
Lecture 5
Finding Similar Items IV / Map Reduce I

Alexander Schönhuth

Bielefeld University
April 26, 2023

LEARNING GOALS TODAY

I Understand the theory supporting Locality Sensitive Hashing
(LSH)

I Understand the technical challenges of parallelism / multi-node
computation

I Understand the MapReduce paradigm

Locality Sensitive Hashing
–

Reminder

BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]
For given b and r, the S-curve is defined by the prescription

s 7! 1 � (1 � sr)b (1)

Table: Values for S-curve with b = 20 and r = 5

LOCALITY SENSITIVE HASHING: GUIDELINES

I One needs to determine b, r where br = n

I One needs to determine threshold t:
I s � t: candidate pair
I s < t: no candidate pair

I t corresponds with point of steepest rise on S-curve:
approximately (1/b)(1/r)

Motivation:

I False Positive: dissimilar pair hashing to the same bucket

I False Negative: similar pair never hashing to the same bucket

I Motivation: limit both false positives and negatives

LSH: FALSE NEGATIVES / POSITIVES

I Pick threshold t, number of bands b and rows r

I Avoiding false negatives: have t ⇡ (1/b)1/r large (not low!)

I Avoiding false positives, or enhancing speed: have t ⇡ (1/b)1/r low (not large!)

Distance Measures

DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]
Consider a set of objects. A distance measure is a function d(x, y) that
maps two objects x, y to a number such that

1. d(x, y) � 0 [d is non-negative]

2. d(x, y) = 0 implies x = y [only if two objects are identical, the
distance is zero; strictly positive otherwise]

3. d(x, y) = d(y, x) [distance is symmetric]

4. d(x, z)  d(x, y) + d(y, z) [triangle inequality]

x z

y

d(x,z)

d(y,z)d(x,y)

DISTANCE MEASURES: EXAMPLES

I In n-dimensional Euclidean space: points = real-valued vectors of length n
I The Lr-distance, defined to be

d([x1, ..., xn], [y1, ..., yn]) = (
nX

i=1

|xi � yi|r)1/r (2)

is a distance measure
I A particular example is the Euclidean distance, defined as the

L2-distance

I Cosine: Let ||x||2 =
qPn

i=1 |xi|2 be the L2-norm of a point in Euclidean
space. The cosine similarity for two points [x1, ..., xn], [y1, ..., yn] is defined
to be Pn

i=1 xiyi

||x||2||y||2
(3)

I Measures the angle between two vectors x and y
I Gives rise to distance measure between lines that pass through origin

DISTANCE MEASURES: EXAMPLES

I Let SIM(x, y) be the Jaccard similarity between two sets x, y. The
quantity

1 � SIM(x, y) (4)

can be proven to be a distance measure.

I Edit distance: Objects are strings. The edit distance between two
strings x = x1...xm, y = y1...yn is the smallest number of
insertions and deletions of single characters to be applied to turn
x into y.

I Hamming Distance: For [x1, ..., xn], [y1, ..., yn], the Hamming
distance is the number of positions i 2 [1, ..., n] where xi 6= yi

EDIT / HAMMING DISTANCE: EXAMPLE

Edit Distance DE:
Consider x = ”abcde”, y = ”acfdeg”. Claim: DE(x, y) = 3.

I For proving DE(x, y)  3, consider edit sequence

1. Delete b
2. Insert f after c
3. Insert g after e

I For DE(x, y) � 3, consider that x contains b, which y does not, which
holds vice versa for f , g. This implies that 3 edit operations are
necessary at least.

Hamming Distance DH:
Consider x = 10101, y = 11110:

DH(x, y) = 3

because disagreeing in 3 positions (of five overall).

Locality Sensitive Functions

LOCALITY SENSITIVE FAMILY OF FUNCTIONS:
DEFINITION

I Consider functions f that hash items. The notation f (x) = f (y) means
that x and y form a candidate pair.

