Lecture 3
 Finding Similar Items II

Alexander Schönhuth

Bielefeld University April 13, 2023

Learning Goals Today

- Understand Minhashing
- Understand the technique of Locality Sensitive Hashing (LSH)

Minhashing II
 Rapidly Computing Similarity of Sets

Minhash - Intermediate Summary / Expansion OF IDEA

- Computing a minhash means turning a set into one number
- For different sets, numbers agree with probability equal to their Jaccard similarity.
- Can we expand on this idea? Can we compute (ensembles of) numbers that enable us to determine their Jaccard similarity?
- Immediate idea: compute several minhashes. The fraction of times the minhashes of two sets agree equals their Jaccard similarity.
- Several sufficiently well chosen minhashes yield a minhash signature.

Minhash Signatures

Consider

- the m rows of the characteristic matrix
- n permutations $\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}$
- the corresponding minhash functions $h_{1}, \ldots, h_{n}:\{0,1\}^{m} \rightarrow\{1, \ldots, m\}$
- and a particular column $S \in\{0,1\}^{m}$ $h_{i}(S) \in\{1, \ldots, m\}$ for each $i \in\{1, \ldots, n\}$

Definition [Minhash Signature]
The minhash signature SIG of S given h_{1}, \ldots, h_{n} is the array

$$
\left[h_{1}(S), \ldots, h_{n}(S)\right] \in\{1, \ldots, m\}^{n}
$$

Minhash Signatures

Definition [Minhash Signature]
The minhash signature SIG ${ }_{S}$ of S given h_{1}, \ldots, h_{n} is the array

$$
\left[h_{1}(S), \ldots, h_{n}(S)\right] \in\{1, \ldots, m\}^{n}
$$

Meaning: Computing the minhash signature for a column S turns

- the binary-valued array of length m that represents S

$$
\leftrightarrow S \in\{0,1\}^{m}
$$

- into an m-valued array of length n

$$
\leftrightarrow\left[h_{1}(S), \ldots, h_{n}(S)\right] \in\{1, \ldots, m\}^{n}
$$

Because $n<m$ (even $n \ll m$), the minhash signature is a (much) reduced representation of a set.

SIGNATURE MATRIX

Consider a characteristic matrix, and n permutations h_{1}, \ldots, h_{n}.
Definition [Signature Matrix]
The signature matrix SIG is a matrix with n rows and as many columns as the characteristic matrix (i.e. the number of sets), where entries SIG $_{i j}$ are defined by

$$
\begin{equation*}
\operatorname{SIG}_{i j}=h_{i}\left(S_{j}\right) \tag{1}
\end{equation*}
$$

where S_{j} refers to the j-th column in the characteristic matrix.

Signature Matrices: Facts

Let M be a signature matrix.

- Because usually $n \ll m$, that is n is much smaller than m, a signature matrix is much smaller than the original characteristic matrix.
- The probability that SIG $_{i j_{1}}=$ SIG $_{i j_{2}}$ for two sets $S_{j_{1}}, S_{j_{2}}$ equals the Jaccard similarity $\operatorname{SIM}\left(S_{j_{1}}, S_{j_{2}}\right)$
- The expected number of rows where columns j_{1}, j_{2} agree, divided by n, is $\operatorname{SIM}\left(S_{j_{1}}, S_{j_{2}}\right)$.

Signature Matrices: Issues

Issue:

- For large m, it is time-consuming / storage-intense to determine permutations

$$
\pi:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}
$$

- Re-sorting rows relative to a permutation is even more expensive

Solution:

- Instead of permutations, use hash functions (watch the index shift!)

$$
h:\{0, \ldots, m-1\} \rightarrow\{0, \ldots, m-1\}
$$

- Likely, a hash function is not a bijection, so at times
- places two rows in the same bucket
- leaves other buckets empty
- Effects are negligible for our purposes, however

