Lecture 5 Finding Similar Items IV / Map Reduce I

Alexander Schönhuth

Bielefeld University April 26, 2023

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LEARNING GOALS TODAY

- Understand the theory supporting *Locality Sensitive Hashing* (*LSH*)
- Understand the technical challenges of parallelism / multi-node computation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► Understand the *MapReduce* paradigm

Locality Sensitive Hashing

Reminder

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]

For given *b* and *r*, the *S*-curve is defined by the prescription

$$s \mapsto 1 - (1 - s^r)^b \tag{1}$$

s	$1 - (1 - s^r)^b$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

Table: Values for S-curve with b = 20 and r = 5

LOCALITY SENSITIVE HASHING: GUIDELINES

- One needs to determine b, r where br = n
- One needs to determine threshold *t*:
 - $s \ge t$: candidate pair
 - s < t: no candidate pair
- *t* corresponds with point of steepest rise on S-curve: approximately (1/b)^(1/r)

Motivation:

- ► *False Positive:* dissimilar pair hashing to the same bucket
- ► *False Negative:* similar pair never hashing to the same bucket
- *Motivation:* limit both false positives and negatives

LSH: FALSE NEGATIVES / POSITIVES

- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: have $t \approx (1/b)^{1/r}$ large (not low!)
- Avoiding false positives, or enhancing speed: have $t \approx (1/b)^{1/r}$ low (not large!)

Distance Measures

・ロト・西ト・ヨー シック・

DISTANCE MEASURE: DEFINITION

DEFINITION: [DISTANCE MEASURE]

Consider a set of objects. A *distance measure* is a function d(x, y) that maps two objects x, y to a number such that

- 1. $d(x,y) \ge 0$ [*d* is non-negative]
- 2. d(x, y) = 0 implies x = y [only if two objects are identical, the distance is zero; strictly positive otherwise]
- 3. d(x,y) = d(y,x) [distance is *symmetric*]
- 4. $d(x,z) \le d(x,y) + d(y,z)$ [triangle inequality]

DISTANCE MEASURES: EXAMPLES

- ▶ In *n*-dimensional Euclidean space: points = real-valued vectors of length *n*
- ► The *L_r*-distance, defined to be

$$d([x_1,...,x_n],[y_1,...,y_n]) = \left(\sum_{i=1}^n |x_i - y_i|^r\right)^{1/r}$$
(2)

is a distance measure

- ► A particular example is the Euclidean distance, defined as the *L*₂-distance
- ► Cosine: Let $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ be the *L*₂-norm of a point in Euclidean space. The *cosine similarity* for two points $[x_1, ..., x_n], [y_1, ..., y_n]$ is defined to be

$$\frac{\sum_{i=1}^{n} x_{i} y_{i}}{||x||_{2} ||y||_{2}} \tag{3}$$

- Measures the *angle* between two vectors x and y
- Gives rise to distance measure between lines that pass through origin

DISTANCE MEASURES: EXAMPLES

Let SIM(x, y) be the Jaccard similarity between two sets x, y. The quantity

$$1 - \operatorname{SIM}(x, y) \tag{4}$$

can be proven to be a distance measure.

- ► Edit distance: Objects are strings. The edit distance between two strings x = x₁...x_m, y = y₁...y_n is the smallest number of insertions and deletions of single characters to be applied to turn x into y.
- ► *Hamming Distance:* For $[x_1, ..., x_n], [y_1, ..., y_n]$, the Hamming distance is the number of positions $i \in [1, ..., n]$ where $x_i \neq y_i$

EDIT / HAMMING DISTANCE: EXAMPLE

Edit Distance D_E : Consider x = "abcde", y = "acfdeg". Claim: $D_E(x, y) = 3$.

- For proving $D_E(x, y) \leq 3$, consider edit sequence
 - 1. Delete b
 - 2. Insert *f* after *c*
 - 3. Insert *g* after *e*
- For $D_E(x, y) \ge 3$, consider that *x* contains *b*, which *y* does not, which holds vice versa for *f*, *g*. This implies that 3 edit operations are necessary at least.