I A collection F of functions f of this form is called a family of functions
I Unless stated otherwise, d(x, y) = 1 � SIM(x, y) is the Jaccard distance

DEFINITION: [LOCALITY SENSITIVE (LS) FAMILY OF FUNCTIONS]
A family F of functions is said to be (d1, d2, p1, p2)-sensitive if for each f 2 F :

1. d(x, y)  d1 implies that the probability that f (x) = f (y) is at least p1

2. d(x, y) � d2 implies that the probability that f (x) = f (y) is at most p2

LS FAMILY OF FUNCTION: ILLUSTRATION

Behaviour of any member of a (d1, d2, p1, p2)-sensitive family of function
From mmds.org

LS FAMILY OF FUNCTIONS: EXAMPLE

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic
matrix to the minimum value the rows, in which there are 1’s in the
column, get hashed to.

EXAMPLE: LS FAMILY OF MINHASH FUNCTIONS

I Consider d(x, y) = 1 � SIM(x, y) to measure the distance
between two sets x, y.

I Then it holds that the family of minhash functions is a
(d1, d2, 1 � d1, 1 � d2)-sensitive family for any 0  d1 < d2  1.

PROOF: By definition, d(x, y)  d1 implies
SIM(x, y) = 1 � d(x, y) � 1 � d1. If, on the other hand, d(x, y) � d2, we
obtain SIM(x, y) = 1 � d(x, y)  1 � d2

AMPLIFYING LS FAMILIES OF FUNCTIONS:
AND-CONSTRUCTION

Consider a (d1, d2, p1, p2)-sensitive family F . We construct a new
family Fr,AND by the following principle:

I Each single member of f 2 Fr,AND is based on r members f1, ..., fr
of F .

I
f (x) = f (y) , fi(x) = fi(y) for all i = 1, ..., r (5)

Example: Consider the members of one band of size r when applying
the banding technique.

Fact: It is easy to show (consider yourself!) that Fr,AND is a
(d1, d2, (p1)r, (p2)r)-sensitive family of functions

AMPLIFYING LS FAMILIES OF FUNCTIONS:
OR-CONSTRUCTION

Consider a (d1, d2, p1, p2)-sensitive family F . We construct a new
family Fb,OR by the following principle:

I Each single member of f 2 Fb,OR is based on b members f1, ..., fb
of F .

I
f (x) = f (y) , fi(x) = fi(y) for one i = 1, ..., r (6)

Example: The OR-construction reflects the effect of combining
several bands when applying the banding technique.

Fact: It is easy to show (consider yourself again!) that Fb,OR is a
(d1, d2, 1 � (1 � p1)b, 1 � (1 � p2)b)-sensitive family of functions.

AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY
SENSITIVE HASHING

Example: Applying the OR-construction to Fr,AND, yielding
(Fr,AND)b,OR reflects applying the banding technique altogether.

Fact: (Fr,AND)b,OR is a (d1, d2, 1 � (1 � pr
1)

b, 1 � (1 � pr
2)

b)-sensitive
family of functions. Varying p1, p2 reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do.
For example:

I How does behaviour change when varying r and b?
+ S-curve

I What happens when exhanging AND and OR?

AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY
SENSITIVE HASHING

Original family F is (0.2, 0.6, 0.8, 0.4)-sensitive.

Left: Applying first the AND- and then the OR-construction, reflecting
locality sensitive hashing, yields a (0.2, 0.6, 0.8785, 0.0985)-sensitive family.

Right: Applying first the OR- and then the AND-construction, yields a
(0.2, 0.6, 0.9936, 0.5740)-sensitive family.

LS Families for Other Distance Measures

LS Families for Hamming Distance

LS FAMILIES FOR HAMMING DISTANCE

I Assume we have a d-dimensional vector space V
I Let h(x, y) be the Hamming distance between vectors

x = (x1, ..., xd), y = (y1, ..., yd) 2 V
I Let fi(x) := xi be the entry of x at the i-th position
I So fi(x) = fi(y) if and only if xi = yi

I For randomly chosen x, y, the probability that fi(x) = fi(y) is

d � h(x, y)
d

= 1 � h(x, y)
d

the fraction of positions in which x and y agree
I Thus, the family F of {f1, ..., fd} is

