Lecture 5
 Finding Similar Items IV / Map Reduce I

Alexander Schönhuth

Bielefeld University April 26, 2023

Learning Goals Today

- Understand the theory supporting Locality Sensitive Hashing (LSH)
- Understand the technical challenges of parallelism / multi-node computation
- Understand the MapReduce paradigm

Locality Sensitive Hashing

Reminder

Banding Technique: The S-Curve

Definition: [S-Curve]
For given b and r, the S-curve is defined by the prescription

$$
\begin{equation*}
s \mapsto 1-\left(1-s^{r}\right)^{b} \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
s & 1-\left(1-s^{r}\right)^{b} \\
\hline .2 & .006 \\
.3 & .047 \\
.4 & .186 \\
.5 & .470 \\
.6 & .802 \\
.7 & .975 \\
.8 & .9996
\end{array}
$$

Table: Values for S-curve with $b=20$ and $r=5$

Locality Sensitive Hashing: Guidelines

- One needs to determine b, r where $b r=n$
- One needs to determine threshold t :
- $s \geq t$: candidate pair
- $s<t$: no candidate pair
- t corresponds with point of steepest rise on S-curve: approximately $(1 / b)^{(1 / r)}$

Motivation:

- False Positive: dissimilar pair hashing to the same bucket
- False Negative: similar pair never hashing to the same bucket
- Motivation: limit both false positives and negatives

LSH: False Negatives / Positives

- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: have $t \approx(1 / b)^{1 / r}$ large (not low!)
- Avoiding false positives, or enhancing speed: have $t \approx(1 / b)^{1 / r}$ low (not large!)

Distance Measures

Distance Measure: Definition

Definition: [Distance Measure]

Consider a set of objects. A distance measure is a function $d(x, y)$ that maps two objects x, y to a number such that

1. $d(x, y) \geq 0$ [d is non-negative]
2. $d(x, y)=0$ implies $x=y$ [only if two objects are identical, the distance is zero; strictly positive otherwise]
3. $d(x, y)=d(y, x)$ [distance is symmetric]
4. $d(x, z) \leq d(x, y)+d(y, z)$ [triangle inequality]

Distance Measures: Examples

- In n-dimensional Euclidean space: points = real-valued vectors of length n
- The L_{r}-distance, defined to be

$$
\begin{equation*}
d\left(\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]\right)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{r}\right)^{1 / r} \tag{2}
\end{equation*}
$$

is a distance measure

- A particular example is the Euclidean distance, defined as the L_{2}-distance
- Cosine: Let $\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$ be the L_{2}-norm of a point in Euclidean space. The cosine similarity for two points $\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]$ is defined to be

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\|x\|_{2}\|y\|_{2}} \tag{3}
\end{equation*}
$$

- Measures the angle between two vectors x and y
- Gives rise to distance measure between lines that pass through origin

Distance Measures: Examples

- Let $\operatorname{SIM}(x, y)$ be the Jaccard similarity between two sets x, y. The quantity

$$
\begin{equation*}
1-\operatorname{SIM}(x, y) \tag{4}
\end{equation*}
$$

can be proven to be a distance measure.

- Edit distance: Objects are strings. The edit distance between two strings $x=x_{1} \ldots x_{m}, y=y_{1} \ldots y_{n}$ is the smallest number of insertions and deletions of single characters to be applied to turn x into y.
- Hamming Distance: For $\left[x_{1}, \ldots, x_{n}\right],\left[y_{1}, \ldots, y_{n}\right]$, the Hamming distance is the number of positions $i \in[1, \ldots, n]$ where $x_{i} \neq y_{i}$

Edit / Hamming Distance: Example

Edit Distance D_{E} :
Consider $x=" a b c d e ", y=" a c f d e g "$. Claim: $D_{E}(x, y)=3$.

- For proving $D_{E}(x, y) \leq 3$, consider edit sequence

1. Delete b
2. Insert f after c
3. Insert g after e

- For $D_{E}(x, y) \geq 3$, consider that x contains b, which y does not, which holds vice versa for f, g. This implies that 3 edit operations are necessary at least.