Hamming Distance D_H:

Consider x = 10101, y = 11110:

$$D_H(x,y) = 3$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

because disagreeing in 3 positions (of five overall).

Locality Sensitive Functions

(ロ)

LOCALITY SENSITIVE FAMILY OF FUNCTIONS: DEFINITION

- Consider functions *f* that hash items. The notation f(x) = f(y) means that *x* and *y* form a candidate pair.
- ► A collection *F* of functions *f* of this form is called a *family of functions*
- Unless stated otherwise, d(x, y) = 1 SIM(x, y) is the Jaccard distance

DEFINITION: [LOCALITY SENSITIVE (LS) FAMILY OF FUNCTIONS] A family \mathcal{F} of functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for each $f \in \mathcal{F}$:

- 1. $d(x, y) \le d_1$ implies that the probability that f(x) = f(y) is at least p_1
- 2. $d(x,y) \ge d_2$ implies that the probability that f(x) = f(y) is at most p_2

LS FAMILY OF FUNCTION: ILLUSTRATION

Behaviour of any member of a (d_1, d_2, p_1, p_2) -sensitive family of function From mmds.org

LS FAMILY OF FUNCTIONS: EXAMPLE

Consider minhash functions.

Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

EXAMPLE: LS FAMILY OF MINHASH FUNCTIONS

- ► Consider d(x, y) = 1 SIM(x, y) to measure the distance between two sets x, y.
- ► Then it holds that the family of minhash functions is a $(d_1, d_2, 1 d_1, 1 d_2)$ -sensitive family for any $0 \le d_1 < d_2 \le 1$.

PROOF: By definition, $d(x, y) \le d_1$ implies SIM $(x, y) = 1 - d(x, y) \ge 1 - d_1$. If, on the other hand, $d(x, y) \ge d_2$, we obtain SIM $(x, y) = 1 - d(x, y) \le 1 - d_2$

AMPLIFYING LS FAMILIES OF FUNCTIONS: AND-CONSTRUCTION

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{r,AND}$ by the following principle:

• Each single member of $f \in \mathcal{F}_{r,AND}$ is based on *r* members $f_1, ..., f_r$ of \mathcal{F} .

$$f(x) = f(y) \quad \Leftrightarrow \quad f_i(x) = f_i(y) \text{ for all } i = 1, ..., r$$
 (5)

Example: Consider the members of one band of size *r* when applying the banding technique.

Fact: It is easy to show (consider yourself!) that $\mathcal{F}_{r,AND}$ is a $(d_1, d_2, (p_1)^r, (p_2)^r)$ -sensitive family of functions

AMPLIFYING LS FAMILIES OF FUNCTIONS: OR-CONSTRUCTION

Consider a (d_1, d_2, p_1, p_2) -sensitive family \mathcal{F} . We construct a new family $\mathcal{F}_{b,OR}$ by the following principle:

• Each single member of $f \in \mathcal{F}_{b,OR}$ is based on *b* members $f_1, ..., f_b$ of \mathcal{F} .

$$f(x) = f(y) \quad \Leftrightarrow \quad f_i(x) = f_i(y) \text{ for one } i = 1, ..., r$$
 (6)

Example: The OR-construction reflects the effect of combining several bands when applying the banding technique.

Fact: It is easy to show (consider yourself again!) that $\mathcal{F}_{b,OR}$ is a $(d_1, d_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b)$ -sensitive family of functions.

AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY SENSITIVE HASHING

Example: Applying the OR-construction to $\mathcal{F}_{r,AND}$, yielding $(\mathcal{F}_{r,AND})_{b,OR}$ reflects applying the banding technique altogether. **Fact:** $(\mathcal{F}_{r,AND})_{b,OR}$ is a $(d_1, d_2, 1 - (1 - p_1^r)^b, 1 - (1 - p_2^r)^b)$ -sensitive

Fact: $(\mathcal{F}_{r,AND})_{b,OR}$ is a $(a_1, a_2, 1 - (1 - p_1)^\circ, 1 - (1 - p_2)^\circ)$ -sensitive family of functions. Varying p_1, p_2 reflects reproducing the S-curve.

