
Lecture 2
Finding Similar Items I

Alexander Schönhuth

Bielefeld University
April 12, 2023

TODAY

Announcements

I Lecture will be recorded, edited and posted (as usual)

I Starting from “finding similar items” today, topics are relevant
for exam

I Reminder: Please assign yourself to a group in the LernraumPlus,
if desired; individual work possible, of course

I Groups were supposed to be up to 2-3 people; individual work
possible, of course

TODAY: OVERVIEW

Contents today

I Useful things II (not relevant for exam)

I Similarity of sets: purpose, basic idea

I Similarity of documents: turning documents into sets + shingles

I Computing the similarity of sets + minhashing

Useful Things to Know II

USEFUL THINGS TO KNOW

I The TF.IDF measure of word importance + done!
I Hash functions + done!
I Secondary storage (disk) and running time of algorithms
I The natural logarithm
I Power laws

SECONDARY STORAGE

I Important to keep in mind when dealing with big data: accessing data
from disks (hard drives) costs time (and energy).

I Disks are organized into blocks; e.g. blocks of 64K bytes.
I Takes approx. 10 milliseconds to access and read a disk block.
I About 105 times slower than accessing data in main memory.
I And taking a block to main memory costs more time than executing the

computations on the data when being in main memory.

SECONDARY STORAGE

I One can alleviate problem by putting related data on a single cylinder;
accessing all blocks on a cylinder costs considerably less time per block

I Establishes limit of 100MB per second to transfer blocks to main
memory

I If data is in the hundreds of gigabytes, let alone terabytes, this is an
issue

I Integrate this knowledge into runtime considerations when dealing with big
data!

THE NATURAL LOGARITHM I

I Euler constant:

e = lim
x→∞

(1 +
1
x
)x ≈ 2.71828 (1)

I Consider computing (1 + a)b where a is small:

(1 + a)b = (1 + a)(1/a)(ab) a=1/x
= (1 +

1
x
)x(ab) = ((1 +

1
x
)x)ab x large

≈ eab

I Consider computing (1− a)b where a is small:

(1− a)b = (1− a)(1/a)(ab) −a=1/x
= ((1 +

1
x
)x)−ab x large

≈ e−ab

EULER CONSTANT: TAYLOR EXPANSION OF ex

I The Taylor expansion of ex is

ex =

∞∑
i=0

xi

i!
= 1 + x +

x2

2
+

x3

6
+

x4

24
+ ... (2)

I Convergence slow on large x, so not helpful.

I Convergence fast on small (positive and negative) x.

I Example: x = 1/2

e1/2 = 1 +
1
2
+

1
8
+

1
48

+
1

384
+ ... ≈ 1.64844

I Example: x = −1

e−1 = 1− 1 +
1
2
− 1

6
+

1
24
− 1

120
+

1
720
− 1

5040
... ≈ 0.36786

POWER LAWS

I Consider two variables y and x and their functional
relationship.

I General form of a power law is

log y = b + a log x (3)

so a linear relationship between the logarithms of x and y.

POWER LAW: EXAMPLE

log10 y = 6− 2 log10 x

POWER LAWS

I Power law:
log y = b + a log x (4)

I Transforming yields:

y = eb · ea log x = eb · elog xa
= eb · xa (5)

so power law expresses polynomial relationship y = cxa

I Example slide before (logarithm base 10):

y = 106 · x−2 (6)

REAL WORLD SCENARIOS

I Node degrees in web graph
I Nodes are web pages
I Nodes are linked when there are links between pages
I Order pages by numbers of links: number of pages as a

function of the order number is power law

I Sales of products: y is the number of sales of the x-th most popular
item (books at amazon.com, say)

I Sizes of web sites: y is number of pages at the x-th largest web site

POWER LAW: EXAMPLE II

Power law for links in web pages / sales of books

REAL WORLD SCENARIOS

I Zipf’s Law: Order words in document by frequency, and let y be
the number of times the x-th word appears in the document.

I Zipf found the relationship to approximately reflect y = cx−1/2.
I Other relationships follow that law, too. For example, y is

population of x-th most populous (American) state.

I Summary: The Matthew Effect = “The rich get ever richer”

Finding Similar Items: Introduction

FINDING SIMILAR ITEMS

Fundamental problem in data mining: retrieve pairs of similar
elements of a dataset.

Applications

I Detecting plagiarism in a set of documents

I Identifying near-identical mirror pages during web searches

I Identifying documents from the same author

I Collaborative Filtering
I Online Purchases (Amazon: suggestions based on ’similar’

customers)
I Movie Ratings (Netflix: suggestions based on ’similar’ users)

ISSUES

Consider a dataset of N items, for example: N webpages or N text
documents.

I Comparing all items requires O(N2) runtime.
I Ok for small N.
I If N ≈ 106, we have 1012 comparisons. Maybe not OK!

I How to efficiently compute similarity if items themselves are
large?

I Similarity works well for sets of items. How to turn data into
sets of items?