(d1, d2, 1 � d1

d
, 1 � d2

d
)� sensitive

for any d1 < d2

LS FAMILIES FOR HAMMING DISTANCE

I Let h(x, y) be the Hamming distance between vectors
x = (x1, ..., xd), y = (y1, ..., yd) 2 V

I So fi(x) = fi(y) if and only if xi = yi

I The family F of {f1, ..., fd} is (d1, d2, 1 � d1
d , 1 � d2

d)� sensitive for any d1 < d2

DIFFERENCES

I Jaccard distance runs from 0 to 1, Hamming distance from 0 to d:
need to scale with 1/d

I There is an unlimited number of minhash functions, but size of
F is only d

I The limited size of F puts limits to AND/OR constructions

LS FAMILIES FOR COSINE DISTANCE

Two vectors making an angle ✓

From mmds.org

I Cosine distance for x, y 2 V corresponds with the angle ✓(x, y) 2 [0, 180]
between x and y

I Whatever the dimension d = dimV, two vectors x, y span a plane
V(x, y) (so dimV(x, y) = 2)

I Angle ✓ is measured in that plane V(x, y)

LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Any hyperplane (dimension dimV � 1) intersects V(x, y) in a line
I Figure: two hyperplanes, indicated by dotted and dashed line
I Determine hyperplanes U by picking normal vectors v
I That is

U = {u 2 V | hu, vi = 0}

LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Consider dashed line hyperplane U: x and y on different sides
I Let v be normal vector of U:

sgnhx, vi 6= sgnhy, vi

so one scalar product is positive and the other one is negative

v-

LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Consider dotted line hyperplane U: x and y on the same side
I Let v be normal vector of U:

sgnhx, vi = sgnhy, vi

so both scalar products positive or both negative

v-

LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Choose x, y at an angle ✓(x, y)

I Probability that
I hyperplane like dashed line: ✓(x, y)/180
I hyperplane like dotted line: (180 � ✓(x, y))/180

I Consider hash functions f corresponding to randomly picked normal
vectors vf of hyperplanes

LS FAMILIES FOR COSINE DISTANCE: RANDOM
HYPERPLANES

Two vectors making an angle ✓

From mmds.org

I Consider family F of hash functions f corresponding to randomly
picked hyperplanes, represented by their normal vectors vf

I For x, y 2 V, let

f (x) = f (y) if and only if sgnhvf , xi = sgnhvf , yi

I F is (d1, d2, (180 � d1)/180, (180 � d2)/180)-sensitive

I One can amplify the family as desired
I Apart from rescaling by 180, F is just like minhash family

SAMPLING RANDOM NORMAL VECTORS: SKETCHES

I When determining normal vectors of random hyperplanes, it
can be shown that it suffices to pick random vectors with entries
either �1 or +1

I Let v1, ..., vn be such random vectors

I For a vector x, the array

[sgnhv1, xi, ..., sgnhvn, xi] 2 [�1,+1]n (7)

is said to be the sketch of x

SKETCHES: EXAMPLE

I Let x = [3, 4, 5, 6], y = [4, 3, 2, 1]

I Let v1 = [+1,�1,+1,+1], v2 = [�1,+1,�1,+1], v3 =
[+1,+1,�1,�1]

I Then
I Sketch of x is [+1,+1,�1]
I Sketch of y is [+1,�1,+1]
I Sketches of x, y agree in 1 out of 3 positions: we estimate

\✓(x, y) = 120
I However true ✓(x, y) = 38

I There are 16 different vectors with +1,�1 (cardinality of
{�1,+1}4 is 16)

I Computing sketches based on all of them yields estimate
\✓(x, y) = 45

LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

I Let us consider 2-dimensional space V
I Each member f of family F is associated with line in V
I Line is divided into buckets (segments) of length a
I Points x, y 2 V are “hashed” to buckets
I f (x) = f (y) when hashed to the same segment

LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

I If Euclidean distance d(x, y)  a/2, then probability to hash x, y to same
segment is at least 1/2

I Distance between x, y after projecting is d(x, y) cos ✓  d(x, y)  a/2

LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

I If distance between x, y after projecting is greater than a, they will be
hashed to different buckets