This justifies to study LS families of functions as a useful thing to do. For example:

- How does behaviour change when varying *r* and *b*?
 S-curve
- ► What happens when exhanging AND and OR?

AMPLIFYING LS FAMILIES OF FUNCTIONS: LOCALITY SENSITIVE HASHING

p	$1 - (1 - p^4)^4$	p	$(1-(1-p)^4)^4$
0.2	0.0064	0.1	0.0140
0.3	0.0320	0.2	0.1215
0.4	0.0985	0.3	0.3334
0.5	0.2275	0.4	0.5740
0.6	0.4260	0.5	0.7725
0.7	0.6666	0.6	0.9015
0.8	0.8785	0.7	0.9680
0.9	0.9860	0.8	0.9936

Original family \mathcal{F} is (0.2, 0.6, 0.8, 0.4)-sensitive.

Left: Applying first the AND- and then the OR-construction, reflecting locality sensitive hashing, yields a (0.2, 0.6, 0.8785, 0.0985)-sensitive family.

Right: Applying first the OR- and then the AND-construction, yields a (0.2, 0.6, 0.9936, 0.5740)-sensitive family.

LS Families for Other Distance Measures

LS Families for Hamming Distance

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

LS FAMILIES FOR HAMMING DISTANCE

- ► Assume we have a *d*-dimensional vector space *V*
- ► Let h(x, y) be the Hamming distance between vectors $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in V$
- Let $f_i(x) := x_i$ be the entry of x at the *i*-th position
- So $f_i(x) = f_i(y)$ if and only if $x_i = y_i$
- For randomly chosen *x*, *y*, the probability that $f_i(x) = f_i(y)$ is

$$\frac{d-h(x,y)}{d} = 1 - \frac{h(x,y)}{d}$$

the fraction of positions in which *x* and *y* agree

• Thus, the family \mathcal{F} of $\{f_1, ..., f_d\}$ is

$$(d_1, d_2, 1 - \frac{d_1}{d}, 1 - \frac{d_2}{d})$$
 – sensitive

for any $d_1 < d_2$

LS FAMILIES FOR HAMMING DISTANCE

- ► Let h(x, y) be the Hamming distance between vectors $x = (x_1, ..., x_d), y = (y_1, ..., y_d) \in V$
- So $f_i(x) = f_i(y)$ if and only if $x_i = y_i$
- ► The family \mathcal{F} of $\{f_1, ..., f_d\}$ is $(d_1, d_2, 1 \frac{d_1}{d}, 1 \frac{d_2}{d})$ sensitive for any $d_1 < d_2$

DIFFERENCES

- ► Jaccard distance runs from 0 to 1, Hamming distance from 0 to *d*: need to scale with 1/d
- There is an unlimited number of minhash functions, but size of *F* is only *d*
- ► The limited size of *F* puts limits to AND/OR constructions

LS FAMILIES FOR COSINE DISTANCE

Two vectors making an angle θ From mmds.org

- ► Cosine distance for $x, y \in V$ corresponds with the angle $\theta(x, y) \in [0, 180]$ between *x* and *y*
- ► Whatever the dimension $d = \dim V$, two vectors x, y span a plane V(x, y) (so dim V(x, y) = 2)
- Angle θ is measured in that plane V(x, y)
- UNIVERSITÄT BIELEFELD