Computing Signature Matrices in Practice

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
        end for
end for
for each row \(r\) do
    for each column \(c\) do
        if \(M(r, c)=1\) then
        for \(\mathrm{i}=1\) to n do
        \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
            end for
        end if
        end for
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix SIG $\in\{1, \ldots, m\}^{n \times|C|}$

```
for each c do
    for 0}\leqi\leqn\mathrm{ do
        SIG}(i,c)=
    end for
end for
for each row r do
    for each column c do
        if M(r,c)=1 then
        for i=1 to n do
                SIG(i,c)=
                min(SIG(i,c), hi(r))
            end for
            end if
        end for
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	∞	∞	∞	∞
h_{2}	∞	∞	∞	∞

Signature matrix SIG: after initialization

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix SIG $\in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        SIG \((i, c)=\infty\)
    end for
end for
for each row \(r\) do
    for each column \(c\) do
        if \(M(r, c)=1\) then
        for \(\mathrm{i}=1\) to n do
        \(\operatorname{SIG}(i, c)=\)
                \(\min \left(\operatorname{SIG}(i, c), h_{i}(r)\right)\)
            end for
        end if
        end for
end for
```


Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix $\operatorname{SIG} \in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 1: first row
    for each column \(c\) do
        if \(M(r, c)=1\) then
            for \(\mathrm{i}=1\) to n do
                    \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
    / / End first row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
First iteration: row \# 0 has 1 's in S_{1} and S_{4}, so put
SIG $_{11}=$ SIG $_{14}=\min \left\{\infty, h_{1}(0)\right\}=0+1 \bmod 5=1$,
$S_{I G}{ }_{21}=$ SIG $_{24}=\min \left\{\infty, h_{2}(0)\right\}=3 \cdot 0+1 \bmod 5=1$

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	∞	∞	1
h_{2}	1	∞	∞	1

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix SIG $\in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 2: second row
    for each column \(c\) do
        if \(M(r, c)=1\) then
            for \(\mathrm{i}=1\) to n do
                    \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
    / / End second row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
Second iteration: row \#1 has 1 in S_{3}, so put
$S_{I G}=\min \left\{\infty, h_{1}(1)\right\}=1+1 \bmod 5=2$,
$\operatorname{SIG}_{23}=\min \left\{\infty, h_{2}(1)\right\}=3+1 \bmod 5=4$.

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	∞	2	1
h_{2}	1	∞	4	1

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix $\operatorname{SIG} \in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 3: third row
    for each column \(c\) do
        if \(M(r, c)=1\) then
            for \(\mathrm{i}=1\) to n do
                    \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
    / / End third row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
Third iteration: row \# 2 has 1's in S_{2} and S_{4}, so put
$S_{I G}=\min \left\{\infty, h_{1}(2)\right\}=2+1 \bmod 5=3$,
SIG $_{14}=\min \left\{\right.$ SIG $\left._{14}, h_{1}(2)\right\}=\min (1,2+1 \bmod 5=3)=1$,
$\operatorname{SIG}_{22}=\min \left\{\infty, h_{2}(2)\right\}=6+1 \bmod 5=2$,
$S I G_{24}=\min \left\{S_{I G}{ }_{24}, h_{2}(2)\right\}=\min (1,6+1 \bmod 5=2)=1$

Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	1	2	4	1

Signature matrix after considering third row

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix $\operatorname{SIG} \in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 4: fourth row
    for each column \(c\) do
        if \(M(r, c)=1\) then
            for \(\mathrm{i}=1\) to n do
                    \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
    / / End fourth row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
Fourth iteration: SIG $_{11}$ stays 1, SIG $_{21}$ changes to 0, SIG $_{13}$ stays 2, SIG $_{23}$ changes to 0, SIG $_{14}$ stays 1, SIG $_{24}$ changes to 0

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	0	2	0	0

Computing Signature Matrices in Practice

- Consider n hash functions
$h_{i}:\{0, \ldots, m-1\} \rightarrow$
$\{0, \ldots, m-1\}, i=1, \ldots, n$
- Let r and c index rows and columns in the characteristic matrix $M \in\{0,1\}^{m \times|C|}$
- So c also index columns, while i indexes rows in the signature matrix $\operatorname{SIG} \in\{1, \ldots, m\}^{n \times|C|}$

```
for each \(c\) do
    for \(0 \leq i \leq n\) do
        \(\operatorname{SIG}(i, c)=\infty\)
    end for
end for
for each row \(r\) do
    / / Iteration 5: fifth (final) row
    for each column \(c\) do
        if \(M(r, c)=1\) then
            for \(\mathrm{i}=1\) to n do
                    \(\operatorname{SIG}(i, c)=\)
                \(\min \left(S I G(i, c), h_{i}(r)\right)\)
                end for
        end if
        end for
        / / End fifth (final) row
end for
```


Computing Signature Matrices: Example

Row	S_{1}	S_{2}	S_{3}	S_{4}	$x+1 \bmod 5$	$3 x+1 \bmod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	0	1
h_{2}	0	2	0	0

