
Lecture 3
Finding Similar Items II

Alexander Schönhuth

Bielefeld University
April 13, 2023

LEARNING GOALS TODAY

I Understand Minhashing

I Understand the technique of Locality Sensitive Hashing (LSH)

Minhashing II
–

Rapidly Computing Similarity of Sets

MINHASH - INTERMEDIATE SUMMARY / EXPANSION

OF IDEA

I Computing a minhash means turning a set into one number

I For different sets, numbers agree with probability equal to their
Jaccard similarity.

I Can we expand on this idea? Can we compute (ensembles of)
numbers that enable us to determine their Jaccard similarity?

I Immediate idea: compute several minhashes. The fraction of
times the minhashes of two sets agree equals their Jaccard
similarity.

I Several sufficiently well chosen minhashes yield a minhash
signature.

MINHASH SIGNATURES

Consider

I the m rows of the characteristic matrix

I n permutations {1, ...,m} → {1, ...,m}
I the corresponding minhash functions

h1, ..., hn : {0, 1}m → {1, ...,m}
I and a particular column S ∈ {0, 1}m

+ hi(S) ∈ {1, ...,m} for each i ∈ {1, ...,n}

DEFINITION [MINHASH SIGNATURE]
The minhash signature SIGS of S given h1, ..., hn is the array

[h1(S), ..., hn(S)] ∈ {1, ...,m}n

MINHASH SIGNATURES

DEFINITION [MINHASH SIGNATURE]
The minhash signature SIGS of S given h1, ..., hn is the array

[h1(S), ..., hn(S)] ∈ {1, ...,m}n

Meaning: Computing the minhash signature for a column S turns

I the binary-valued array of length m that represents S
↔ S ∈ {0, 1}m

I into an m-valued array of length n
↔ [h1(S), ..., hn(S)] ∈ {1, ...,m}n

Because n < m (even n << m), the minhash signature is a (much)
reduced representation of a set.

SIGNATURE MATRIX

Consider a characteristic matrix, and n permutations h1, ..., hn.

DEFINITION [SIGNATURE MATRIX]
The signature matrix SIG is a matrix with n rows and as many
columns as the characteristic matrix (i.e. the number of sets), where
entries SIGij are defined by

SIGij = hi(Sj) (1)

where Sj refers to the j-th column in the characteristic matrix.

SIGNATURE MATRICES: FACTS

Let M be a signature matrix.

I Because usually n << m, that is n is much smaller than m, a
signature matrix is much smaller than the original characteristic
matrix.

I The probability that SIGij1 = SIGij2 for two sets Sj1 ,Sj2 equals the
Jaccard similarity SIM(Sj1 ,Sj2)

I The expected number of rows where columns j1, j2 agree,
divided by n, is SIM(Sj1 ,Sj2).

SIGNATURE MATRICES: ISSUES

Issue:
I For large m, it is time-consuming / storage-intense to determine

permutations
π : {1, ...,m} → {1, ...,m}

I Re-sorting rows relative to a permutation is even more expensive

Solution:
I Instead of permutations, use hash functions (watch the index shift!)

h : {0, ...,m− 1} → {0, ...,m− 1}

I Likely, a hash function is not a bijection, so at times
I places two rows in the same bucket
I leaves other buckets empty

I Effects are negligible for our purposes, however

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So i and c index rows and
columns in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

for each column c do
if M(r, c) = 1 then

for i=1 to n do
SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Signature matrix SIG: before iterations

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

for each column c do
if M(r, c) = 1 then

for i=1 to n do
SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Signature matrix SIG: after initialization

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

for each column c do
if M(r, c) = 1 then

for i=1 to n do
SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
end for

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 1: first row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End first row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

First iteration: row # 0 has 1’s in S1 and S4, so put
SIG11 = SIG14 = min{∞, h1(0)} = 0 + 1 mod 5 = 1,
SIG21 = SIG24 = min{∞, h2(0)} = 3 · 0 + 1 mod 5 = 1

Signature matrix after considering first row

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 2: second row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End second row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Second iteration: row #1 has 1 in S3, so put
SIG13 = min{∞, h1(1)} = 1 + 1 mod 5 = 2,
SIG23 = min{∞, h2(1)} = 3 + 1 mod 5 = 4.