Two vectors making an angle θ From mmds.org

- Any hyperplane (dimension dim V 1) intersects V(x, y) in a line
- ► Figure: two hyperplanes, indicated by dotted and dashed line
- Determine hyperplanes U by picking normal vectors v
- That is

$$U = \{ u \in V \mid \langle u, v \rangle = 0 \}$$

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

Two vectors making an angle θ From mmds.org

- ► Consider dashed line hyperplane *U*: *x* and *y* on different sides
- Let v be normal vector of U:

```
\operatorname{sgn}\langle x,v\rangle\neq\operatorname{sgn}\langle y,v\rangle
```

UNIVERSITATION So one scalar product is positive and the other one is negative

Two vectors making an angle θ From mmds.org

- Consider dotted line hyperplane *U*: *x* and *y* on the same side
- Let *v* be normal vector of *U*:

 $\operatorname{sgn}\langle x,v\rangle = \operatorname{sgn}\langle y,v\rangle$

UNIVERSITIANS to both scalar products positive or both negative

Two vectors making an angle θ From mmds.org

- Choose x, y at an angle $\theta(x, y)$
- Probability that
 - hyperplane like dashed line: $\theta(x, y)/180$
 - ► hyperplane like dotted line: $(180 \theta(x, y))/180$
- Consider hash functions *f* corresponding to randomly picked normal vectors *v_f* of hyperplanes

UNIVERSITÄT BIELEFELD

Two vectors making an angle θ From mmds.org

- Consider family *F* of hash functions *f* corresponding to randomly picked hyperplanes, represented by their normal vectors *v_f*
- For $x, y \in V$, let

f(x) = f(y) if and only if $\operatorname{sgn}\langle v_f, x \rangle = \operatorname{sgn}\langle v_f, y \rangle$

- \mathcal{F} is $(d_1, d_2, (180 d_1)/180, (180 d_2)/180)$ -sensitive
- One can amplify the family as desired
 - Apart from rescaling by 180, \mathcal{F} is just like minhash family

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

FELD

SAMPLING RANDOM NORMAL VECTORS: SKETCHES

- ► When determining normal vectors of random hyperplanes, it can be shown that it suffices to pick random vectors with entries either -1 or +1
- Let $v_1, ..., v_n$ be such random vectors
- ► For a vector *x*, the array

$$[\operatorname{sgn}\langle v_1, x \rangle, \dots, \operatorname{sgn}\langle v_n, x \rangle] \in [-1, +1]^n$$
(7)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

is said to be the *sketch* of *x*

SKETCHES: EXAMPLE

• Let
$$x = [3, 4, 5, 6], y = [4, 3, 2, 1]$$

- Let $v_1 = [+1, -1, +1, +1], v_2 = [-1, +1, -1, +1], v_3 = [+1, +1, -1, -1]$
- Then
 - ▶ Sketch of *x* is [+1, +1, -1]
 - ► Sketch of *y* is [+1, -1, +1]
 - Sketches of *x*, *y* agree in 1 out of 3 positions: we estimate $\widehat{\theta(x, y)} = 120$
 - However true $\theta(x, y) = 38$
- There are 16 different vectors with +1, -1 (cardinality of $\{-1, +1\}^4$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x,y)} = 45$

Two points at distance d >> a are hashed to identical bucket with small probability From mmds.org

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

- ► Let us consider 2-dimensional space V
- Each member f of family \mathcal{F} is associated with line in V
- ► Line is divided into buckets (segments) of length *a*
- Points $x, y \in V$ are "hashed" to buckets

UNIVERSITÄf(x) = f(y) when hashed to the same segment

Two points at distance d >> a are hashed to identical bucket with small probability From mmds.org

- ► If Euclidean distance d(x, y) ≤ a/2, then probability to hash x, y to same segment is at least 1/2
 - ► Distance between *x*, *y* after projecting is $d(x, y) \cos \theta \le d(x, y) \le a/2$

Two points at distance d >> a are hashed to identical bucket with small probability From mmds.org

- ► If distance between *x*, *y* after projecting is greater than *a*, they will be hashed to different buckets
- So, if $d(x, y) \ge 2a$, we have that $d(x, y) \cos \theta > a$ for $\theta \in [0, 60]$