I So, if d(x, y) � 2a, we have that d(x, y) cos ✓ > a for ✓ 2 [0, 60]
I It holds that ✓ 2 [0, 60] with probability 2/3 (note: here ✓ 2 [0, 90])

LS FAMILIES FOR EUCLIDEAN DISTANCE

Two points at distance d >> a are hashed to identical bucket with small probability
From mmds.org

I In conclusion, the family described has been

(a/2, 2a, 1/2, 1/3)� sensitive

I Family can be amplified as desired
I If families for arbitrary d1 < d2 (and not just d1 = a/2, d2 = 2a), and also

for arbitrary-dimensional vector spaces are desired, special efforts are
required

Map Reduce: Introduction

MAPREDUCE: MOTIVATION I

Adopted from mmds.org

I Machine Learning, Statistics: all data fits in main memory
I Classical Data Mining: data too big to fit in main memory

MAPREDUCE: MOTIVATION I

Adopted from mmds.org

I Machine Learning, Statistics: all data fits in main memory
I Classical Data Mining: data too big to fit in main memory

MAPREDUCE: MOTIVATION II

I Need to manage massive amounts of data quickly

I Within one particular application, data is massive
I For example (web searches), even with high performance disk read

bandwidth, just reading 10 billion web pages requires several days

I But operations can be very regular (do the same thing to each web
page) + exploit the parallelism

I Many operations on databases (as supported by SQL, for example) can
and need to be parallelized

I Ranking web pages (“PageRank”) requires iterated multiplication of
matrices with dimensions in the billions

I Searching for “friend networks” in social networks require operations on
graphs with billions of nodes and edges

MAPREDUCE: MOTIVATION II

I New software stack: get parallelism not from single
supercomputer, but from computing clusters

I First, need to deal with storing data
+ Distributed file systems (hardware based issues/solutions)

I Second, new higher-level programming systems required
+ MapReduce

I Third, MapReduce reflects early attempts:
+ More sophisticated workflow systems

I Here, we will deal predominantly with MapReduce first

I We will also consider most advanced workflow systems

I Reminder: it’s about analytics in this course

MAPREDUCE: MOTIVATION III

I MapReduce enables convenient execution of parallelizable
operations on compute clusters and clouds

I MapReduce executes such operations in a fault-tolerant manner

I MapReduce is the origin of more general ideas
I Systems supporting acyclic workflows in general
I Systems supporting recursive operations

MAPREDUCE: MOTIVATION III

Adopted from mmds.org

MAPREDUCE: MOTIVATION III

Adopted from mmds.org

Distributed File Systems

DISTRIBUTED FILE SYSTEMS: CHALLENGES AND
CHARACTERISTICS

I Node Failure: Single nodes fail (e.g. by disk crash) or entire racks
can fail (e.g. by network failure)
+ no starting over every time: back up data

I File Size: can be huge
+ how to distribute them?

I Computation Time: should not be dominated by input/output
+ data should be as close as possible to compute nodes

I Data: does not change, new data only makes small appends
+ otherwise DFS not suitable

DISTRIBUTED FILE SYSTEMS: SUMMARY

I Data is divided into chunks (usually of size 64 MB)

I Chunks are replicated (3 times is common)

I Chunk copies are distributed across the nodes

I A file called master node keeps track of where chunks went

I A client library provides file access; talks to master and connects
to individual servers

I Examples of DFS Implementations:
I Google File System (GFS): the original
I Hadoop Distributed File System (HDFS): open source, used with

Hadoop, a MapReduce implementation
I Colossus: supposed to be an improvement over GFS; little has been

published

DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Adopted from mmds.org

I Chunk servers correspond to nodes in racks

DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Adopted from mmds.org

I One file (“File C”) in 6 chunks, C0, C1, C2, C3, C4, C5

DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Adopted from mmds.org

I Replicating each chunk twice and putting copies to different
nodes prevents damage due to failure

