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LEARNING GOALS TODAY

» Understand Minhashing

» Understand the technique of Locality Sensitive Hashing (LSH)
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Minhashing 11

Rapidly Computing Similarity of Sets
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MINHASH - INTERMEDIATE SUMMARY / EXPANSION
OF IDEA

» Computing a minhash means turning a set into one number

» For different sets, numbers agree with probability equal to their
Jaccard similarity.

» Can we expand on this idea? Can we compute (ensembles of)
numbers that enable us to determine their Jaccard similarity?

» Immediate idea: compute several minhashes. The fraction of
times the minhashes of two sets agree equals their Jaccard
similarity.

» Several sufficiently well chosen minhashes yield a minhash
signature.
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MINHASH SIGNATURES

Consider
» the m rows of the characteristic matrix
» 1 permutations {1,...,m} — {1,...,m}

» the corresponding minhash functions
hi, ...k, - {0, 13" — {1, ...,m}

» and a particular column S € {0,1}"
w ;(S) € {1,...,m} foreachi € {1, ..., n}

DEFINITION [MINHASH SIGNATURE]
The minhash signature SIGg of S given hy, ..., h, is the array

11(S), o 1a(S)] € {1,..., m}"
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MINHASH SIGNATURES

DEFINITION [MINHASH SIGNATURE]
The minhash signature SIGs of S given hy, ..., h, is the array

11(S), ... hn(S)] € {1, ..., m}"

Meaning: Computing the minhash signature for a column S turns

» the binary-valued array of length m that represents S
~ Se{0,1}"

» into an m-valued array of length n
< [h1(S), ... ha(S)] € {1, ..., m}"

Because n < m (even n << m), the minhash signature is a (much)
reduced representation of a set.
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SIGNATURE MATRIX

Consider a characteristic matrix, and n permutations hy, ..., 1.

DEFINITION [SIGNATURE MATRIX]

The signature matrix SIG is a matrix with n rows and as many
columns as the characteristic matrix (i.e. the number of sets), where
entries SIG;; are defined by

SIG;; = hi(S;) 1)

where §; refers to the j-th column in the characteristic matrix.
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SIGNATURE MATRICES: FACTS

Let M be a signature matrix.

» Because usually n << m, that is n is much smaller than m, a
signature matrix is much smaller than the original characteristic
matrix.

» The probability that SIG;;, = SIGy;, for two sets S;,, S, equals the
Jaccard similarity SIM(S;,, S;,)

» The expected number of rows where columns ji, j, agree,
divided by 7, is SIM(S;,, S;,).
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SIGNATURE MATRICES: ISSUES

Issue:

» For large m, it is time-consuming / storage-intense to determine
permutations
m:{l,...,m} = {1,...,m}

» Re-sorting rows relative to a permutation is even more expensive

Solution:

» Instead of permutations, use hash functions (watch the index shift!)

h:{0,...m—-1} - {0,...,m —1}

» Likely, a hash function is not a bijection, so at times

» places two rows in the same bucket
> leaves other buckets empty

» Effects are negligible for our purposes, however
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COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
h; {O, ey M — 1} —
{0,...m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*IC]

» Soiand cindex rows and
columns in the signature
matrix SIG € {1, ..., m}"*ICl

UNIVERSITAT
BIELEFELD

for each ¢ do
for0 <i<mndo
SIG(i,c) = ¢
end for
end for
for each row r do
for each column c do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, ¢), hi(r))
end for
end if
end for
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE

Row || S1 |89 | S3 | Sa||lz+1 modb | 3z+1 mod5H

W= O
S = O O
e s R s Wl )
_— 0 = O
[ R =l
=SOSR N
WO N e~

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
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COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
h; {O, ey M — 1} —
{0,...m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*IC]

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ..., m}"*ICl
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for each c do
for0<i<mndo
SIG(i,c) = oo
end for
end for
for each row r do
for each column c do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, ¢), hi(r))
end for
end if
end for
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE

Row || S1 |89 | S3 | Sa||lz+1 modb | 3z+1 mod5H

W= O
S = O O
e s R s Wl )
_— 0 = O
[ R =l
=SOSR N
WO N e~

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4
| Sy | S| Ss| S

o0 oo oo o @]

o0 o0 o0 0. @}

hy
ha

Signature matrix SIG: after initialization
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COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
h; {0, ey M — 1} —
{0,...m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*IC]