Hamming Distance D_{H} :
Consider $x=10101, y=11110$:

$$
D_{H}(x, y)=3
$$

because disagreeing in 3 positions (of five overall).

Locality Sensitive Functions

Locality Sensitive Family of Functions: Definition

- Consider functions f that hash items. The notation $f(x)=f(y)$ means that x and y form a candidate pair.
- A collection \mathcal{F} of functions f of this form is called a family of functions
- Unless stated otherwise, $d(x, y)=1-\operatorname{SIM}(x, y)$ is the Jaccard distance

Definition: [LOcality Sensitive (LS) Family of Functions]

A family \mathcal{F} of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for each $f \in \mathcal{F}$:

1. $d(x, y) \leq d_{1}$ implies that the probability that $f(x)=f(y)$ is at least p_{1}
2. $d(x, y) \geq d_{2}$ implies that the probability that $f(x)=f(y)$ is at most p_{2}

LS FAmily of Function: ILLUStration

Behaviour of any member of a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family of function From mmds.org

LS FAMILY of Functions: Example

Consider minhash functions.
Reminder: Minhash functions map a column in the characteristic matrix to the minimum value the rows, in which there are 1's in the column, get hashed to.

Example: LS Family of Minhash Functions

- Consider $d(x, y)=1-\operatorname{SIM}(x, y)$ to measure the distance between two sets x, y.
- Then it holds that the family of minhash functions is a $\left(d_{1}, d_{2}, 1-d_{1}, 1-d_{2}\right)$-sensitive family for any $0 \leq d_{1}<d_{2} \leq 1$.

Proof: By definition, $d(x, y) \leq d_{1}$ implies $\operatorname{SIM}(x, y)=1-d(x, y) \geq 1-d_{1}$. If, on the other hand, $d(x, y) \geq d_{2}$, we obtain $\operatorname{SIM}(x, y)=1-d(x, y) \leq 1-d_{2}$

Amplifying LS Families of Functions: AND-Construction

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{r, \text { AND }}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{r, A N D}$ is based on r members f_{1}, \ldots, f_{r} of \mathcal{F}.

$$
\begin{equation*}
f(x)=f(y) \quad \Leftrightarrow \quad f_{i}(x)=f_{i}(y) \text { for all } i=1, \ldots, r \tag{5}
\end{equation*}
$$

Example: Consider the members of one band of size r when applying the banding technique.
Fact: It is easy to show (consider yourself!) that $\mathcal{F}_{r, \text { AND }}$ is a $\left(d_{1}, d_{2},\left(p_{1}\right)^{r},\left(p_{2}\right)^{r}\right)$-sensitive family of functions

Amplifying LS Families of Functions: OR-CONSTRUCTION

Consider a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family \mathcal{F}. We construct a new family $\mathcal{F}_{b, O R}$ by the following principle:

- Each single member of $f \in \mathcal{F}_{b, O R}$ is based on b members f_{1}, \ldots, f_{b} of \mathcal{F}.

$$
\begin{equation*}
f(x)=f(y) \quad \Leftrightarrow \quad f_{i}(x)=f_{i}(y) \text { for one } i=1, \ldots, r \tag{6}
\end{equation*}
$$

Example: The OR-construction reflects the effect of combining several bands when applying the banding technique.
Fact: It is easy to show (consider yourself again!) that $\mathcal{F}_{b, O R}$ is a $\left(d_{1}, d_{2}, 1-\left(1-p_{1}\right)^{b}, 1-\left(1-p_{2}\right)^{b}\right)$-sensitive family of functions.

Amplifying LS Families of Functions: Locality Sensitive Hashing

Example: Applying the OR-construction to $\mathcal{F}_{r, A N D}$, yielding $\left(\mathcal{F}_{r, \text { AND }}\right)_{b, \text { OR }}$ reflects applying the banding technique altogether.
Fact: $\left(\mathcal{F}_{r, A N D}\right)_{b, \text { OR }}$ is a $\left(d_{1}, d_{2}, 1-\left(1-p_{1}^{r}\right)^{b}, 1-\left(1-p_{2}^{r}\right)^{b}\right)$-sensitive family of functions. Varying p_{1}, p_{2} reflects reproducing the S -curve.

