## Lecture 3 Finding Similar Items II

Alexander Schönhuth



Bielefeld University April 13, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

## LEARNING GOALS TODAY

- Understand Minhashing
- ► Understand the technique of *Locality Sensitive Hashing (LSH)*



### Minhashing II – Rapidly Computing Similarity of Sets

< □ > < @ > < E > < E > E のQ@



## MINHASH - INTERMEDIATE SUMMARY / EXPANSION OF IDEA

- Computing a minhash means turning a set into one number
- For different sets, numbers agree with probability equal to their Jaccard similarity.
- Can we expand on this idea? Can we compute (ensembles of) numbers that enable us to determine their Jaccard similarity?
- Immediate idea: compute several minhashes. The fraction of times the minhashes of two sets agree equals their Jaccard similarity.
- Several sufficiently well chosen minhashes yield a *minhash* signature.



## MINHASH SIGNATURES

Consider

- ▶ the *m* rows of the characteristic matrix
- *n* permutations  $\{1, ..., m\} \rightarrow \{1, ..., m\}$
- ► the corresponding *minhash* functions  $h_1, ..., h_n : \{0, 1\}^m \to \{1, ..., m\}$
- ▶ and a particular column  $S \in \{0,1\}^m$  $\square m h_i(S) \in \{1,...,m\}$  for each  $i \in \{1,...,n\}$

DEFINITION [MINHASH SIGNATURE] The *minhash signature*  $SIG_S$  of S given  $h_1, ..., h_n$  is the array

$$[h_1(S), ..., h_n(S)] \in \{1, ..., m\}^n$$



## MINHASH SIGNATURES

DEFINITION [MINHASH SIGNATURE] The *minhash signature*  $SIG_S$  of S given  $h_1, ..., h_n$  is the array

 $[h_1(S), ..., h_n(S)] \in \{1, ..., m\}^n$ 

Meaning: Computing the minhash signature for a column S turns

- ► the binary-valued array of length *m* that represents S $\leftrightarrow S \in \{0, 1\}^m$
- ▶ into an *m*-valued array of length n $\leftrightarrow [h_1(S), ..., h_n(S)] \in \{1, ..., m\}^n$

Because n < m (even n << m), the minhash signature is a (*much*) *reduced representation of a set*.



## SIGNATURE MATRIX

Consider a characteristic matrix, and *n* permutations  $h_1, ..., h_n$ .

DEFINITION [SIGNATURE MATRIX]

The signature matrix *SIG* is a matrix with *n* rows and as many columns as the characteristic matrix (i.e. the number of sets), where entries  $SIG_{ij}$  are defined by

$$SIG_{ij} = h_i(S_j) \tag{1}$$

where  $S_j$  refers to the *j*-th column in the characteristic matrix.



## SIGNATURE MATRICES: FACTS

Let *M* be a signature matrix.

- Because usually n << m, that is n is much smaller than m, a signature matrix is much smaller than the original characteristic matrix.</p>
- ► The probability that SIG<sub>ij1</sub> = SIG<sub>ij2</sub> for two sets S<sub>j1</sub>, S<sub>j2</sub> equals the Jaccard similarity SIM(S<sub>j1</sub>, S<sub>j2</sub>)
- ► The expected number of rows where columns j<sub>1</sub>, j<sub>2</sub> agree, divided by *n*, is SIM(S<sub>j1</sub>, S<sub>j2</sub>).



## SIGNATURE MATRICES: ISSUES

Issue:

► For large *m*, it is time-consuming / storage-intense to determine permutations

 $\pi:\{1,...,m\}\to \{1,...,m\}$ 

► Re-sorting rows relative to a permutation is even more expensive

Solution:

► Instead of permutations, use hash functions (watch the index shift!)