Signature matrix M after considering second row

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 3: third row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End third row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Third iteration: row # 2 has 1’s in S2 and S4, so put
SIG12 = min{∞, h1(2)} = 2 + 1 mod 5 = 3,
SIG14 = min{SIG14, h1(2)} = min(1, 2 + 1 mod 5 = 3) = 1,
SIG22 = min{∞, h2(2)} = 6 + 1 mod 5 = 2,
SIG24 = min{SIG24, h2(2)} = min(1, 6 + 1 mod 5 = 2) = 1

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Signature matrix after considering third row

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 4: fourth row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End fourth row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Fourth iteration: SIG11 stays 1, SIG21 changes to 0, SIG13 stays
2, SIG23 changes to 0, SIG14 stays 1, SIG24 changes to 0

Signature matrix after considering fourth row

COMPUTING SIGNATURE MATRICES IN PRACTICE

I Consider n hash functions
hi : {0, ...,m− 1} →
{0, ...,m− 1}, i = 1, ...,n

I Let r and c index rows and
columns in the characteristic
matrix M ∈ {0, 1}m×|C|

I So c also index columns, while
i indexes rows in the signature
matrix SIG ∈ {1, ...,m}n×|C|

for each c do
for 0 ≤ i ≤ n do

SIG(i, c) =∞
end for

end for
for each row r do

// Iteration 5: fifth (final) row
for each column c do

if M(r, c) = 1 then
for i=1 to n do

SIG(i, c) =
min(SIG(i, c), hi(r))

end for
end if

end for
// End fifth (final) row

end for

COMPUTING SIGNATURE MATRICES: EXAMPLE

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Signature matrix after considering fifth row: final signature matrix

COMPUTING SIGNATURE MATRICES: EXAMPLE

Signature matrix after considering fifth row: final signature matrix

I Estimates for Jaccard similarity: SIM(S1,S3) = 1
2 , SIM(S1,S4) = 1

I True Jaccard similarities: SIM(S1,S3) = 1
4 , SIM(S1,S4) = 2

3

I Estimates will be better when raising number of hash functions
that is increasing number of rows of the signature matrix

Minhashing
–

Speeding Up Computations

SPEEDING UP MINHASHING: BASIC IDEA

I Minhashing is time-consuming, because iterating through
all m rows of M necessary, and m is large (huge!)

I Thought experiment:
I Recall: minhash is first row in permuted order with a 1
I Consider permutations π : {1, ..., m̄} → {1, ..., m̄} for m̄ < m
I Consider only examining the first m̄ of the permuted rows
I Speed up of a factor of m

m̄

SPEEDING UP MINHASHING: BASIC IDEA II

I Minhashing is about estimates
I Minhashing on subsets of the real sets may provide good

estimates already?
I How do estimates behave more concretely?

SPEEDING UP MINHASHING: BASIC IDEA III

I Continue thought experiment...

I Consider computing signature matrices by only examining
m̄ < m rows in the characteristic matrix, and using permutations
π : {1, ..., m̄} → {1, ..., m̄}

I By the way: the chosen m̄ rows need not be the first m̄ rows

I For each column where no 1 shows, keep∞ as symbol in the
signature matrix SIG

SPEEDING UP MINHASHING: ISSUES I

I There may be columns where all first m̄ rows contain zeroes

I Using the algorithm discussed previously, we will have∞
symbols in the signature matrix

Signature matrix M with∞ remaining (not referring to example from slide before)

SPEEDING UP MINHASHING: ISSUES II

I Situation: Much faster to compute SIG, but SIG(i, c) =∞ in some
places (how many? is this bad?)

I How to deal with that? Can we nevertheless work with only
m̄ < m rows and compute sufficiently accurate estimates for the
Jaccard similarity of two columns?