This justifies to study LS families of functions as a useful thing to do. For example:

- How does behaviour change when varying r and b ? S-curve
- What happens when exhanging AND and OR?

Amplifying LS Families of Functions: Locality Sensitive Hashing

p	$1-\left(1-p^{4}\right)^{4}$
0.2	0.0064
0.3	0.0320
0.4	0.0985
0.5	0.2275
0.6	0.4260
0.7	0.6666
0.8	0.8785
0.9	0.9860

p	$\left(1-(1-p)^{4}\right)^{4}$
0.1	0.0140
0.2	0.1215
0.3	0.3334
0.4	0.5740
0.5	0.7725
0.6	0.9015
0.7	0.9680
0.8	0.9936

Original family \mathcal{F} is $(0.2,0.6,0.8,0.4)$-sensitive.
Left: Applying first the AND- and then the OR-construction, reflecting locality sensitive hashing, yields a ($0.2,0.6,0.8785,0.0985$)-sensitive family.

Right: Applying first the OR- and then the AND-construction, yields a ($0.2,0.6,0.9936,0.5740$)-sensitive family.

LS Families for Other Distance Measures

LS Families for Hamming Distance

LS Families for Hamming Distance

- Assume we have a d-dimensional vector space V
- Let $h(x, y)$ be the Hamming distance between vectors $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in V$
- Let $f_{i}(x):=x_{i}$ be the entry of x at the i-th position
- So $f_{i}(x)=f_{i}(y)$ if and only if $x_{i}=y_{i}$
- For randomly chosen x, y, the probability that $f_{i}(x)=f_{i}(y)$ is

$$
\frac{d-h(x, y)}{d}=1-\frac{h(x, y)}{d}
$$

the fraction of positions in which x and y agree

- Thus, the family \mathcal{F} of $\left\{f_{1}, \ldots, f_{d}\right\}$ is

$$
\left(d_{1}, d_{2}, 1-\frac{d_{1}}{d}, 1-\frac{d_{2}}{d}\right)-\text { sensitive }
$$

for any $d_{1}<d_{2}$

LS Families for Hamming Distance

- Let $h(x, y)$ be the Hamming distance between vectors $x=\left(x_{1}, \ldots, x_{d}\right), y=\left(y_{1}, \ldots, y_{d}\right) \in V$
- So $f_{i}(x)=f_{i}(y)$ if and only if $x_{i}=y_{i}$
- The family \mathcal{F} of $\left\{f_{1}, \ldots, f_{d}\right\}$ is $\left(d_{1}, d_{2}, 1-\frac{d_{1}}{d}, 1-\frac{d_{2}}{d}\right)$ - sensitive for any $d_{1}<d_{2}$

DIFFERENCES

- Jaccard distance runs from 0 to 1, Hamming distance from 0 to d : need to scale with $1 / d$
- There is an unlimited number of minhash functions, but size of \mathcal{F} is only d
- The limited size of \mathcal{F} puts limits to AND/OR constructions

LS Families for Cosine Distance

Two vectors making an angle θ

> From mmds.org

- Cosine distance for $x, y \in V$ corresponds with the angle $\theta(x, y) \in[0,180]$ between x and y
- Whatever the dimension $d=\operatorname{dim} V$, two vectors x, y span a plane $V(x, y)($ so $\operatorname{dim} V(x, y)=2)$
- Angle θ is measured in that plane $V(x, y)$

LS FAmilies for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ From mmds.org

- Any hyperplane (dimension $\operatorname{dim} V-1$) intersects $V(x, y)$ in a line
- Figure: two hyperplanes, indicated by dotted and dashed line
- Determine hyperplanes U by picking normal vectors v
- That is

$$
U=\{u \in V \mid\langle u, v\rangle=0\}
$$

LS Families for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Consider dashed line hyperplane $U: x$ and y on different sides
- Let v be normal vector of U :

$$
\operatorname{sgn}\langle x, v\rangle \neq \operatorname{sgn}\langle y, v\rangle
$$