 $h:\{0,...,m-1\}\to \{0,...,m-1\}$ 

- Likely, a hash function is not a bijection, so at times
  - places two rows in the same bucket
  - leaves other buckets empty
  - Effects are negligible for our purposes, however



## **COMPUTING SIGNATURE MATRICES IN PRACTICE**

- Consider *n* hash functions  $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- Let *r* and *c* index rows and columns in the characteristic matrix  $M \in \{0, 1\}^{m \times |C|}$
- ► So *i* and *c* index rows and columns in the signature matrix  $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 \le i \le n do
     SIG(i, c) = \infty
  end for
end for
for each row r do
   for each column c do
     if M(r, c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i, c), h_i(r))
        end for
     end if
  end for
end for
```



## COMPUTING SIGNATURE MATRICES: EXAMPLE

| Row | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x+1 \mod 5$ |
|-----|-------|-------|-------|-------|--------------|---------------|
| 0   | 1     | 0     | 0     | 1     | 1            | 1             |
| 1   | 0     | 0     | 1     | 0     | 2            | 4             |
| 2   | 0     | 1     | 0     | 1     | 3            | 2             |
| 3   | 1     | 0     | 1     | 1     | 4            | 0             |
| 4   | 0     | 0     | 1     | 0     | 0            | 3             |

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

< □ > < @ > < E > < E > E のQ@



## COMPUTING SIGNATURE MATRICES IN PRACTICE

- Consider *n* hash functions  $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- Let *r* and *c* index rows and columns in the characteristic matrix  $M \in \{0, 1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix  $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 \le i \le n do
     SIG(i,c) = \infty
  end for
end for
for each row r do
   for each column c do
     if M(r, c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i, c), h_i(r))
        end for
     end if
  end for
end for
```



## COMPUTING SIGNATURE MATRICES: EXAMPLE

| Row | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x+1 \mod 5$ |
|-----|-------|-------|-------|-------|--------------|---------------|
| 0   | 1     | 0     | 0     | 1     | 1            | 1             |
| 1   | 0     | 0     | 1     | 0     | 2            | 4             |
| 2   | 0     | 1     | 0     | 1     | 3            | 2             |
| 3   | 1     | 0     | 1     | 1     | 4            | 0             |
| 4   | 0     | 0     | 1     | 0     | 0            | 3             |

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

|       | $S_1$    | $S_2$    | $S_3$    | $S_4$    |
|-------|----------|----------|----------|----------|
| $h_1$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| $h_2$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |

Signature matrix SIG: after initialization

◆□ > ◆□ > ◆ 臣 > ◆ 臣 > ◆ 臣 = • • ○ < ⊙



## **COMPUTING SIGNATURE MATRICES IN PRACTICE**

- Consider *n* hash functions  $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- Let *r* and *c* index rows and columns in the characteristic matrix  $M \in \{0, 1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix  $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 \le i \le n do
     SIG(i, c) = \infty
  end for
end for
for each row r do
  for each column c do
     if M(r, c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i, c), h_i(r))
        end for
     end if
  end for
end for
```



## COMPUTING SIGNATURE MATRICES IN PRACTICE

- Consider *n* hash functions  $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- Let *r* and *c* index rows and columns in the characteristic matrix  $M \in \{0, 1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix  $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i, c) = \infty
  end for
end for
for each row r do
   // Iteration 1: first row
   for each column c do
     if M(r, c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i, c), h_i(r))
        end for
     end if
  end for
   // End first row
end for
```



## COMPUTING SIGNATURE MATRICES: EXAMPLE

| Row | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x+1 \mod 5$ |
|-----|-------|-------|-------|-------|--------------|---------------|
| 0   | 1     | 0     | 0     | 1     | 1            | 1             |
| 1   | 0     | 0     | 1     | 0     | 2            | 4             |
| 2   | 0     | 1     | 0     | 1     | 3            | 2             |
| 3   | 1     | 0     | 1     | 1     | 4            | 0             |
| 4   | 0     | 0     | 1     | 0     | 0            | 3             |

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

First iteration: row # 0 has 1's in  $S_1$  and  $S_4$ , so put  $SIG_{11} = SIG_{14} = \min\{\infty, h_1(0)\} = 0 + 1 \mod 5 = 1$ ,  $SIG_{21} = SIG_{24} = \min\{\infty, h_2(0)\} = 3 \cdot 0 + 1 \mod 5 = 1$ 

|       | $S_1$ | $S_2$    | $S_3$    | $S_4$ |
|-------|-------|----------|----------|-------|
| $h_1$ | 1     | $\infty$ | $\infty$ | 1     |
| $h_2$ | 1     | $\infty$ | $\infty$ | 1     |