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ..., m}"*ICl
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for each ¢ do
for0 <i<mndo
SIG(i,c) = ¢
end for
end for
for each row r do
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i,c), hi(r))
end for
end if
end for
end for



COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
”li : {0, v, M — 1} —
{0,....m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*ICl

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ...,m}"*ICl
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for each c do
for0 <i<ndo
SIG(i,c) = c©
end for
end for
for each row » do
// Iteration 1: first row
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, c), hi(r))
end for
end if
end for
// End first row
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE
Row || S1 | Sy | S3 | Sa||lz+1 modb | 3z+1 mod5H

W= O
S = O O
oo = oo
_—O = O
[ R =
O e W R =
L O N e

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

First iteration: row # 0 has 1’s in S; and Sy, so put
SIGy1 = SIG14 = min{oo, 11 (0)} =0+ 1 mod 5=1,
SIGy = SIGyy = mln{oo7h2(0)} =3-04+1 mod5=1

55 | 8] 5
1 oo | oo 1
1 1

UNIVERSITAT i : i : :
BIELEERLT Signature matrix after considering first row



COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
”li : {0, v, M — 1} —
{0,....m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*ICl

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ...,m}"*ICl
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for each c do
for0 <i<ndo
SIG(i,c) = c©
end for
end for
for each row » do
// Iteration 2: second row
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, c), hi(r))
end for
end if
end for
// End second row
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE
Row || S1 | Sy | S3 | Sa||lz+1 modb | 3z+1 mod5H

FIC I I )
S = O O
oo = oo
_—O = O
[ R =
=S JUR N
WO N e =

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Second iteration: row #1 has 1 in S3, so put
SIG13 = min{oo, (1)} =1+ 1 mod 5=2,
SIGy3 = min{oo, (1)} =3+ 1 mod 5 =4.

ENEAEAE?
1 00 2 1
1 00 4 1

ha
ha

UNIVERSITAT Signature matrix M after considering second row
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COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
”li : {0, v, M — 1} —
{0,....m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*ICl

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ...,m}"*ICl
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for each c do
for0 <i<ndo
SIG(i,c) = c©
end for
end for
for each row » do
// Iteration 3: third row
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, c), hi(r))
end for
end if
end for
// End third row
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE

Row | S1 | S | S35 | Ss||x+1 mod5 |3z+1 modb5

SN JUR N )
O R, OO
oo~ OO
= )
O = = O -
[ RNSJUR NI
WO e

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Third iteration: row # 2 has 1’s in S, and Sy, so put

SIG12 = min{oo, 11 (2)} =2+ 1 mod 5=3,

SIG14 = min{SIGy4,h1(2)} = min(1,24+1 mod 5=3) =1,
SIGy = min{co,hp(2)} =6+1 mod 5 =2,

SIGyq = min{SIGy4,h2(2)} = min(1,6 +1 mod 5=2) =1
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COMPUTING SIGNATURE MATRICES: EXAMPLE

Row | Sy | S | S| Ss||x+1 mod5 | 3z+1 modb5

ISONJUI N )
O, O O
oo~ OO
N = )
O = = O -
= ISOJUR N
WO e =

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

ENENENE?
1 3 2 1
1 2 4 1

Signature matrix after considering third row

w
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COMPUTING SIGNATURE MATRICES IN PRACTICE

for each c do
for0 <i<ndo

SIG(i,c) = oo
» Consider n hash functions end for
hi:{0,...m—1} — end for
{0,....m—=1},i=1,..,n foreachrov.vrdo
// Tteration 4: fourth row
» Letrand c index rows and for each column c do
columns in the characteristic if M(r,c) = 1 then
matrix M € {0, 1}m><|C| fori=1tondo
SIG(i,c) =
» So c also index columns, while min(SIG(i, c), hi(r))
i indexes rows in the signature end for
matrix SIG € {1, ...,m}"*ICl end if
end for

// End fourth row
end for
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COMPUTING SIGNATURE MATRICES: EXAMPLE

Row | Sy | S | S| Sy ||x+1 mod5 | 3z+1 mod?5b

W= O
O, O O
[ I e IS o Rl )
N = )
O = = O -
= ISOJUR N
WO e =

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Fourth iteration: SIGy; stays 1, SIGy; changes to 0, SIGy3 stays
2, SIGy3 changes to 0, SIG14 stays 1, SIGy4 changes to 0

ENESEA
1 3 2 1
0 2 0 0

hi
ho

UNIVERSITAT Signature matrix after considering fourth row
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COMPUTING SIGNATURE MATRICES IN PRACTICE

