication

Let $M=\left(m_{i j}\right) \in \mathbb{R}^{m \times n}, N=\left(n_{j l}\right) \in \mathbb{R}^{n \times k}$, for (very) large m, n, k.
We would like to compute $M N \in \mathbb{R}^{m \times k}$ where $(M N)_{i l}=\sum_{j=1}^{n} m_{i j} n_{j l}$

- Map:
- For each $m_{i j}$ and $n_{j l}$, generate all possible key-value pairs $\left((i, l),\left(M, j, m_{i j}\right)\right.$ and $\left((i, l),\left(N, j, n_{j l}\right)\right.$
- Reduce: Need to work on list of values of keys (i, l) :
- Sort values [which are either $\left(M, j, m_{i j}\right)$ or $\left(N, j, n_{j l}\right)$] by j
- Yields

$$
\begin{equation*}
\left(M, 1, m_{i 1}\right),\left(N, 1, n_{1 l}\right),\left(M, 2, m_{i 2}\right),\left(N, 2, n_{2 l}\right), \ldots,\left(M, n, m_{i n}\right),\left(N, n, n_{n l}\right) \tag{5}
\end{equation*}
$$

- After sorting, multiply each of two consecutive values $m_{i j}, n_{j l}$
- Add up all the products yields $\sum_{j=1}^{n} m_{i j} n_{j l}$

Remark: There are more efficient ways to multiply matrices using Natural Join (2.3.9)

Workflow Systems

Workflow Systems: Introduction

- Workflow systems generalize MapReduce
- Just as much as MapReduce:
- They're built on distributed file systems
- They orchestrate large numbers of tasks with only small input provided by the user
- They automatically handle failures
- In addition:
- Single tasks can do other things than just Map or Reduce
- Tasks interact in more complex ways

Workflow Systems: Flow Graph

- A function represents arbitrary functionality within a workflow
- and not just 'Map' or 'Reduce'
- Functions are represented as nodes of the flow graph
- Arcs $a \rightarrow b$ for two functions a, b mean that the output of function a is provided to function b as input
- Note: The same function could be used by many tasks

WORKflow Systems

Figure: More complex workflow than MapReduce

Adopted from mmds.org

Workflow Systems: Acyclic Flow Graph

- It is easier to deal with acyclic flow graphs
- This means that one cannot return to functions
- Blocking Property: tasks only generate output upon completion
- Blocking property easily applicable only in acyclic workflows
- Simple Example of Workflow: Cascades of Map-Reduce jobs
- Output of Map jobs generated only after all Map tasks are completed
- Reduce can work only on complete output anyway

Popular Workflow Systems

- Spark: developed by UC Berkeley
- TensorFlow: Google's system, primarily developed for neural network computations
- Pregel: also by Google, for handling recursive (i.e. cyclic) workflows
- Snakemake: easy-to-use workflow system, inspired by MakeFile logic/functionality

SPARK

- State-of-the-art workflow system:
- Very efficient with failures
- Very efficient in grouping tasks among nodes
- Very efficient in scheduling execution of functions
- Basic concept: Resilient Distributed Dataset (RDD)
- Generalizes key-value pair type of data: RDD is a file of objects of one type
- Distributed: broken into chunks held at different nodes
- Resilient: recoverable from losses of (even all) chunks
- Transformations (steps of functions) turn RDD into others
- Actions turn other data (from surrounding file system) into RDD's and vice versa

Spark: Transformations

Remark: For the following, consider equivalent methods in Python

- Map takes a function as parameter and applies it to every element of an RDD, generating a new one
- Turns one object into exactly another object, but not several ones
- Remember: Map from MapReduce generates several key-value pairs from one object
- Flatmap is like Map from MapReduce, and generalizes it from key-value pairs to general object types (not implemented in Python)
- Filter takes a predicate as input
- Predicate is true or false for elements of RDD
- So RDD is filtered for objects for which predicate applies
- Yields a 'filtered RDD'

Spark: Reduce and Relational Database Operations

- Reduce is an action, and takes as parameter a function that
- applies to two elements of a particular type T
- returns one element of type T
- and is applied repeatedly until a single element remains
- Works for associative and commutative operations
- Many Relational Database Operations are implemented in Spark:
- Process RDD's reflecting tuples of relations
- Examples: Join, GroupByKey

Spark: Implementation Details

- Spark is similar like MapReduce in handling data (chunks are called splits)
- Lazy evaluation allows to apply several transformations consecutively to splits:
- No intermediate formation of entire RDD's
- Contradicts blocking property, because partial output is passed on to new functions
- Resilience (despite lazy evaluation) is maintained by lineages of RDD's
- Beneficial trade-off of more complex recovery of failures versus greater speed overall
- Note that greater speed reduces probability of failures

TENSORFLOW

- Open-source system developed (initially) by Google for machine-learning applications
- Programming interface for writing sequences of steps
- Data are tensors, which are multidimensional matrices
- Power comes from built-in operations applicable to tensors

Recursive Workflows

Examples:

- Calculating fixed-points ($M \bar{v}=\bar{v}$ for a matrix M and v) by iterative application of M to v

$$
\begin{equation*}
v \rightarrow M v \rightarrow M^{2} v \rightarrow \ldots \rightarrow M^{t} v \rightarrow M^{t+1} v \rightarrow \ldots \xrightarrow{t \rightarrow \infty} \bar{v} \tag{6}
\end{equation*}
$$

- Gradient descent, e.g. required in TensorFlow for determining optimal sets of parameters for machine learning models
- Lack of blocking property:
- Flow graphs have cycles
- Tasks may provide their output as input to other tasks whose output in turn results in more input to the first task
- So generation of output only when task is done does not work
- Recovery from failures needs to be reorganized

Transitive Closure: Definition

Definition [Transitive Closure]:
Let $R(X, Y)$ be a relation.