Signature matrix after considering fifth row: final signature matrix

Computing Signature Matrices: Example

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	0	1
h_{2}	0	2	0	0

Signature matrix after considering fifth row: final signature matrix

- Estimates for Jaccard similarity: $\operatorname{SIM}\left(S_{1}, S_{3}\right)=\frac{1}{2}, \operatorname{SIM}\left(S_{1}, S_{4}\right)=1$
- True Jaccard similarities: $\operatorname{SIM}\left(S_{1}, S_{3}\right)=\frac{1}{4}, \operatorname{SIM}\left(S_{1}, S_{4}\right)=\frac{2}{3}$
- Estimates will be better when raising number of hash functions that is increasing number of rows of the signature matrix

Minhashing
 Speeding Up Computations

Speeding Up Minhashing: Basic Idea

- Minhashing is time-consuming, because iterating through all m rows of M necessary, and m is large (huge!)
- Thought experiment:
- Recall: minhash is first row in permuted order with a 1
- Consider permutations $\pi:\{1, \ldots, \bar{m}\} \rightarrow\{1, \ldots, \bar{m}\}$ for $\bar{m}<m$
- Consider only examining the first \bar{m} of the permuted rows
- Speed up of a factor of $\frac{m}{\bar{m}}$

Speeding Up Minhashing: Basic Idea II

- Minhashing is about estimates
- Minhashing on subsets of the real sets may provide good estimates already?
- How do estimates behave more concretely?

Speeding Up Minhashing: Basic Idea III

- Continue thought experiment...
- Consider computing signature matrices by only examining $\bar{m}<m$ rows in the characteristic matrix, and using permutations $\pi:\{1, \ldots, \bar{m}\} \rightarrow\{1, \ldots, \bar{m}\}$
- By the way: the chosen \bar{m} rows need not be the first \bar{m} rows
- For each column where no 1 shows, $k e e p ~ a s$ as symbol in the signature matrix SIG

Speeding Up Minhashing: Issues I

- There may be columns where all first \bar{m} rows contain zeroes
- Using the algorithm discussed previously, we will have ∞ symbols in the signature matrix

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	∞	2	1
h_{2}	1	∞	4	1

Signature matrix M with ∞ remaining (not referring to example from slide before)

Speeding Up Minhashing: Issues II

- Situation: Much faster to compute SIG, but $\operatorname{SIG}(i, c)=\infty$ in some places (how many? is this bad?)
- How to deal with that? Can we nevertheless work with only $\bar{m}<m$ rows and compute sufficiently accurate estimates for the Jaccard similarity of two columns?

Speeding Up Minhashing: Practice I

Situation:

- Compute Jaccard similarities for pairs of columns, while possibly
- SIG $(i, c)=\infty$ for some (i, c)
- Algorithm for estimating Jaccard similarity:
- Row by row, by iterative updates,
- Maintain count of rows a where columns agree
- Maintain count of rows d where columns disagree
- Estimate SIM as $\frac{a}{a+d}$

Speeding Up Minhashing: Practice II

- Maintain count of rows a where columns agree
- Maintain count of rows d where columns disagree
- Estimate SIM as $\frac{a}{a+d}$

Three cases:

1. Both columns do not contain ∞ in row: update counts as usual (either $a \rightarrow a+1$ or $d \rightarrow d+1$)
2. Only one column has ∞ in row:

- Let two columns be c_{1}, c_{2}, and $\operatorname{SIG}\left(i, c_{1}\right)=\infty$, but $\operatorname{SIG}\left(i, c_{2}\right) \neq \infty$:
- It follows that $\operatorname{SIG}\left(i, c_{1}\right)>\operatorname{SIG}\left(i, c_{2}\right)$
- So increase count of disagreeing rows by one $(d \rightarrow d+1)$

3. Both columns have ∞ in a row: unclear, skip updating counts

Speeding up Minhashing: Practice III

Summary: One determines $\frac{a}{a+d}$ as estimate for $\operatorname{SIM}\left(c_{1}, c_{2}\right)$

- (*) Counts rely on less rows than before
- (**) However, since each permutation only refers to $\bar{m}<m$ rows, we can afford more permutations
- $\left({ }^{*}\right)$ makes counts less reliable, while $\left({ }^{* *}\right)$ compensates for it
- Can we control the corresponding trade-off to our favour?