» Consider n hash functions
”li : {0, v, M — 1} —
{0,....m—=1},i=1,..,n

» Letrand c index rows and
columns in the characteristic
matrix M € {0, 1}"*ICl

» So ¢ also index columns, while
i indexes rows in the signature
matrix SIG € {1, ...,m}"*ICl
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for each c do
for0 <i<ndo
SIG(i,c) = c©
end for
end for
for each row » do
/ / Tteration 5: fifth (final) row
for each column ¢ do
if M(r,c) = 1 then
fori=1tondo
SIG(i,c) =
min(SIG(i, c), hi(r))
end for
end if
end for
// End fifth (final) row
end for



COMPUTING SIGNATURE MATRICES: EXAMPLE

Row || S1 | Sy | S3 | Sa||lz+1 modb | 3z+1 mod5H

=W = O
S = O O
oo = oo
_—O = O
[ R =
=S JUR N
L O D e =

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

| 1 | Se | S| S
T[3]0]1
0|2]0|o0

Signature matrix after considering fifth row: final signature matrix

—
w

hy
o
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COMPUTING SIGNATURE MATRICES: EXAMPLE

—
w

| S1 | Se | Ss| Sy
T[3]0]1
02|00

Signature matrix after considering fifth row: final signature matrix

h1
ha

> Estimates for Jaccard similarity: SIM(Sy, S3) = ,SIM(S1,54) =1
» True Jaccard similarities: SIM(S1, S3) = %,SIM(Sl7 Ss4) = %

» Estimates will be better when raising number of hash functions
that is increasing number of rows of the signature matrix
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Minhashing

Speeding Up Computations
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SPEEDING UP MINHASHING: BASIC IDEA

» Minhashing is time-consuming, because iterating through
all m rows of M necessary, and m is large (huge!)
» Thought experiment:
» Recall: minhash is first row in permuted order with a 1
» Consider permutations 7 : {1, ...,m} — {1,...,m} form < m
» Consider only examining the first m of the permuted rows
» Speed up of a factor of %
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SPEEDING UP MINHASHING: BASIC IDEA II

» Minhashing is about estimates

» Minhashing on subsets of the real sets may provide good
estimates already?

» How do estimates behave more concretely?
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SPEEDING UP MINHASHING: BASIC IDEA III

» Continue thought experiment...

» Consider computing signature matrices by only examining
m < m rows in the characteristic matrix, and using permutations
m:{l,...,m} = {1,...,in}

» By the way: the chosen m rows need not be the first m rows

» For each column where no 1 shows, keep oo as symbol in the
signature matrix SIG
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SPEEDING UP MINHASHING: ISSUES 1|

» There may be columns where all first 1 rows contain zeroes

» Using the algorithm discussed previously, we will have oo
symbols in the signature matrix

5 5 | 8] 5
1 (o's) 2 1
1 oco | 4 1

Signature matrix M with co remaining (not referring to example from slide before)

hi
ha
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SPEEDING UP MINHASHING: ISSUES II

» Situation: Much faster to compute SIG, but SIG(i, c) = co in some
places (how many? is this bad?)

» How to deal with that? Can we nevertheless work with only
m < m rows and compute sufficiently accurate estimates for the
Jaccard similarity of two columns?
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SPEEDING UP MINHASHING: PRACTICE I

Situation:

» Compute Jaccard similarities for pairs of columns, while
possibly

» SIG(i,c) = oo for some (i, c)
» Algorithm for estimating Jaccard similarity:

» Row by row, by iterative updates,
» Maintain count of rows a where columns agree
» Maintain count of rows d where columns disagree

» Estimate SIM as u%d
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SPEEDING UP MINHASHING: PRACTICE II

» Maintain count of rows a where columns agree
» Maintain count of rows d where columns disagree

» Estimate SIM as ﬁ

Three cases:

1. Both columns do not contain oo in row: update counts as usual
(eithera »a+1lord —d+1)
2. Only one column has oo in row:

» Let two columns be c1, ¢, and SIG(i, ¢;) = oo, but SIG(i, ¢) # oo:
» It follows that SIG(7, ¢1) > SIG(i, c2)
» So increase count of disagreeing rows by one (d — d + 1)

3. Both columns have oo in a row: unclear, skip updating counts
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SPEEDING UP MINHASHING: PRACTICE III

Summary: One determines _*- as estimate for SIM(c1, ¢2)

+
» (*) Counts rely on less rows than before

> (**) However, since each permutation only refers to m < m rows,
we can afford more permutations

> (*) makes counts less reliable, while (**) compensates for it

» Can we control the corresponding trade-off to our favour?
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SPEEDING UP MINHASHING: THEORY I

Let T be the set of elements of the universal set that correspond
to the initial . rows in the characteristic matrix.