Signature matrix after considering first row

## COMPUTING SIGNATURE MATRICES IN PRACTICE

- Consider *n* hash functions  $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- Let *r* and *c* index rows and columns in the characteristic matrix  $M \in \{0, 1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix  $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i, c) = \infty
  end for
end for
for each row r do
  // Iteration 2: second row
  for each column c do
     if M(r, c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i, c), h_i(r))
        end for
     end if
  end for
  // End second row
end for
```



## COMPUTING SIGNATURE MATRICES: EXAMPLE

| Row | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x+1 \mod 5$ |
|-----|-------|-------|-------|-------|--------------|---------------|
| 0   | 1     | 0     | 0     | 1     | 1            | 1             |
| 1   | 0     | 0     | 1     | 0     | 2            | 4             |
| 2   | 0     | 1     | 0     | 1     | 3            | 2             |
| 3   | 1     | 0     | 1     | 1     | 4            | 0             |
| 4   | 0     | 0     | 1     | 0     | 0            | 3             |

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Second iteration: row #1 has 1 in  $S_3$ , so put  $SIG_{13} = \min\{\infty, h_1(1)\} = 1 + 1 \mod 5 = 2$ ,  $SIG_{23} = \min\{\infty, h_2(1)\} = 3 + 1 \mod 5 = 4$ .

|       | $S_1$ | $S_2$    | $S_3$ | $S_4$ |
|-------|-------|----------|-------|-------|
| $h_1$ | 1     | $\infty$ | 2     | 1     |
| $h_2$ | 1     | $\infty$ | 4     | 1     |

UNIVERSITÄT BIELEFELD 

## COMPUTING SIGNATURE MATRICES IN PRACTICE

- Consider *n* hash functions  $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- Let *r* and *c* index rows and columns in the characteristic matrix  $M \in \{0, 1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix  $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i, c) = \infty
  end for
end for
for each row r do
   // Iteration 3: third row
   for each column c do
     if M(r, c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i, c), h_i(r))
        end for
     end if
  end for
   // End third row
end for
```



## **COMPUTING SIGNATURE MATRICES: EXAMPLE**

| Row | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x+1 \mod 5$ |
|-----|-------|-------|-------|-------|--------------|---------------|
| 0   | 1     | 0     | 0     | 1     | 1            | 1             |
| 1   | 0     | 0     | 1     | 0     | 2            | 4             |
| 2   | 0     | 1     | 0     | 1     | 3            | 2             |
| 3   | 1     | 0     | 1     | 1     | 4            | 0             |
| 4   | 0     | 0     | 1     | 0     | 0            | 3             |

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

Third iteration: row # 2 has 1's in  $S_2$  and  $S_4$ , so put  $SIG_{12} = \min\{\infty, h_1(2)\} = 2 + 1 \mod 5 = 3$ ,  $SIG_{14} = \min\{SIG_{14}, h_1(2)\} = \min(1, 2 + 1 \mod 5 = 3) = 1$ ,  $SIG_{22} = \min\{\infty, h_2(2)\} = 6 + 1 \mod 5 = 2$ ,  $SIG_{24} = \min\{SIG_{24}, h_2(2)\} = \min(1, 6 + 1 \mod 5 = 2) = 1$ 



## COMPUTING SIGNATURE MATRICES: EXAMPLE

| Row | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x+1 \mod 5$ |
|-----|-------|-------|-------|-------|--------------|---------------|
| 0   | 1     | 0     | 0     | 1     | 1            | 1             |
| 1   | 0     | 0     | 1     | 0     | 2            | 4             |
| 2   | 0     | 1     | 0     | 1     | 3            | 2             |
| 3   | 1     | 0     | 1     | 1     | 4            | 0             |
| 4   | 0     | 0     | 1     | 0     | 0            | 3             |

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

|       | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|-------|
| $h_1$ | 1     | 3     | 2     | 1     |
| $h_2$ | 1     | 2     | 4     | 1     |