Speeding up Minhashing: Theory I

- Let T be the set of elements of the universal set that correspond to the initial \bar{m} rows in the characteristic matrix.
- When executing the above algorithm on only these \bar{m} rows, we determine

$$
\begin{equation*}
\frac{\left|S_{1} \cap S_{2} \cap T\right|}{\left|\left(S_{1} \cup S_{2}\right) \cap T\right|} \tag{2}
\end{equation*}
$$

as an estimate for the true Jaccard similarity $\frac{\left|S_{1} \cap S_{2}\right|}{\mid S_{1} \cup S_{2}}$.

- If T is chosen randomly, the expected value of (2) is the Jaccard similarity $\operatorname{SIM}\left(S_{1}, S_{2}\right)$
- But: there may be some disturbing variation to this estimate

Speeding up Minhashing: Practice IV

- Divide m rows into $\frac{m}{\bar{m}}$ blocks of \bar{m} rows each
- For each hash function $h:\{0, \ldots, \bar{m}-1\} \rightarrow\{0, \ldots, \bar{m}-1\}$, compute minhash values for each block of \bar{m} rows
- Yields $\frac{m}{\bar{m}}$ minhash values for a single hash function, instead of just one
- Extreme: If $\frac{m}{\bar{m}}$ is large enough, only one hash function may be necessary
- Possible advantage:
- Type X rows are distributed across blocks of \bar{m} rows
- Type Y rows are distributed across blocks of \bar{m} rows
- Using all m rows balances out irregularities across blocks

Speeding up Minhashing: Example

S_{1}	S_{2}	S_{3}
0	0	0
0	0	0
0	0	1
0	1	1
1	1	1
1	1	0
1	0	0
0	0	0

Characteristic matrix for three sets $S_{1}, S_{2}, S_{3} . m=8, \bar{m}=4$.

- Truth: $\operatorname{SIM}\left(S_{1}, S_{2}\right)=\frac{1}{2}, \operatorname{SIM}\left(S_{1}, S_{3}\right)=$ $\frac{1}{5}, \operatorname{SIM}\left(S_{2}, S_{3}\right)=\frac{1}{2}$
- Estimate for first four rows: $\operatorname{SIM}\left(S_{1}, S_{2}\right)=0$
- Estimate for last four rows: $\operatorname{SIM}\left(S_{1}, S_{2}\right)=\frac{2}{3}$ on average across randomly picked hash functions
- Overall estimate (expected across randomly picked hash functions): $\operatorname{SIM}\left(S_{1}, S_{2}\right)=\frac{1}{3}$, Ok estimate for two hash functions

Current Status

Summary

Summary of Current Status

From mmds.org

- Shingling: turning text files into sets Done!
- Minhashing: computing similarity for large sets Done!
- Locality Sensitive Hashing: avoids $O\left(N^{2}\right)$ comparisons by determining candidate pairs Coming next!

Current Status: Issues Still Remaining

- Minhashing enabled to compute similarity between two sets very fast
- Shingling enabled to turn documents into sets such that minhashing could be applied
- But if number of items N is too large, $O\left(N^{2}\right)$ similarity computations are infeasible, even using minhashing
- Idea: Browse through items and determine candidate pairs:
- Number of candidate pairs is much smaller than $O\left(N^{2}\right)$
- One performs minhashing only for candidate pairs
- Candidate pairs can be determined with a very fast procedure
- Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

Locality Sensitive Hashing

Signature Matrix: Reminder

Signature matrix SIG for two permutations (hash functions) h_{1}, h_{2}, and four sets $S_{1}, S_{2}, S_{3}, S_{4}$

- Figure:
- Size of universal set: $m=5$
- Number of hash functions: $n=2$
- Number of sets: $N=4$
- Originally: each set is from $\{0,1\}^{m}$ (a bitvector of length m)
- Now: each set is from $\{0, \ldots, m-1\}^{n}$
- Much reduced representation, because $n \ll m$

Locality Sensitive Hashing: Idea

Signature matrix SIG for two permutations (hash functions) h_{1}, h_{2}, and four sets $S_{1}, S_{2}, S_{3}, S_{4}$

Idea:

- Hash columns in SIG using several hash functions into buckets
- Candidate pair: Pair of columns hashed to same bucket by any function

Runtime:

- Hashing all columns is $O(N)$ (much faster than $O\left(N^{2}\right)$)
- Examining buckets requires little time

Locality Sensitive Hashing: Challenge

	S_{1}	S_{2}	S_{3}	S_{4}
h_{1}	1	3	2	1
h_{2}	0	2	0	0

Signature matrix SIG for two permutations (hash functions) h_{1}, h_{2}, and four sets $S_{1}, S_{2}, S_{3}, S_{4}$

Challenge:

- Hash similar columns to same buckets
- Hash dissimilar columns to different buckets

How to design hash functions?