SPEEDING UP MINHASHING: PRACTICE I

Situation:

I Compute Jaccard similarities for pairs of columns, while
possibly

I SIG(i, c) =∞ for some (i, c)

I Algorithm for estimating Jaccard similarity:
I Row by row, by iterative updates,
I Maintain count of rows a where columns agree
I Maintain count of rows d where columns disagree
I Estimate SIM as a

a+d

SPEEDING UP MINHASHING: PRACTICE II

I Maintain count of rows a where columns agree

I Maintain count of rows d where columns disagree

I Estimate SIM as a
a+d

Three cases:

1. Both columns do not contain∞ in row: update counts as usual
(either a→ a + 1 or d→ d + 1)

2. Only one column has∞ in row:
I Let two columns be c1, c2, and SIG(i, c1) =∞, but SIG(i, c2) 6=∞:
I It follows that SIG(i, c1) > SIG(i, c2)
I So increase count of disagreeing rows by one (d→ d + 1)

3. Both columns have∞ in a row: unclear, skip updating counts

SPEEDING UP MINHASHING: PRACTICE III

Summary: One determines a
a+d as estimate for SIM(c1, c2)

I (*) Counts rely on less rows than before

I (**) However, since each permutation only refers to m̄ < m rows,
we can afford more permutations

I (*) makes counts less reliable, while (**) compensates for it

I Can we control the corresponding trade-off to our favour?

SPEEDING UP MINHASHING: THEORY I

I Let T be the set of elements of the universal set that correspond
to the initial m̄ rows in the characteristic matrix.

I When executing the above algorithm on only these m̄ rows, we
determine

|S1 ∩ S2 ∩ T|
|(S1 ∪ S2) ∩ T|

(2)

as an estimate for the true Jaccard similarity |S1 ∩ S2|
|S1 ∪ S2| .

I If T is chosen randomly, the expected value of (2) is the Jaccard
similarity SIM(S1,S2)

I But: there may be some disturbing variation to this estimate

SPEEDING UP MINHASHING: PRACTICE IV

I Divide m rows into m
m̄ blocks of m̄ rows each

I For each hash function h : {0, ..., m̄− 1} → {0, ..., m̄− 1},
compute minhash values for each block of m̄ rows

I Yields m
m̄ minhash values for a single hash function, instead of

just one

I Extreme: If m
m̄ is large enough, only one hash function may be

necessary

I Possible advantage:
I Type X rows are distributed across blocks of m̄ rows
I Type Y rows are distributed across blocks of m̄ rows
I Using all m rows balances out irregularities across blocks

SPEEDING UP MINHASHING: EXAMPLE

Characteristic matrix for three
sets S1, S2, S3. m = 8, m̄ = 4.

I Truth: SIM(S1,S2) = 1
2 , SIM(S1,S3) =

1
5 , SIM(S2,S3) = 1

2

I Estimate for first four rows:
SIM(S1,S2) = 0

I Estimate for last four rows:
SIM(S1,S2) = 2

3 on average across
randomly picked hash functions

I Overall estimate (expected across randomly
picked hash functions): SIM(S1,S2) = 1

3 ,
Ok estimate for two hash functions

Current Status
–

Summary

SUMMARY OF CURRENT STATUS

From mmds.org

I Shingling: turning text files into sets + Done!

I Minhashing: computing similarity for large sets + Done!

I Locality Sensitive Hashing: avoids O(N2) comparisons by
determining candidate pairs + Coming next!

mmds.org

CURRENT STATUS: ISSUES STILL REMAINING

I Minhashing enabled to compute similarity between two sets
very fast

I Shingling enabled to turn documents into sets such that
minhashing could be applied

I But if number of items N is too large, O(N2) similarity
computations are infeasible, even using minhashing

I Idea: Browse through items and determine candidate pairs:
I Number of candidate pairs is much smaller than O(N2)
I One performs minhashing only for candidate pairs
I Candidate pairs can be determined with a very fast procedure

I Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

Locality Sensitive Hashing

SIGNATURE MATRIX: REMINDER

Signature matrix SIG for two permutations (hash functions) h1, h2 , and four sets S1, S2, S3, S4

I Figure:
I Size of universal set: m = 5
I Number of hash functions: n = 2
I Number of sets: N = 4

I Originally: each set is from {0, 1}m (a bitvector of length m)
I Now: each set is from {0, ...,m− 1}n