LS Families for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ From mmds.org

- Consider dotted line hyperplane $U: x$ and y on the same side
- Let v be normal vector of U :

$$
\operatorname{sgn}\langle x, v\rangle=\operatorname{sgn}\langle y, v\rangle
$$

LS Families for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Choose x, y at an angle $\theta(x, y)$
- Probability that
- hyperplane like dashed line: $\theta(x, y) / 180$
- hyperplane like dotted line: $(180-\theta(x, y)) / 180$
- Consider hash functions f corresponding to randomly picked normal vectors v_{f} of hyperplanes

LS Families for Cosine Distance: Random Hyperplanes

Two vectors making an angle θ
From mmds.org

- Consider family \mathcal{F} of hash functions f corresponding to randomly picked hyperplanes, represented by their normal vectors v_{f}
- For $x, y \in V$, let

$$
f(x)=f(y) \quad \text { if and only if } \quad \operatorname{sgn}\left\langle v_{f}, x\right\rangle=\operatorname{sgn}\left\langle v_{f}, y\right\rangle
$$

$-\mathcal{F}$ is $\left(d_{1}, d_{2},\left(180-d_{1}\right) / 180,\left(180-d_{2}\right) / 180\right)$-sensitive

- One can amplify the family as desired
- Apart from rescaling by $180, \mathcal{F}$ is just like minhash family

Sampling Random Normal Vectors: Sketches

- When determining normal vectors of random hyperplanes, it can be shown that it suffices to pick random vectors with entries either -1 or +1
- Let v_{1}, \ldots, v_{n} be such random vectors
- For a vector x, the array

$$
\begin{equation*}
\left[\operatorname{sgn}\left\langle v_{1}, x\right\rangle, \ldots, \operatorname{sgn}\left\langle v_{n}, x\right\rangle\right] \in[-1,+1]^{n} \tag{7}
\end{equation*}
$$

is said to be the sketch of x

SKETCHES: EXAMPLE

- Let $x=[3,4,5,6], y=[4,3,2,1]$
- Let $v_{1}=[+1,-1,+1,+1], v_{2}=[-1,+1,-1,+1], v_{3}=$ $[+1,+1,-1,-1]$
- Then
- Sketch of x is $[+1,+1,-1]$
- Sketch of y is $[+1,-1,+1]$
- Sketches of x, y agree in 1 out of 3 positions: we estimate $\widehat{\theta(x, y)}=120$
- However true $\theta(x, y)=38$
- There are 16 different vectors with $+1,-1$ (cardinality of $\{-1,+1\}^{4}$ is 16)
- Computing sketches based on all of them yields estimate $\widehat{\theta(x, y)}=45$

LS FAmilies for Euclidean Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- Let us consider 2-dimensional space V
- Each member f of family \mathcal{F} is associated with line in V
- Line is divided into buckets (segments) of length a
- Points $x, y \in V$ are "hashed" to buckets

LS FAMILIES FOR EUCLIDEAN Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- If Euclidean distance $d(x, y) \leq a / 2$, then probability to hash x, y to same segment is at least $1 / 2$
- Distance between x, y after projecting is $d(x, y) \cos \theta \leq d(x, y) \leq a / 2$

LS FAmilies for Euclidean Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- If distance between x, y after projecting is greater than a, they will be hashed to different buckets
- So, if $d(x, y) \geq 2 a$, we have that $d(x, y) \cos \theta>a$ for $\theta \in[0,60]$
- It holds that $\theta \in[0,60]$ with probability $2 / 3$ (note: here $\theta \in[0,90]$)

LS FAmilies for Euclidean Distance

Two points at distance $d \gg a$ are hashed to identical bucket with small probability From mmds.org