Signature matrix after considering third row



## COMPUTING SIGNATURE MATRICES IN PRACTICE

- Consider *n* hash functions  $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- Let *r* and *c* index rows and columns in the characteristic matrix  $M \in \{0, 1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix  $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i, c) = \infty
  end for
end for
for each row r do
  // Iteration 4: fourth row
  for each column c do
     if M(r, c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i, c), h_i(r))
        end for
     end if
  end for
  // End fourth row
end for
```



COMPUTING SIGNATURE MATRICES: EXAMPLE

| Row | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x+1 \mod 5$ |
|-----|-------|-------|-------|-------|--------------|---------------|
| 0   | 1     | 0     | 0     | 1     | 1            | 1             |
| 1   | 0     | 0     | 1     | 0     | 2            | 4             |
| 2   | 0     | 1     | 0     | 1     | 3            | 2             |
| 3   | 1     | 0     | 1     | 1     | 4            | 0             |
| 4   | 0     | 0     | 1     | 0     | 0            | 3             |

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

**Fourth iteration:** *SIG*<sub>11</sub> stays 1, *SIG*<sub>21</sub> changes to 0, *SIG*<sub>13</sub> stays 2, *SIG*<sub>23</sub> changes to 0, *SIG*<sub>14</sub> stays 1, *SIG*<sub>24</sub> changes to 0

|       | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|-------|
| $h_1$ | 1     | 3     | 2     | 1     |
| $h_2$ | 0     | 2     | 0     | 0     |

Signature matrix after considering fourth row

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

## COMPUTING SIGNATURE MATRICES IN PRACTICE

- Consider *n* hash functions  $h_i: \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}, i = 1, ..., n$
- Let *r* and *c* index rows and columns in the characteristic matrix  $M \in \{0, 1\}^{m \times |C|}$
- ► So *c* also index columns, while *i* indexes rows in the signature matrix  $SIG \in \{1, ..., m\}^{n \times |C|}$