- $R(X, Y)$ is transitive if $(x, z) \in R$ and $(z, y) \in R$ imply that $(x, y) \in R$ as well
- The transitive closure $\overline{R(X, Y)}$ of $R(X, Y)$ is the smallest set of tuples to be added to $R(X, Y)$ that renders the resulting set of tuples transitive

Recursive Workflows: Example

- Directed graph stored as relation $E(X, Y)$, listing arcs from X to Y
- Want to compute relation $P(X, Y)$, listing paths from X to Y
- P is transitive closure of E
- Reminder:
- Natural Join $P(X, Z) \bowtie P(Z, Y)$, for given $x \in X, y \in Y$ generates (x, z, y) for all applicable $z \in Z$, so possibly generates several $\left(x, z_{1}, y\right),\left(x, z_{2}, y\right), \ldots$
- Project $\pi_{X, \gamma}$: all $\left(x, z_{1}, y\right),\left(x, z_{2}, y\right), \ldots$ become one (x, y)

Recursive Workflows: Example

- Reminder:
- Natural Join $P(X, Z) \bowtie P(Z, Y)$, for given $x \in X, y \in Y$ generates (x, z, y) for all applicable $z \in Z$, so possibly generates several $\left(x, z_{1}, y\right),\left(x, z_{2}, y\right), \ldots$
- Project $\pi_{X, Y}$: all $\left(x, z_{1}, y\right),\left(x, z_{2}, y\right), \ldots$ become one (x, y)
- Algorithm:
- Start: $P(X, Y)=E(X, Y)$
- Iteration: Add to P tuples

$$
\begin{equation*}
\pi_{X, Y}(P(X, Z) \bowtie P(Z, Y)) \tag{7}
\end{equation*}
$$

as pairs of nodes X and Y s.t. for some node Z there is path from X to Z and from Z to Y

Example: Transitive Closure

$P(a, b)$ corresponds to (a, b)

- n Join tasks, corresponding to buckets of hash function h
- Tuple $P(a, b)$ is assigned to Join tasks $h(a)$ and $h(b)$
- i-th Join task receives $P(a, b)$
- Store $P(a, b)$ locally
- If $h(a)=i$ look for tuples $P(x, a)$ and produce $P(x, b)$
- If $h(b)=i$ look for tuples $P(b, y)$ and produce $P(a, y)$

Transitive closure by recursive tasks
Adopted from mmds.org

Example: Transitive Closure

$P(a, b)$ corresponds to (a, b)

- i-th Join task receives $P(a, b)$
- Store $P(a, b)$ locally
- If $h(a)=i$ look for tuples $P(x, a)$ and produce $P(x, b)$
- If $h(b)=i$ look for tuples $P(b, y)$ and produce $P(a, y)$
- Additional explanation:
- $h(a)=i$, so (a, b) and (x, a) get stored at Join task $i \Rightarrow$ Generate (x, b)
- $h(b)=i$, so (a, b) and (b, y) get stored at Join task $i \Rightarrow$ Generate (a, y)

Transitive closure by recursive tasks
Adopted from mmds.org

Recursive Workflows: Example

- m Dup-elim tasks, corresponding to buckets of hash function g
- $P(c, d)$ (as output of Join task) is sent to Dup-elim task $j=g(c, d)$
- Dup-elim task j checks whether $P(c, d)$ was received before
- If yes, $P(c, d)$ is ignored (and not stored)
- If not, $P(c, d)$ is stored locally,
- and sent to Join tasks $h(c)$ and $h(d)$

Transitive closure by recursive tasks
Adopted from mmds.org

Recursive Workflows: Example

- Every Join task has m output files
- Every Dup-elim task has n output files
- Initially, tuples $E(a, b)$ are sent to Dup-elim tasks $g(a, b)$

Transitive closure by recursive tasks
Adopted from mmds.org

Recursive Workflows: Failure Handling

- Iterated MapReduce: Application is repeated execution / sequence of MapReduce job(s) ("HaLoop")
- Spark Approach: Lazy evaluation, lineage mechanisms, option to store intermediate results
- Bulk Synchronous Systems: Graph-based model using "periodic checkpointing"

Bulk Synchronous Systems: Pregel

- System views data as graph:
- Nodes (roughly) reflect tasks
- Arcs: from nodes whose output (messages) are input to other nodes
- Supersteps:
- All messages received by any of the nodes from the previous superstep are processed
- All messages generated are sent to their destinations
- Advantage: Sending messages means communication costs, bundling them reduces costs
- Failure Management: Checkpointing entire computation by making copy after each superstep
- May be beneficial to checkpoint periodically after number of supersteps

SNAKEMAKE

- Create reproducible and scalable data analyses
- Workflows described in human readable, Python based language
- Seamlessly scale to server, cluster, grid and cloud environments
- Integrating descriptions of required software, deployable to any execution environment

Materials / Outlook

- See Mining of Massive Datasets, chapter 2.1-2.4
- As usual, see http://www.mmds.org/in general for further resources
- Next lecture: "Map Reduce / Workflow Systems II"
- See Mining of Massive Datasets 2.5-2.6

EXAMPLE / ILLUSTRATION