- In conclusion, the family described has been

$$
(a / 2,2 a, 1 / 2,1 / 3)-\text { sensitive }
$$

- Family can be amplified as desired
- If families for arbitrary $d_{1}<d_{2}$ (and not just $d_{1}=a / 2, d_{2}=2 a$), and also for arbitrary-dimensional vector spaces are desired, special efforts are

Map Reduce: Introduction

MapReduce: Motivation I

Adopted from mmds.org

- Machine Learning, Statistics: all data fits in main memory
- Classical Data Mining: data too big to fit in main memory

MapReduce: Motivation I

Machine Learning, Statistics

"Classical" Data Mining

Adopted from mmds.org

- Machine Learning, Statistics: all data fits in main memory
- Classical Data Mining: data too big to fit in main memory

MapReduce: Motivation II

- Need to manage massive amounts of data quickly
- Within one particular application, data is massive
- For example (web searches), even with high performance disk read bandwidth, just reading 10 billion web pages requires several days
- But operations can be very regular (do the same thing to each web page) exploit the parallelism
- Many operations on databases (as supported by SQL, for example) can and need to be parallelized
- Ranking web pages ("PageRank") requires iterated multiplication of matrices with dimensions in the billions
- Searching for "friend networks" in social networks require operations on graphs with billions of nodes and edges

MapReduce: Motivation II

- New software stack: get parallelism not from single supercomputer, but from computing clusters
- First, need to deal with storing data Distributed file systems (hardware based issues/solutions)
- Second, new higher-level programming systems required MapReduce
- Third, MapReduce reflects early attempts: More sophisticated workflow systems
- Here, we will deal predominantly with MapReduce first
- We will also consider most advanced workflow systems
- Reminder: it's about analytics in this course

MapReduce: Motivation III

- MapReduce enables convenient execution of parallelizable operations on compute clusters and clouds
- MapReduce executes such operations in a fault-tolerant manner
- MapReduce is the origin of more general ideas
- Systems supporting acyclic workflows in general
- Systems supporting recursive operations

MapReduce: Motivation III

1 Gbps between
any pair of nodes
in a rack

Each rack contains 16-64 nodes

Adopted from mmds.org

MapReduce: Motivation III

2-10 Gbps backbone between racks

Each rack contains 16-64 nodes

Adopted from mmds.org

Distributed File Systems

Distributed File Systems: Challenges and Characteristics

- Node Failure: Single nodes fail (e.g. by disk crash) or entire racks can fail (e.g. by network failure)
no starting over every time: back up data
- File Size: can be huge
how to distribute them?
- Computation Time: should not be dominated by input/output data should be as close as possible to compute nodes
- Data: does not change, new data only makes small appends otherwise DFS not suitable

Distributed File Systems: Summary

- Data is divided into chunks (usually of size 64 MB)
- Chunks are replicated (3 times is common)
- Chunk copies are distributed across the nodes
- A file called master node keeps track of where chunks went
- A client library provides file access; talks to master and connects to individual servers
- Examples of DFS Implementations:
- Google File System (GFS): the original
- Hadoop Distributed File System (HDFS): open source, used with Hadoop, a MapReduce implementation
- Colossus: supposed to be an improvement over GFS; little has been published

Distributed File Systems: Mode of Operation

Adopted from mmds.org

- Chunk servers correspond to nodes in racks

Distributed File Systems: Mode of Operation

Chunk server 1

Chunk server 2

Adopted from mmds.org

- One file ("File C") in 6 chunks, C0, C1, C2, C3, C4, C5

Distributed File Systems: Mode of Operation

Chunk server 1

Chunk server 2

Chunk server 3

Chunk server N

Adopted from mmds.org

- Replicating each chunk twice and putting copies to different nodes prevents damage due to failure

Distributed File Systems: Mode of Operation

Chunk server 1

Chunk server 2

Chunk server 3

Chunk server N

Adopted from mmds.org

- Fill servers up; computations are carried out immediately by chunk servers

Map Reduce: Workflow

MapReduce: Workflow

1. Chunks are assigned to Map tasks, which turn each chunk into sequence of key-value pairs.

- Key-value pair generation is specified by user

2. Master controller (automatic):

- Key-value pairs are collected
- Key-value pairs are sorted
- Keys are divided among Reduce tasks

