Lecture 2
 Finding Similar Items I

Alexander Schönhuth

Bielefeld University April 12, 2023

TODAY

Announcements

- Lecture will be recorded, edited and posted (as usual)
- Starting from "finding similar items" today, topics are relevant for exam
- Reminder: Please assign yourself to a group in the LernraumPlus, if desired; individual work possible, of course
- Groups were supposed to be up to 2-3 people; individual work possible, of course

Today: Overview

Contents today

- Useful things II (not relevant for exam)
- Similarity of sets: purpose, basic idea
- Similarity of documents: turning documents into sets shingles
- Computing the similarity of sets minhashing

Useful Things to Know II

Useful Things to Know

- The TF.IDF measure of word importance done!
- Hash functions done!
- Secondary storage (disk) and running time of algorithms
- The natural logarithm
- Power laws

SEcondary Storage

- Important to keep in mind when dealing with big data: accessing data from disks (hard drives) costs time (and energy).
- Disks are organized into blocks; e.g. blocks of 64 K bytes.
- Takes approx. 10 milliseconds to access and read a disk block.
- About 10^{5} times slower than accessing data in main memory.
- And taking a block to main memory costs more time than executing the computations on the data when being in main memory.

SECONDARy Storage

- One can alleviate problem by putting related data on a single cylinder; accessing all blocks on a cylinder costs considerably less time per block
- Establishes limit of 100 MB per second to transfer blocks to main memory
- If data is in the hundreds of gigabytes, let alone terabytes, this is an issue
- Integrate this knowledge into runtime considerations when dealing with big data!

The Natural Logarithm I

- Euler constant:

$$
\begin{equation*}
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} \approx 2.71828 \tag{1}
\end{equation*}
$$

- Consider computing $(1+a)^{b}$ where a is small:

$$
(1+a)^{b}=(1+a)^{(1 / a)(a b)} \stackrel{a=1 / x}{=}\left(1+\frac{1}{x}\right)^{x(a b)}=\left(\left(1+\frac{1}{x}\right)^{x}\right)^{a b} \stackrel{x \text { large }}{\approx} e^{a b}
$$

- Consider computing $(1-a)^{b}$ where a is small:

$$
(1-a)^{b}=(1-a)^{(1 / a)(a b)} \stackrel{-a=1 / x}{=}\left(\left(1+\frac{1}{x}\right)^{x}\right)^{-a b} \stackrel{x \text { large }}{\approx} e^{-a b}
$$

EULER CONSTANT: TAYLOR EXPANSION OF e^{x}

- The Taylor expansion of e^{x} is

$$
\begin{equation*}
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\ldots \tag{2}
\end{equation*}
$$

- Convergence slow on large x, so not helpful.
- Convergence fast on small (positive and negative) x.
- Example: $x=1 / 2$

$$
e^{1 / 2}=1+\frac{1}{2}+\frac{1}{8}+\frac{1}{48}+\frac{1}{384}+\ldots \approx 1.64844
$$

- Example: $x=-1$

$$
e^{-1}=1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}-\frac{1}{5040} \ldots \approx 0.36786
$$

Power Laws

- Consider two variables y and x and their functional relationship.
- General form of a power law is

$$
\begin{equation*}
\log y=b+a \log x \tag{3}
\end{equation*}
$$

so a linear relationship between the logarithms of x and y.

Power Law: Example

$\log _{10} y=6-2 \log _{10} x$

Power Laws

- Power law:

$$
\begin{equation*}
\log y=b+a \log x \tag{4}
\end{equation*}
$$

- Transforming yields:

$$
\begin{equation*}
y=e^{b} \cdot e^{a \log x}=e^{b} \cdot e^{\log x^{a}}=e^{b} \cdot x^{a} \tag{5}
\end{equation*}
$$

so power law expresses polynomial relationship $y=c x^{a}$

- Example slide before (logarithm base 10):

$$
\begin{equation*}
y=10^{6} \cdot x^{-2} \tag{6}
\end{equation*}
$$

Real World Scenarios

- Node degrees in web graph
- Nodes are web pages
- Nodes are linked when there are links between pages
- Order pages by numbers of links: number of pages as a function of the order number is power law
- Sales of products: y is the number of sales of the x-th most popular item (books at amazon.com, say)
- Sizes of web sites: y is number of pages at the x-th largest web site

POWER LAW: EXAMPLE II

Power law for links in web pages / sales of books

Real World Scenarios

- Zipf's Law: Order words in document by frequency, and let y be the number of times the x-th word appears in the document.
- Zipf found the relationship to approximately reflect $y=c x^{-1 / 2}$.
- Other relationships follow that law, too. For example, y is population of x-th most populous (American) state.
- Summary: The Matthew Effect = "The rich get ever richer"

Finding Similar Items: Introduction

Finding Similar Items

Fundamental problem in data mining: retrieve pairs of similar elements of a dataset.