I Much reduced representation, because n << m

LOCALITY SENSITIVE HASHING: IDEA

Signature matrix SIG for two permutations (hash functions) h1, h2 , and four sets S1, S2, S3, S4

Idea:
I Hash columns in SIG using several hash functions into buckets
I Candidate pair: Pair of columns hashed to same bucket by any function

Runtime:
I Hashing all columns is O(N) (much faster than O(N2))
I Examining buckets requires little time

LOCALITY SENSITIVE HASHING: CHALLENGE

Signature matrix SIG for two permutations (hash functions) h1, h2 , and four sets S1, S2, S3, S4

Challenge:

I Hash similar columns to same buckets
I Hash dissimilar columns to different buckets

How to design hash functions?

LOCALITY SENSITIVE HASHING: BANDING

TECHNIQUE

Signature matrix divided into b = 4 bands of r = 3 rows each

I Divide rows of signature matrix into b bands of r rows each
I For each band, a hash function hashes r integers to buckets
I Number of buckets is large to avoid collisions
I Candidate pair: a pair of columns hashed to the same bucket, in any band

BANDING TECHNIQUE: EXAMPLE

Signature matrix divided into b = 4 bands of r = 3 rows each

I The columns showing [0, 2, 1] in band 1 are declared a candidate pair

I Other pairs of columns no candidate pairs because of first band
I apart from collisions occurring + designed to happen very rarely

I Columns hashed to same bucket in another band + candidate pairs

BANDING TECHNIQUE: THEOREM

Let SIG be a signature matrix grouped into

I b bands of

I r rows each

and consider

I a pair of columns of Jaccard similarity s

THEOREM [LSH CANDIDATE PAIR]:
The probability that the pair of columns becomes a candidate pair is

1− (1− sr)b (3)

BANDING TECHNIQUE: PROOF OF THEOREM

PROOF.
Consider a pair of columns whose sets have Jaccard similarity s.

I Given any row, by Theorem “Minhash and Jaccard Similarity” of
last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the
probability to

I agree in all rows of one band is sr

I disagree in at least one of the rows in a band 1− sr

I disagree in at least one row in each band is (1− sr)b

I agree in all rows for at least one band is 1− (1− sr)b

BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]
For given b and r, the S-curve is defined by the prescription

s 7→ 1− (1− sr)b (4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty
 o

f b
ec

om
in

g
a

ca
nd

id
at

e

Jaccard similarity of documents

Exemplary S-curve

BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]
For given b and r, the S-curve is defined by the prescription

s 7→ 1− (1− sr)b (5)

Table: Values for S-curve with b = 20 and r = 5

LOCALITY SENSITIVE HASHING: GUIDELINES

I One needs to determine b, r where br = n

I One needs to determine threshold t:
I s ≥ t: candidate pair
I s < t: no candidate pair

I t corresponds with point of steepest rise on S-curve:
approximately (1/b)(1/r)

Motivation:

I False Positive: dissimilar pair hashing to the same bucket

I False Negative: similar pair never hashing to the same bucket

I Motivation: limit both false positives and negatives

LSH: FALSE NEGATIVES / POSITIVES

I Pick threshold t, number of bands b and rows r

I Avoiding false negatives: have t ≈ (1/b)1/r low

I Avoiding false positives, or enhancing speed: have t ≈ (1/b)1/r large

FINDING SIMILAR DOCUMENTS: OVERALL

WORKFLOW

From mmds.org

I Shingling: Done!
I Minhashing: Done!
I Locality-Sensitive Hashing: Done!

mmds.org

FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:
I Pick k and determine k-shingles for each document
I Sort shingles, document is bitvector over universe of shingles

2. Minhashing:
I Pick n hash functions
I Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:
I Pick number of bands b and rows r
I Watch t ≈ (1/b1/r + avoid false negatives/positives
I Determine candidate pairs by applying the banding technique

4. Return to signatures of candidate pairs and determine whether fraction
of components where they agree is at least t

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 3.3–3.4

I See http://www.mmds.org/ for further resources

I Next lecture: Presentation by mindsquare & “Finding Similar
Items III”

I See Mining of Massive Datasets 3.5–3.7

http://www.mmds.org/

EXAMPLE / ILLUSTRATION