3. Reduce tasks combine values into final output

- Reduce tasks are specified by user
- Reduce tasks work on one key at a time

MapReduce: Running Example

- Input: One, or several huge documents
- Desired Output: Counts of all words appearing in the documents
- Applications:
- Detecting plagiarism
- Determining words characterizing documents for web searches
- Important: In the example, distinguish between
- Input key-value pairs that reflect id-file pairs
- Intermediate key-value pairs that reflect key-value pairs from Map tasks, as seen in the slide before
- The latter ones are important for MapReduce

MapReduce: Map

Here, input key-value pairs refer to id-file (id-document) pairs

MapReduce: Map

Intermediate key-value pairs are the ones to be generated by a Map task Adopted from mmds.org

MapReduce: Map

Here: intermediate key-value pairs correspond to $<$ 'word', $1>$ tuples
Adopted from mmds.org

MapReduce: Reduce

Intermediate

key-value pairs

Intermediate key-value pairs (<'word', $1>$ tuples) generated by Map

MapReduce: Reduce

Intermediate key-value pairs

Key-value groups

Intermediate key-value pairs generated by Map

MapReduce: Reduce

Intermediate key-value pairs

Output
key-value pairs

Key-value groups

Output key-value pairs generated by Reduce: here <'word',count> tuples

MapReduce: Formal Summary

- Input: A set of (key, value)-pairs $\langle k, v\rangle$
- $\langle k, v\rangle$ usually correspond to file (v) and id (k) of the file
- To be provided by programmer:
- $\operatorname{Map}(<k, v>) \rightarrow<k^{\prime}, v^{\prime}>^{*}$
- Maps input pair $\langle k, v\rangle$ to multi-set of key-value pairs $\left\langle k^{\prime}, v^{\prime}\right\rangle$
- $\left\langle k^{\prime}, v^{\prime}\right\rangle$ is intermediate key-value in schematic on slides before
- One Map call for each input key-value pair $\langle k, v\rangle$
- Reduce $\left(<k^{\prime}, v^{\prime}>^{*}\right) \rightarrow<k^{\prime}, v^{\prime \prime}>^{*}$
- For each key k^{\prime} all key-value pairs $\left\langle k^{\prime}, v^{\prime}>\right.$ are reduced together
- One Reduce call for each unique key k^{\prime}

MapReduce Example: Word Counting

Provided by the
programmer

MAP:
Read input and
produces a set of
key-value pairs

> The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term space-based man/mache partnership.
> "The work we're doing now - the robotics we're doing - is what we're going to
> need............

(key, value)

Intermediate key-value pairs correspond to $<$ 'word', $1>$ tuples
Adopted from mmds.org

MapReduce Example: Word Counting

Intermediate key-value pairs are sorted and hashed by key (automatic)
Adopted from mmds.org

MapReduce Example: Word Counting

Adopted from mmds.org

MapReduce Example: Word Counting

Map tasks are parallelized across nodes: one Map per chunk
Adopted from mmds.org

MapReduce Example: Word Counting

Reduce tasks are parallelized across nodes: one Reduce for a subset of keys

Example: Word Counting Code

```
map(key, value)
// key: document name, value: text of document
    foreach word w in value:
        emit (w, 1)
reduce(key, values)
// key: a word, values: an iterator over counts
    result = 0
    foreach count }v\mathrm{ in values:
        result += v
    emit(key, result)
```


MapReduce: Workflow Summary

Summary

Here $\langle k, v\rangle$ refers to intermediate key-value pair earlier
Upon sorting key-value pairs are hashed

Materials / Outlook

- See Mining of Massive Datasets, chapter 3.5-3.7, chapter 2
- See http://www.mmds.org/for further resources
- Next lecture: "MapReduce II"
- See Mining of Massive Datasets, chapter 2

EXAMPLE / ILLUSTRATION