► It holds that $\theta \in [0, 60]$ with probability 2/3 (note: here $\theta \in [0, 90]$)

Two points at distance d >> a are hashed to identical bucket with small probability From mmds.org

In conclusion, the family described has been

(a/2, 2a, 1/2, 1/3) – sensitive

Family can be amplified as desired

► If families for arbitrary $d_1 < d_2$ (and not just $d_1 = a/2, d_2 = 2a$), and also for arbitrary-dimensional vector spaces are desired, special efforts are UNIVERSITÄTEQUIED

Map Reduce: Introduction

(ロ)

MAPREDUCE: MOTIVATION I

Machine Learning, Statistics

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ► Machine Learning, Statistics: all data fits in main memory
- Classical Data Mining: data too big to fit in main memory

MAPREDUCE: MOTIVATION I

- ► Machine Learning, Statistics: all data fits in main memory
- Classical Data Mining: data too big to fit in main memory

MAPREDUCE: MOTIVATION II

- Need to manage massive amounts of data quickly
- ► Within one particular application, data is massive
 - For example (web searches), even with high performance disk read bandwidth, just reading 10 billion web pages requires several days
- But operations can be very regular (do the same thing to each web page) is exploit the parallelism
 - Many operations on databases (as supported by SQL, for example) can and need to be parallelized
 - Ranking web pages ("PageRank") requires iterated multiplication of matrices with dimensions in the billions
 - Searching for "friend networks" in social networks require operations on graphs with billions of nodes and edges

MAPREDUCE: MOTIVATION II

- New software stack: get parallelism not from single supercomputer, but from computing clusters
 - *First*, need to deal with storing data
 ^{IST} Distributed file systems (hardware based issues/solutions)
 - Second, new higher-level programming systems required
 MapReduce
 - Third, MapReduce reflects early attempts:
 More sophisticated workflow systems
- ► Here, we will deal predominantly with MapReduce first
- ► We will also consider most advanced workflow systems
- *Reminder:* it's about *analytics* in this course

MAPREDUCE: MOTIVATION III

- MapReduce enables convenient execution of parallelizable operations on compute clusters and clouds
- ► MapReduce executes such operations in a *fault-tolerant* manner
- MapReduce is the origin of more general ideas
 - ► Systems supporting *acyclic workflows* in general
 - Systems supporting recursive operations

MAPREDUCE: MOTIVATION III

Each rack contains 16-64 nodes

Adopted from mmds.org

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MAPREDUCE: MOTIVATION III

Each rack contains 16-64 nodes

Distributed File Systems

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

DISTRIBUTED FILE SYSTEMS: CHALLENGES AND CHARACTERISTICS

- Node Failure: Single nodes fail (e.g. by disk crash) or entire racks can fail (e.g. by network failure)
 no starting over every time: back up data
- *File Size:* can be huge
 how to distribute them?
- Computation Time: should not be dominated by input/output
 a data should be as close as possible to compute nodes
- Data: does not change, new data only makes small appends
 otherwise DFS not suitable

DISTRIBUTED FILE SYSTEMS: SUMMARY

- ► Data is divided into *chunks* (usually of size 64 MB)
- Chunks are replicated (3 times is common)
- Chunk copies are distributed across the nodes
- A file called *master node* keeps track of where chunks went
- A *client library* provides file access; talks to master and connects to individual servers
- ► Examples of DFS Implementations:
 - ► *Google File System (GFS):* the original
 - ► *Hadoop Distributed File System (HDFS):* open source, used with Hadoop, a MapReduce implementation
 - Colossus: supposed to be an improvement over GFS; little has been published

Adopted from mmds.org

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Chunk servers correspond to nodes in racks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▶ One file ("File C") in 6 chunks, C0, C1, C2, C3, C4, C5

Adopted from mmds.org

 Replicating each chunk twice and putting copies to different nodes prevents damage due to failure