When executing the above algorithm on only these 1 rows, we
determine

‘51 NS N T| @)
(51 U S) N T
as an estimate for the true Jaccard similarity }gi ~ gi} :

If T is chosen randomly, the expected value of (2) is the Jaccard
similarity SIM(S1, S2)

But: there may be some disturbing variation to this estimate

UNIVERSITAT

BIELEFELD



SPEEDING UP MINHASHING: PRACTICE IV

Divide m rows into % blocks of / rows each

» For each hash function i : {0, ..., — 1} — {0, ...,m — 1},

compute minhash values for each block of /1 rows

Yields % minhash values for a single hash function, instead of
just one

Extreme: If 7 is large enough, only one hash function may be
necessary

Possible advantage:

» Type X rows are distributed across blocks of i1 rows
» Type Y rows are distributed across blocks of m rows
» Using all m rows balances out irregularities across blocks

UNIVERSITAT
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SPEEDING UP MINHASHING: EXAMPLE

Si Sy 53
0 0 0
0 0 0
0 0 1
0 1 1
1 1 1
1 1 0
1 0 0
0 0 0

Characteristic matrix for three
sets S1,5,,53. m = 8,m = 4.
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Truth SIM(S1, S2) = 1,SIM(S1, S3) =
1,SIM(S,S3) = &

Estimate for first four rows:
SIM(S51,5,) =0

Estimate for last four rows:
SIM(S1,S2) = 3 on average across
randomly picked hash functions

Ovwerall estimate (expected across randomly
picked hash functions): SIM(S1, S2) = 3,
Ok estimate for two hash functions



Current Status

Summ ary
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SUMMARY OF CURRENT STATUS

Docu-
ment

» Shingling: turning text files into sets = Done!

’\.‘ Locality-
Ml Sensitive

—1Shingling

w Hashing

The set Signatures:
of strings short integer
of length k vectors that
that appear represent the
in the doc- sets, and
ument reflect their

similarity

From mmds .org

Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity

» Minhashing: computing similarity for large sets & Done!

» Locality Sensitive Hashing: avoids O(N?) comparisons by
determining candidate pairs == Coming next!

UNIVERSITAT
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mmds.org

CURRENT STATUS: ISSUES STILL REMAINING

Minhashing enabled to compute similarity between two sets
very fast

Shingling enabled to turn documents into sets such that
minhashing could be applied

But if number of items N is too large, O(N?) similarity
computations are infeasible, even using minhashing

Idea: Browse through items and determine candidate pairs:

> Number of candidate pairs is much smaller than O(N?)
» One performs minhashing only for candidate pairs
» Candidate pairs can be determined with a very fast procedure

Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)

UNIVERSITAT
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Locality Sensitive Hashing
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SIGNATURE MATRIX: REMINDER

‘S 2|S3|S4
1 2 1
0 0 0

Signature matrix SIG for two permutations (hash functions) /1y , hp, and four sets Sy, Sy, S3, Sy

—

» Figure:

» Size of universal set: m =5
» Number of hash functions: n = 2
» Number of sets: N = 4

Originally: each set is from {0, 1}" (a bitvector of length m)

vy

Now: each set is from {0, ...,m — 1}"

» Much reduced representation, because n << m
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LOCALITY SENSITIVE HASHING: IDEA

-

\S 2S3|S4
1 2 1
0 0] 0

Signature matrix SIG for two permutations (hash functions) i1, hy, and four sets Sq, Sy, S3, S4

Idea:
» Hash columns in SIG using several hash functions into buckets

» Candidate pair: Pair of columns hashed to same bucket by any function

Runtime:
» Hashing all columns is O(N) (much faster than O(N?))