DISTRIBUTED FILE SYSTEMS: MODE OF OPERATION

Adopted from mmds.org

I Fill servers up; computations are carried out immediately by
chunk servers

Map Reduce: Workflow

MAPREDUCE: WORKFLOW

1. Chunks are assigned to Map tasks, which turn each chunk into
sequence of key-value pairs.

I Key-value pair generation is specified by user

2. Master controller (automatic):
I Key-value pairs are collected
I Key-value pairs are sorted
I Keys are divided among Reduce tasks

3. Reduce tasks combine values into final output
I Reduce tasks are specified by user
I Reduce tasks work on one key at a time

MAPREDUCE: RUNNING EXAMPLE

I Input: One, or several huge documents

I Desired Output: Counts of all words appearing in the documents

I Applications:
I Detecting plagiarism
I Determining words characterizing documents for web searches

I Important: In the example, distinguish between
I Input key-value pairs that reflect id-file pairs
I Intermediate key-value pairs that reflect key-value pairs from

Map tasks, as seen in the slide before
I The latter ones are important for MapReduce

MAPREDUCE: MAP

Here, input key-value pairs refer to id-file (id-document) pairs

Adopted from mmds.org

k = document identifier, v = document itself

=

MAPREDUCE: MAP

Intermediate key-value pairs are the ones to be generated by a Map task

Adopted from mmds.org

< k = “apple”, v = 1>

< “the”, 1>

< “apple”, 1>

:

MAPREDUCE: MAP

Here: intermediate key-value pairs correspond to <’word’,1> tuples

Adopted from mmds.org

MAPREDUCE: REDUCE

Intermediate key-value pairs (<’word’,1> tuples) generated by Map

Adopted from mmds.org

MAPREDUCE: REDUCE

Intermediate key-value pairs generated by Map

Adopted from mmds.org

< k = “apple”, [1,1,1] >

< “the”, [1,1] >

MAPREDUCE: REDUCE

Output key-value pairs generated by Reduce: here <’word’,count> tuples

Adopted from mmds.org

< k = “apple”, v = 3 >

< k = “the”, v = 2 >

-

-

MAPREDUCE: FORMAL SUMMARY

I Input: A set of (key, value)-pairs < k, v >

I < k, v > usually correspond to file (v) and id (k) of the file

I To be provided by programmer:
I Map(< k, v >) !< k0, v0 >⇤

I Maps input pair < k, v > to multi-set of key-value pairs < k0, v0 >
I < k0, v0 > is intermediate key-value in schematic on slides before
I One Map call for each input key-value pair < k, v >

I Reduce(< k0, v0 >⇤) !< k0, v00 >⇤

I For each key k0 all key-value pairs < k0, v0 > are reduced together
I One Reduce call for each unique key k0

MAPREDUCE EXAMPLE: WORD COUNTING

Intermediate key-value pairs correspond to <’word’,1> tuples

Adopted from mmds.org

MAPREDUCE EXAMPLE: WORD COUNTING

Intermediate key-value pairs are sorted and hashed by key (automatic)

Adopted from mmds.org

MAPREDUCE EXAMPLE: WORD COUNTING

Reduce sums up all values for each key

Adopted from mmds.org

< “crew”, [1,1] >
Reduce
-

MAPREDUCE EXAMPLE: WORD COUNTING

Map tasks are parallelized across nodes: one Map per chunk

Adopted from mmds.org

MAPREDUCE EXAMPLE: WORD COUNTING

Reduce tasks are parallelized across nodes: one Reduce for a subset of keys

Adopted from mmds.org

EXAMPLE: WORD COUNTING CODE

map(key, value)
// key: document name, value: text of document
foreach word w in value:

emit(w,1)

reduce(key, values)
// key: a word, values: an iterator over counts
result = 0
foreach count v in values:

result += v
emit(key, result)

MAPREDUCE: WORKFLOW SUMMARY

Summary
Here < k, v > refers to intermediate key-value pair earlier

Upon sorting key-value pairs are hashed

Adopted from mmds.org

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 3.5–3.7, chapter 2

I See http://www.mmds.org/ for further resources

I Next lecture: “MapReduce II”
I See Mining of Massive Datasets, chapter 2

EXAMPLE / ILLUSTRATION