```
for each c do
  for 0 < i < n do
     SIG(i, c) = \infty
  end for
end for
for each row r do
   // Iteration 5: fifth (final) row
   for each column c do
     if M(r, c) = 1 then
        for i=1 to n do
           SIG(i, c) =
           min(SIG(i, c), h_i(r))
        end for
     end if
  end for
   // End fifth (final) row
end for
```



## COMPUTING SIGNATURE MATRICES: EXAMPLE

| Row | $S_1$ | $S_2$ | $S_3$ | $S_4$ | $x+1 \mod 5$ | $3x+1 \mod 5$ |
|-----|-------|-------|-------|-------|--------------|---------------|
| 0   | 1     | 0     | 0     | 1     | 1            | 1             |
| 1   | 0     | 0     | 1     | 0     | 2            | 4             |
| 2   | 0     | 1     | 0     | 1     | 3            | 2             |
| 3   | 1     | 0     | 1     | 1     | 4            | 0             |
| 4   | 0     | 0     | 1     | 0     | 0            | 3             |

Hash functions computed for a characteristic matrix, with rows indexed from 0 to 4

|       | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|-------|
| $h_1$ | 1     | 3     | 0     | 1     |
| $h_2$ | 0     | 2     | 0     | 0     |

Signature matrix after considering fifth row: final signature matrix



## COMPUTING SIGNATURE MATRICES: EXAMPLE

|       | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|-------|
| $h_1$ | 1     | 3     | 0     | 1     |
| $h_2$ | 0     | 2     | 0     | 0     |

Signature matrix after considering fifth row: final signature matrix

- *Estimates* for Jaccard similarity:  $SIM(S_1, S_3) = \frac{1}{2}$ ,  $SIM(S_1, S_4) = 1$
- *True* Jaccard similarities:  $SIM(S_1, S_3) = \frac{1}{4}, SIM(S_1, S_4) = \frac{2}{3}$
- Estimates will be better when raising number of hash functions that is increasing number of rows of the signature matrix



### Minhashing – Speeding Up Computations

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●



## Speeding Up Minhashing: Basic Idea

- Minhashing is time-consuming, because iterating through all *m* rows of *M* necessary, and *m* is large (huge!)
- ► Thought experiment:
  - Recall: minhash is first row in permuted order with a 1
  - Consider permutations  $\pi : \{1, ..., \bar{m}\} \rightarrow \{1, ..., \bar{m}\}$  for  $\bar{m} < m$
  - Consider only examining the first  $\overline{m}$  of the permuted rows
  - Speed up of a factor of  $\frac{m}{\overline{m}}$



## Speeding Up Minhashing: Basic Idea II

- Minhashing is about *estimates*
- Minhashing on subsets of the real sets may provide good estimates already?
- How do estimates behave more concretely?



## Speeding Up Minhashing: Basic Idea III

- ► Continue thought experiment...
- Consider computing signature matrices by only examining  $\bar{m} < m$  rows in the characteristic matrix, and using permutations  $\pi : \{1, ..., \bar{m}\} \rightarrow \{1, ..., \bar{m}\}$
- By the way: the chosen  $\overline{m}$  rows need not be the first  $\overline{m}$  rows
- For each column where no 1 shows, keep  $\infty$  as symbol in the signature matrix *SIG*



## Speeding Up Minhashing: Issues I

- There may be columns where all first  $\overline{m}$  rows contain zeroes
- Using the algorithm discussed previously, we will have  $\infty$  symbols in the signature matrix

Signature matrix M with  $\infty$  remaining (not referring to example from slide before)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~



## Speeding Up Minhashing: Issues II

- ► Situation: Much faster to compute SIG, but SIG(i, c) = ∞ in some places (how many? is this bad?)
- How to deal with that? Can we nevertheless work with only  $\overline{m} < m$  rows and compute sufficiently accurate estimates for the Jaccard similarity of two columns?



## Speeding Up Minhashing: Practice I

#### Situation:

- Compute Jaccard similarities for pairs of columns, while possibly
- $SIG(i, c) = \infty$  for some (i, c)
- ► Algorithm for estimating Jaccard similarity:
  - Row by row, by iterative updates,
  - Maintain count of rows *a* where columns agree
  - Maintain count of rows d where columns disagree

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

• Estimate SIM as  $\frac{a}{a+d}$ 



## Speeding Up Minhashing: Practice II

- ► Maintain count of rows *a* where columns agree
- Maintain count of rows *d* where columns disagree
- Estimate SIM as  $\frac{a}{a+d}$

#### Three cases:

- 1. Both columns do not contain  $\infty$  in row: update counts as usual (either  $a \rightarrow a + 1$  or  $d \rightarrow d + 1$ )
- 2. Only one column has  $\infty$  in row:
  - Let two columns be  $c_1, c_2$ , and  $SIG(i, c_1) = \infty$ , but  $SIG(i, c_2) \neq \infty$ :
  - It follows that  $SIG(i, c_1) > SIG(i, c_2)$
  - So increase count of disagreeing rows by one  $(d \rightarrow d + 1)$