Locality Sensitive Hashing: Banding TECHNIQUE

Signature matrix divided into $b=4$ bands of $r=3$ rows each

- Divide rows of signature matrix into b bands of r rows each
- For each band, a hash function hashes r integers to buckets
- Number of buckets is large to avoid collisions
- Candidate pair: a pair of columns hashed to the same bucket, in any band

BANDING TECHNIQUE: EXAMPLE

Signature matrix divided into $b=4$ bands of $r=3$ rows each

- The columns showing $[0,2,1]$ in band 1 are declared a candidate pair
- Other pairs of columns no candidate pairs because of first band
- apart from collisions occurring designed to happen very rarely
- Columns hashed to same bucket in another band candidate pairs

Banding Technique: Theorem

Let SIG be a signature matrix grouped into

- b bands of
- r rows each
and consider
- a pair of columns of Jaccard similarity s

Theorem [LSH Candidate Pair]:
The probability that the pair of columns becomes a candidate pair is

$$
\begin{equation*}
1-\left(1-s^{r}\right)^{b} \tag{3}
\end{equation*}
$$

Banding Technique: Proof of Theorem

Proof.
Consider a pair of columns whose sets have Jaccard similarity s.

- Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the probability to

- agree in all rows of one band is s^{r}
- disagree in at least one of the rows in a band $1-s^{r}$
- disagree in at least one row in each band is $\left(1-s^{r}\right)^{b}$
- agree in all rows for at least one band is $1-\left(1-s^{r}\right)^{b}$

Banding Technique: The S-Curve

Definition: [S-Curve]
For given b and r, the S-curve is defined by the prescription

$$
\begin{equation*}
s \mapsto 1-\left(1-s^{r}\right)^{b} \tag{4}
\end{equation*}
$$

Exemplary S-curve

Banding Technique: The S-Curve

Definition: [S-Curve]
For given b and r, the S-curve is defined by the prescription

$$
\begin{equation*}
s \mapsto 1-\left(1-s^{r}\right)^{b} \tag{5}
\end{equation*}
$$

$$
\begin{array}{ll}
s & 1-\left(1-s^{r}\right)^{b} \\
\hline .2 & .006 \\
.3 & .047 \\
.4 & .186 \\
.5 & .470 \\
.6 & .802 \\
.7 & .975 \\
.8 & .9996
\end{array}
$$

Table: Values for S-curve with $b=20$ and $r=5$

Locality Sensitive Hashing: Guidelines

- One needs to determine b, r where $b r=n$
- One needs to determine threshold t :
- $s \geq t$: candidate pair
- $s<t$: no candidate pair
- t corresponds with point of steepest rise on S-curve: approximately $(1 / b)^{(1 / r)}$

Motivation:

- False Positive: dissimilar pair hashing to the same bucket
- False Negative: similar pair never hashing to the same bucket
- Motivation: limit both false positives and negatives

LSH: False Negatives / Positives

- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: have $t \approx(1 / b)^{1 / r}$ low
- Avoiding false positives, or enhancing speed: have $t \approx(1 / b)^{1 / r}$ large

Finding Similar Documents: Overall WORKFLOW

From mmds. org

- Shingling: Done!
- Minhashing: Done!
- Locality-Sensitive Hashing: Done!

Finding Similar Documents: Summary

1. Shingling:

- Pick k and determine k-shingles for each document
- Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

- Pick n hash functions
- Compute minhash signatures as per earlier algorithm

3. Locality Sensitive Hashing:

- Pick number of bands b and rows r
- Watch $t \approx\left(1 / b^{1 / r}\right.$ avoid false negatives/positives
- Determine candidate pairs by applying the banding technique

4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least t

Materials / Outlook

- See Mining of Massive Datasets, chapter 3.3-3.4
- See http://www.mmds.org/for further resources
- Next lecture: Presentation by mindsquare \& "Finding Similar Items III"
- See Mining of Massive Datasets 3.5-3.7

EXAMPLE / ILLUSTRATION