イロト 不得 とうほ とうせい

= 900

Adopted from mmds.org

 Fill servers up; computations are carried out immediately by chunk servers

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Map Reduce: Workflow

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ . □ ● . ○ < ○

MAPREDUCE: WORKFLOW

1. Chunks are assigned to Map tasks, which turn each chunk into sequence of *key-value* pairs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Key-value pair generation is specified by user

- 2. Master controller (automatic):
 - ► Key-value pairs are collected
 - Key-value pairs are sorted
 - Keys are divided among Reduce tasks
- 3. Reduce tasks combine values into final output
 - Reduce tasks are specified by user
 - Reduce tasks work on one key at a time

MAPREDUCE: RUNNING EXAMPLE

- ► *Input:* One, or several huge documents
- ► Desired Output: Counts of all words appearing in the documents
- ► Applications:
 - Detecting plagiarism
 - Determining words characterizing documents for web searches
- Important: In the example, distinguish between
 - ► *Input key-value pairs* that reflect id-file pairs
 - Intermediate key-value pairs that reflect key-value pairs from Map tasks, as seen in the slide before
 - ► The latter ones are important for MapReduce

MAPREDUCE: MAP

Here, input key-value pairs refer to id-file (id-document) pairs

MAPREDUCE: MAP

Intermediate key-value pairs are the ones to be generated by a Map task

MAPREDUCE: MAP

Here: intermediate key-value pairs correspond to <'word',1> tuples

MAPREDUCE: REDUCE

Intermediate key-value pairs

Intermediate key-value pairs (<'word',1> tuples) generated by Map

Adopted from mmds.org

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MAPREDUCE: REDUCE

Intermediate key-value pairs generated by Map

MAPREDUCE: REDUCE

Output key-value pairs generated by Reduce: here <'word',count> tuples

Adopted from mmds.org

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

MAPREDUCE: FORMAL SUMMARY

► *Input*: A set of (key, value)-pairs < k, v >

• < k, v > usually correspond to file (*v*) and id (*k*) of the file

► To be provided by programmer:

 $\blacktriangleright Map(< k, v >) \rightarrow < k', v' >^*$

- ▶ Maps input pair $\langle k, v \rangle$ to multi-set of key-value pairs $\langle k', v' \rangle$
- $\langle k', v' \rangle$ is intermediate key-value in schematic on slides before
- One Map call for each input key-value pair < k, v >
- ► $Reduce(< k', v' >^*) \rightarrow < k', v'' >^*$
 - For each key k' all key-value pairs $\langle k', v' \rangle$ are reduced together
 - ▶ One Reduce call for each unique key k'

Provided by the programmer

(Rey, varue)

Intermediate key-value pairs correspond to <'word',1> tuples

Provided by the programmer The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term space-based man/mache partnership, "The work we're doing now - the robotics we're doing is what we're going to **Big document** (key, value) (key, value)

Intermediate key-value pairs are sorted and hashed by key (automatic)

Reduce sums up all values for each key

Map tasks are parallelized across nodes: one Map per chunk

Reduce tasks are parallelized across nodes: one Reduce for a subset of keys

EXAMPLE: WORD COUNTING CODE

map(key, value)

// key: document name, value: text of document
foreach word w in value:
 emit(w,1)

reduce(key, values)

```
// key: a word, values: an iterator over counts
  result = 0
  foreach count v in values:
    result += v
  emit(key, result)
```


MAPREDUCE: WORKFLOW SUMMARY

Summary Here < k, v > refers to intermediate key-value pair earlier Upon sorting key-value pairs are hashed

Adopted from mmds.org

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

MATERIALS / OUTLOOK

- ► See *Mining of Massive Datasets*, chapter 3.5–3.7, chapter 2
- See http://www.mmds.org/ for further resources
- ► Next lecture: "MapReduce II"
 - ► See Mining of Massive Datasets, chapter 2

EXAMPLE / ILLUSTRATION