Applications

- Detecting plagiarism in a set of documents
- Identifying near-identical mirror pages during web searches
- Identifying documents from the same author
- Collaborative Filtering
- Online Purchases (Amazon: suggestions based on 'similar' customers)
- Movie Ratings (Netflix: suggestions based on 'similar' users)

ISSUES

Consider a dataset of N items, for example: N webpages or N text documents.

- Comparing all items requires $O\left(N^{2}\right)$ runtime.
- Ok for small N.
- If $N \approx 10^{6}$, we have 10^{12} comparisons. Maybe not OK!
- How to efficiently compute similarity if items themselves are large?
- Similarity works well for sets of items. How to turn data into sets of items?

Overview

From mmds.org

- Shingling: turning text files into sets
- Minhashing: computing similarity for large sets
- Locality Sensitive Hashing: avoids $O\left(N^{2}\right)$ comparisons by determining candidate pairs

Shingles

Turning Documents into Sets

Jaccard Similarity

Definition [Jaccard Similarity]

Consider two sets S and T. The Jaccard similarity $\operatorname{SIM}(S, T)$ is defined as

$$
\begin{equation*}
\operatorname{SIM}(S, T)=\frac{|S \cap T|}{|S \cup T|} \tag{7}
\end{equation*}
$$

the ratio of elements in the intersection and in the union of S and T.

SHINGLES: DEFINITION

- Document = large string of characters
- k-shingle: a substring of a particular length k
- Idea: A document is set of k-shingles
- Example: document $=$ "acadacc",k-shingles for $k=2$:

$$
\{a c, a d, c a, c c, d a\}
$$

- We can now compute Jaccard similarity for two documents by considering them as sets of shingles.
- Example: documents $D_{1}=" a b c d ", D_{2}=" d b c d "$ using 2-shingles yields $D_{1}=\{a b, b c, c d\}, D_{2}=\{b c, c d, d b\}$, so $\operatorname{SIM}\left(D_{1}, D_{2}\right)=\frac{|\{b c, c d\}|}{|\{a b, b c, c d, d b\}|}=2 / 4=1 / 2$

SHINGLES: DEFINITION

- Issue: Determining right size of k.
- k large enough such that any particular k-shingle appears in document with low probability ($k=5$, yielding 256^{5} different shingles on 256 different characters, ok for emails)
- too large k yields too large universe of elements (example: $k=9$ means $256^{9}=\left(2^{8}\right)^{9}=2^{72}$ on the order of number of atoms in the universe)
- Solution if necessary k is too large: hash shingles to buckets, such that buckets are evenly covered, and collisions are rare
- We would like to compute Jaccard similarity for pairs of sets
- But: even when hashed, size of the universe of elements (= \# buckets when hashed) may be prohibitive to do that fast
- What to do?

Minhashing
 Rapidly Computing Similarity of Sets

Sets as Bitvectors

- Bitvectors:
- A bitvector is an array containing zeroes and ones
- E.g. $[1,0,0,1,1]$ is a bitvector of length 5
- Formally: bitvectors of length N are elements of $\{0,1\}^{N}$
- Sets as bitvectors:
- Length of bitvectors is size of universal set
- Entries zero if element not in set, one if element in set
- Example: universal set $=\{a, b, c, d, e\}$; set $A=\{b, c, e\}$

$$
A=[\underset{a}{0}, \underset{b}{1}, \underset{c}{1}, \underset{d}{0}, \underset{e}{1}]
$$

- When hashing shingles to buckets, length of bitvector = number of buckets
- Does not reflect to really store the sets, but nice visualization

Sets as Bitvectors: the Characteristic Matrix

Definition [Characteristic Matrix]
Given C sets over a universe R, the characteristic matrix
$M \in\{0,1\}^{|R| \times|C|}$ is defined to have entries

$$
M(r, c)= \begin{cases}0 & \text { if } r \notin c \tag{8}\\ 1 & \text { if } r \in c\end{cases}
$$

for $r \in R, c \in C$.