- 3. Both columns have  $\infty$  in a row: unclear, skip updating counts



## Speeding up Minhashing: Practice III

**Summary:** One determines  $\frac{a}{a+d}$  as estimate for *SIM*( $c_1, c_2$ )

- ► (\*) Counts rely on less rows than before
- (\*\*) However, since each permutation only refers to  $\overline{m} < m$  rows, we can afford more permutations
- ► (\*) makes counts less reliable, while (\*\*) compensates for it
- Can we control the corresponding trade-off to our favour?



## Speeding up Minhashing: Theory I

- Let *T* be the set of elements of the universal set that correspond to the initial  $\overline{m}$  rows in the characteristic matrix.
- When executing the above algorithm on only these  $\overline{m}$  rows, we determine

$$\frac{|S_1 \cap S_2 \cap T|}{|(S_1 \cup S_2) \cap T|}$$
(2)

as an estimate for the true Jaccard similarity  $\frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$ .

- ► If *T* is chosen randomly, the expected value of (2) is the Jaccard similarity SIM(*S*<sub>1</sub>, *S*<sub>2</sub>)
- But: there may be some disturbing variation to this estimate



## Speeding up Minhashing: Practice IV

- Divide *m* rows into  $\frac{m}{\bar{m}}$  blocks of  $\bar{m}$  rows each
- ► For each hash function  $h : \{0, ..., \bar{m} 1\} \rightarrow \{0, ..., \bar{m} 1\}$ , compute minhash values for each block of  $\bar{m}$  rows
- Yields m/m minhash values for a single hash function, instead of just one
- *Extreme:* If  $\frac{m}{\bar{m}}$  is large enough, only one hash function may be necessary
- ► Possible advantage:
  - Type X rows are distributed across blocks of  $\overline{m}$  rows
  - Type Y rows are distributed across blocks of  $\overline{m}$  rows
  - ▶ Using all *m* rows balances out irregularities across blocks



## Speeding up Minhashing: Example

| $S_1$ | $S_2$ | $S_3$ |
|-------|-------|-------|
| 0     | 0     | 0     |
| 0     | 0     | 0     |
| 0     | 0     | 1     |
| 0     | 1     | 1     |
| 1     | 1     | 1     |
| 1     | 1     | 0     |
| 1     | 0     | 0     |
| 0     | 0     | 0     |

Characteristic matrix for three sets  $S_1$ ,  $S_2$ ,  $S_3$ . m = 8,  $\bar{m} = 4$ .

- ► Truth: SIM $(S_1, S_2) = \frac{1}{2}$ , SIM $(S_1, S_3) = \frac{1}{5}$ , SIM $(S_2, S_3) = \frac{1}{2}$
- Estimate for first four rows: SIM $(S_1, S_2) = 0$
- Estimate for last four rows: SIM $(S_1, S_2) = \frac{2}{3}$  on average across randomly picked hash functions
- ► Overall estimate (expected across randomly picked hash functions): SIM(S<sub>1</sub>, S<sub>2</sub>) = <sup>1</sup>/<sub>3</sub>, Ok estimate for two hash functions



## Current Status

Summary

・ロト・西ト・ヨー シック・



## SUMMARY OF CURRENT STATUS





イロト イロト イヨト イヨト ニヨー

500

- ► *Shingling:* turning text files into sets IS Done!
- ► *Minhashing:* computing similarity for large sets IS Done!
- Locality Sensitive Hashing: avoids O(N<sup>2</sup>) comparisons by determining candidate pairs Scoming next!

UNIVERSITÄT BIELEFELD

## CURRENT STATUS: ISSUES STILL REMAINING

- Minhashing enabled to compute similarity between two sets very fast
- Shingling enabled to turn documents into sets such that minhashing could be applied
- ► But if number of items *N* is too large, *O*(*N*<sup>2</sup>) similarity computations are infeasible, even using minhashing
- ► *Idea*: Browse through items and determine *candidate pairs*:
  - Number of candidate pairs is much smaller than  $O(N^2)$
  - One performs minhashing only for candidate pairs
  - Candidate pairs can be determined with a very fast procedure
- ► Solution: Locality Sensitive Hashing (a.k.a. Near Neighbor Search)



### Locality Sensitive Hashing

< □ > < @ > < E > < E > E のQ@



## SIGNATURE MATRIX: REMINDER

|       | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|-------|
| $h_1$ | 1     | 3     | 2     | 1     |
| $h_2$ | 0     | 2     | 0     | 0     |

Signature matrix SIG for two permutations (hash functions) h1, h2, and four sets S1, S2, S3, S4

- ► Figure:
  - Size of universal set: m = 5
  - ▶ Number of hash functions: *n* = 2
  - Number of sets: N = 4
- Originally: each set is from  $\{0, 1\}^m$  (a bitvector of length *m*)
- Now: each set is from  $\{0, ..., m-1\}^n$
- ▶ Much reduced representation, because *n* << *m*



## LOCALITY SENSITIVE HASHING: IDEA

|       | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|-------|
| $h_1$ | 1     | 3     | 2     | 1     |
| $h_2$ | 0     | 2     | 0     | 0     |

Signature matrix SIG for two permutations (hash functions) h<sub>1</sub>, h<sub>2</sub>, and four sets S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub>, S<sub>4</sub>

#### Idea:

- Hash columns in SIG using several hash functions into buckets
- ► *Candidate pair:* Pair of columns hashed to same bucket by any function