» Examining buckets requires little time
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LOCALITY SENSITIVE HASHING: CHALLENGE

—_

\S 233|S4
1 2 |1
0 0| o0

Signature matrix SIG for two permutations (hash functions) fy , hp, and four sets Sy, Sy, S3, Sy

Challenge:

» Hash similar columns to same buckets

» Hash dissimilar columns to different buckets

How to design hash functions?
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LOCALITY SENSITIVE HASHING: BANDING
TECHNIQUE

10002
band 1 32122
01311
band 2
band 3
band 4

Signature matrix divided into b = 4 bands of r = 3 rows each

» Divide rows of signature matrix into b bands of r rows each
» For each band, a hash function hashes r integers to buckets
>

Number of buckets is large to avoid collisions

v

Candidate pair: a pair of columns hashed to the same bucket, in any band
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BANDING TECHNIQUE: EXAMPLE

10002
band 1 32122
01311
band 2
band 3
band 4

Signature matrix divided into b = 4 bands of r = 3 rows each

» The columns showing [0, 2, 1] in band 1 are declared a candidate pair
» Other pairs of columns no candidate pairs because of first band

» apart from collisions occurring % designed to happen very rarely
» Columns hashed to same bucket in another band = candidate pairs
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BANDING TECHNIQUE: THEOREM

Let SIG be a signature matrix grouped into
» b bands of
» rrows each

and consider
» a pair of columns of Jaccard similarity s

THEOREM [LSH CANDIDATE PAIR]:
The probability that the pair of columns becomes a candidate pair is

1—-(1-s) (3)
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BANDING TECHNIQUE: PROOF OF THEOREM

PROOF.
Consider a pair of columns whose sets have Jaccard similarity s.

» Given any row, by Theorem “Minhash and Jaccard Similarity” of
last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the
probability to

» agree in all rows of one band is s”
» disagree in at least one of the rows in aband 1 — 5"
» disagree in at least one row in each band is (1 — s")"

> agree in all rows for at least one band is 1 — (1 — s")"
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BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]
For given b and 7, the S-curve is defined by the prescription

s 1—(1-5") 4)

Probability of becoming a candidate

0 02 0.4 0.6 08 1

Jaccard similarity of documents
Exemplary S-curve

UNIVERSITAT
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BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]
For given b and r, the S-curve is defined by the prescription

s 1—(1—s"°

s 1—(1—s"b
.006

.047

.186

470

.802

975

.8 .9996

s b

N o

Table: Values for S-curve with b = 20 and r = 5

UNIVERSITAT
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LOCALITY SENSITIVE HASHING: GUIDELINES

» One needs to determine b, r where br = n

» One needs to determine threshold t:

» s > t: candidate pair
» s < t: no candidate pair

» t corresponds with point of steepest rise on S-curve:
approximately (1/b)(1/7
Motivation:
» False Positive: dissimilar pair hashing to the same bucket
» False Negative: similar pair never hashing to the same bucket
» Motivation: limit both false positives and negatives

UNIVERSITAT
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LSH: FALSE NEGATIVES / POSITIVES

g | e
£ s
2
2
]
H
2 06 A
£ .
£ I~ .- .
; 04 - point of steepest rise
£
3 7
£ 5> 1
o4 “78 _ ; ; i
0 02 / 04 \M\ 08 1
Expected amount of false positives Jaccardsimilarity of documents t=(1/b)M1/1)

Exemplary S-curve

» Pick threshold ¢, number of bands b and rows r
> Avoiding false negatives: have t ~ (1/b)'/" low
> Avoiding false positives, or enhancing speed: have t ~ (1/b)!/" large
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FINDING SIMILAR DOCUMENTS: OVERALL

WORKFLOW

Docu-

ment Shingling

The set

of strings
of length k
that appear
in the doc-

» Shingling: Done!
» Minhashing: Done!

|

Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

From mmds.org

» Locality-Sensitive Hashing: Done!

UNIVERSITAT
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Candidate
pairs:

those pairs
of signatures
that we need
to test for
similarity


mmds.org

FINDING SIMILAR DOCUMENTS: SUMMARY

1. Shingling:
» Pick k and determine k-shingles for each document
» Sort shingles, document is bitvector over universe of shingles

2. Minhashing:

» Pick n hash functions

» Compute minhash signatures as per earlier algorithm
3. Locality Sensitive Hashing:

» Pick number of bands b and rows r
> Watch t ~ (1/b/" & avoid false negatives/positives
» Determine candidate pairs by applying the banding technique

4. Return to signatures of candidate pairs and determine whether fraction
of components where they agree is at least ¢
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MATERIALS / OUTLOOK

» See Mining of Massive Datasets, chapter 3.3-3.4
» See http://www.mmds.org/ for further resources

» Next lecture: Presentation by mindsquare & “Finding Similar
Items II1”

» See Mining of Massive Datasets 3.5-3.7
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http://www.mmds.org/

EXAMPLE / ILLUSTRATION
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