Element	S_{1}	S_{2}	S_{3}	S_{4}
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Characteristic matrix of four sets $\left(S_{1}, S_{2}, S_{3}, S_{4}\right)$ over universal set $\{a, b, c, d, e\}$

Permutations

Definition [Bijection,Permutation]

- A bijection is a map $\pi: S \rightarrow S$ such that
- $\pi(x)=\pi(y)$ implies $x=y$ (π is injective)
- For all $y \in S$ there is $x \in S$ such that $\pi(x)=y$ (π is surjective)
- A permutation is a bijection

$$
\begin{equation*}
\pi:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\} \tag{9}
\end{equation*}
$$

Example: A permutation on $\{1,2,3,4,5\}$ may map

$$
1 \rightarrow 4,2 \rightarrow 3,3 \rightarrow 1,4 \rightarrow 5 \text { and } 5 \rightarrow 2
$$

Permuting Rows of Characteristic Matrix

Element	S_{1}	S_{2}	S_{3}	S_{4}					
a	1	0	0	1	Element	S_{1}	S_{2}	S_{3}	S_{4}
b	0	0	1	0		0	0	1	0
c	0	1	0	1		0	0	1	0
d	1	0	1	1		1	0	0	1
e	0	0	1	0	c	1	0	1	1
			c	0	1	0	1		

A characteristic matrix of four sets $\left(S_{1}, S_{2}, S_{3}, S_{4}\right)$ over universal set $\{a, b, c, d, e\}$ and a permutation of its rows $1 \rightarrow 3,2 \rightarrow 1,3 \rightarrow 5,4 \rightarrow 4,5 \rightarrow 2$

Minhash - Definition

Consider

- a characteristic matrix with m rows
- a particular column S
- a permutation π on the rows, that is $\pi:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}$ is a bijection

Definition [Minhash]
The minhash function h_{π} on S is defined by

$$
h_{\pi}(S)=\min _{i \in\{1, \ldots, m\}}\{\pi(i) \mid S[i]=1\}
$$

Minhash - Definition

Definition [Minhash]
The minhash function h_{π} on S is defined by

$$
h_{\pi}(S)=\min _{i \in\{1, \ldots, m\}}\{\pi(i) \mid S[i]=1\}
$$

Explanation
The minhash of a column S relative to permutation π is

- after reordering rows according to the permutation π
- the first row in which a one in S appears

Minhash - Example

Example

Let

- 1 corresponds to $a, 2$ to b, \ldots
- $\pi: 1 \rightarrow 3,2 \rightarrow 1,3 \rightarrow 5,4 \rightarrow 4,5 \rightarrow 2$ and

Minhashing and Jaccard Similarity

Given

- two columns (sets) S_{1}, S_{2} of a characteristic matrix
- a randomly picked permutation π on the rows (on $\{1, \ldots, m\}$)

Theorem [Minhash and Jaccard Similarity]:
The probability that $h_{\pi}\left(S_{1}\right)=h_{\pi}\left(S_{2}\right)$ is $\operatorname{SIM}\left(S_{1}, S_{2}\right)$.

Minhash and Jaccard Similarity - Proof

Theorem [Minhash and Jaccard Similarity]:
The probability that $h_{\pi}\left(S_{1}\right)=h_{\pi}\left(S_{2}\right)$ is $\operatorname{SIM}\left(S_{1}, S_{2}\right)$.
Proof.
Distinguish three different classes of rows:

- Type X rows have a 1 in both S_{1}, S_{2}
- Type Y rows have a 1 in only one of S_{1}, S_{2}
- Type Z rows have a 0 in both S_{1}, S_{2}

Let x be the number of type X rows and y the number of type Y rows.

- So $x=\left|S_{1} \cap S_{2}\right|$ and $x+y=\left|S_{1} \cup S_{2}\right|$
- Hence

$$
\begin{equation*}
\operatorname{SIM}\left(S_{1}, S_{2}\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}=\frac{x}{x+y} \tag{10}
\end{equation*}
$$

Minhash and Jaccard Similarity - Proof

Proof. (CONT.)

- Consider the probability that $h\left(S_{1}\right)=h\left(S_{2}\right)$
- Imagine rows to be permuted randomly; proceed from the top
- The probability to encounter type X before type Y is

$$
\begin{equation*}
\frac{x}{x+y} \tag{11}
\end{equation*}
$$

- If first non type Z row is type X , then $h\left(S_{1}\right)=h\left(S_{2}\right)$
- If first non type Z row is type Y , then $h\left(S_{1}\right) \neq h\left(S_{2}\right)$
- So $h\left(S_{1}\right)=h\left(S_{2}\right)$ happens with probability (11), which by (10) concludes the proof.

Materials / Outlook

- See Mining of Massive Datasets, chapter 3.1-3.3
- As usual, see http://www.mmds.org/in general for further resources
- Next lecture: "Finding Similar Items II"
- See Mining of Massive Datasets 3.4-3.6

EXAMPLE / ILLUSTRATION