#### Runtime:

- Hashing all columns is O(N) (much faster than  $O(N^2)$ )
- Examining buckets requires little time



## LOCALITY SENSITIVE HASHING: CHALLENGE

|       | $S_1$ | $S_2$ | $S_3$ | $S_4$ |
|-------|-------|-------|-------|-------|
| $h_1$ | 1     | 3     | 2     | 1     |
| $h_2$ | 0     | 2     | 0     | 0     |

Signature matrix SIG for two permutations (hash functions) h<sub>1</sub>, h<sub>2</sub>, and four sets S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub>, S<sub>4</sub>

#### Challenge:

- Hash similar columns to same buckets
- Hash dissimilar columns to different buckets

#### How to design hash functions?



# LOCALITY SENSITIVE HASHING: BANDING TECHNIQUE



Signature matrix divided into b = 4 bands of r = 3 rows each

- ▶ Divide rows of signature matrix into *b* bands of *r* rows each
- ► For each band, a hash function hashes *r* integers to buckets
- Number of buckets is large to avoid collisions

Candidate pair: a pair of columns hashed to the same bucket, in any band
UNIVERSITÄT
BIELEFELD

## **BANDING TECHNIQUE: EXAMPLE**



Signature matrix divided into b = 4 bands of r = 3 rows each

- ▶ The columns showing [0, 2, 1] in band 1 are declared a candidate pair
- Other pairs of columns no candidate pairs because of first band
  - apart from collisions occurring radia designed to happen very rarely
- ► Columns hashed to same bucket in another band 🖙 candidate pairs



## **BANDING TECHNIQUE: THEOREM**

Let SIG be a signature matrix grouped into

- ► *b* bands of
- ► *r* rows each

and consider

• a pair of columns of Jaccard similarity *s* 

THEOREM [LSH CANDIDATE PAIR]: The probability that the pair of columns becomes a candidate pair is

$$1 - (1 - s^r)^b$$
 (3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



## BANDING TECHNIQUE: PROOF OF THEOREM

Proof.

Consider a pair of columns whose sets have Jaccard similarity s.

 Given any row, by Theorem "Minhash and Jaccard Similarity" of last lecture, they agree in that row with probability s

Because minhash values are independent of each other, the probability to

- ▶ agree in all rows of one band is *s*<sup>*r*</sup>
- disagree in at least one of the rows in a band  $1 s^r$
- disagree in at least one row in each band is  $(1 s^r)^b$
- agree in all rows for at least one band is  $1 (1 s^r)^b$



## BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]

For given *b* and *r*, the *S*-curve is defined by the prescription



Exemplary S-curve



## BANDING TECHNIQUE: THE S-CURVE

DEFINITION: [S-CURVE]

For given *b* and *r*, the *S*-curve is defined by the prescription

$$s \mapsto 1 - (1 - s^r)^b \tag{5}$$

| s  | $1 - (1 - s^r)^b$ |
|----|-------------------|
| .2 | .006              |
| .3 | .047              |
| .4 | .186              |
| .5 | .470              |
| .6 | .802              |
| .7 | .975              |
| .8 | .9996             |

Table: Values for S-curve with b = 20 and r = 5



## LOCALITY SENSITIVE HASHING: GUIDELINES

- One needs to determine b, r where br = n
- One needs to determine threshold *t*:
  - $s \ge t$ : candidate pair
  - s < t: no candidate pair
- ► t corresponds with point of steepest rise on S-curve: approximately (1/b)<sup>(1/r)</sup>

Motivation:

- ► *False Positive:* dissimilar pair hashing to the same bucket
- ► *False Negative:* similar pair never hashing to the same bucket
- *Motivation:* limit both false positives and negatives



## LSH: FALSE NEGATIVES / POSITIVES



- Pick threshold t, number of bands b and rows r
- Avoiding false negatives: have  $t \approx (1/b)^{1/r}$  low
- Avoiding false positives, or enhancing speed: have  $t \approx (1/b)^{1/r}$  large

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## FINDING SIMILAR DOCUMENTS: OVERALL WORKFLOW



From mmds.org

- Shingling: Done!
- Minhashing: Done!
- ► Locality-Sensitive Hashing: Done!
- UNIVERSITÄT BIELEFELD

## FINDING SIMILAR DOCUMENTS: SUMMARY

- 1. Shingling:
  - Pick k and determine k-shingles for each document
  - Sort shingles, document is bitvector over universe of shingles
- 2. Minhashing:
  - Pick n hash functions
  - Compute minhash signatures as per earlier algorithm
- 3. Locality Sensitive Hashing:
  - Pick number of bands b and rows r
  - Watch  $t \approx (1/b^{1/r}$  is avoid false negatives/positives
  - Determine candidate pairs by applying the banding technique
- 4. Return to signatures of candidate pairs and determine whether fraction of components where they agree is at least *t*



## MATERIALS / OUTLOOK

- ► See Mining of Massive Datasets, chapter 3.3–3.4
- See http://www.mmds.org/ for further resources
- Next lecture: Presentation by mindsquare & "Finding Similar Items III"
  - ► See Mining of Massive Datasets 3.5–3.7



## EXAMPLE / ILLUSTRATION