OVERVIEW

From mmds.org

I Shingling: turning text files into sets

I Minhashing: computing similarity for large sets

I Locality Sensitive Hashing: avoids O(N2) comparisons by
determining candidate pairs

mmds.org

Shingles
–

Turning Documents into Sets

JACCARD SIMILARITY

DEFINITION [JACCARD SIMILARITY]
Consider two sets S and T. The Jaccard similarity SIM(S,T) is defined as

SIM(S,T) =
|S ∩ T|
|S ∪ T| (7)

the ratio of elements in the intersection and in the union of S and T.

SIM(S,T) = 3
8

SHINGLES: DEFINITION

I Document = large string of characters
I k-shingle: a substring of a particular length k
I Idea: A document is set of k-shingles
I Example: document = “acadacc′′, k-shingles for k = 2:

{ac, ad, ca, cc, da}

I We can now compute Jaccard similarity for two documents by
considering them as sets of shingles.

I Example: documents D1 = ”abcd”,D2 = ”dbcd” using 2-shingles yields
D1 = {ab, bc, cd},D2 = {bc, cd, db}, so
SIM(D1,D2) =

|{bc,cd}|
|{ab,bc,cd,db}| = 2/4 = 1/2

SHINGLES: DEFINITION

I Issue: Determining right size of k.
I k large enough such that any particular k-shingle appears in document

with low probability (k = 5, yielding 2565 different shingles on 256
different characters, ok for emails)

I too large k yields too large universe of elements (example: k = 9 means
2569 = (28)9 = 272 on the order of number of atoms in the universe)

I Solution if necessary k is too large: hash shingles to buckets, such that
buckets are evenly covered, and collisions are rare

I We would like to compute Jaccard similarity for pairs of sets
I But: even when hashed, size of the universe of elements (= # buckets

when hashed) may be prohibitive to do that fast
I What to do?

Minhashing
–

Rapidly Computing Similarity of Sets

SETS AS BITVECTORS

I Bitvectors:
I A bitvector is an array containing zeroes and ones
I E.g. [1, 0, 0, 1, 1] is a bitvector of length 5
I Formally: bitvectors of length N are elements of {0, 1}N

I Sets as bitvectors:
I Length of bitvectors is size of universal set
I Entries zero if element not in set, one if element in set
I Example: universal set = {a, b, c, d, e}; set A = {b, c, e}

A = [0
a
, 1

b
, 1

c
, 0

d
, 1

e
]

I When hashing shingles to buckets, length of bitvector = number
of buckets

I Does not reflect to really store the sets, but nice visualization

SETS AS BITVECTORS: THE CHARACTERISTIC MATRIX

DEFINITION [CHARACTERISTIC MATRIX]
Given C sets over a universe R, the characteristic matrix
M ∈ {0, 1}|R|×|C| is defined to have entries

M(r, c) =

{
0 if r 6∈ c
1 if r ∈ c

(8)

for r ∈ R, c ∈ C.

Characteristic matrix of four sets (S1, S2, S3, S4) over universal set {a, b, c, d, e}
From mmds.org

mmds.org

PERMUTATIONS

DEFINITION [BIJECTION,PERMUTATION]

I A bijection is a map π : S→ S such that

I π(x) = π(y) implies x = y (π is injective)
I For all y ∈ S there is x ∈ S such that π(x) = y (π is surjective)

I A permutation is a bijection

π : {1, ...,m} → {1, ...,m} (9)

Example: A permutation on {1, 2, 3, 4, 5}may map

1→ 4, 2→ 3, 3→ 1, 4→ 5 and 5→ 2

PERMUTING ROWS OF CHARACTERISTIC MATRIX

A characteristic matrix of four sets (S1, S2, S3, S4) over universal set
{a, b, c, d, e} and a permutation of its rows 1→ 3, 2→ 1, 3→ 5, 4→ 4, 5→ 2

MINHASH - DEFINITION

Consider

I a characteristic matrix with m rows

I a particular column S

I a permutation π on the rows, that is π : {1, ...,m} → {1, ...,m} is
a bijection

DEFINITION [MINHASH]
The minhash function hπ on S is defined by

hπ(S) = min
i∈{1,...,m}

{π(i) | S[i] = 1}

MINHASH - DEFINITION

DEFINITION [MINHASH]
The minhash function hπ on S is defined by

hπ(S) = min
i∈{1,...,m}

{π(i) | S[i] = 1}

EXPLANATION
The minhash of a column S relative to permutation π is

I after reordering rows according to the permutation π

I the first row in which a one in S appears

MINHASH - EXAMPLE

EXAMPLE
Let

I 1 corresponds to a, 2 to b, ...

I π : 1→ 3, 2→ 1, 3→ 5, 4→ 4, 5→ 2 and

hπ(S1) = 3, hπ(S2) = 5, hπ(S3) = 1, hπ(S4) = 3

MINHASHING AND JACCARD SIMILARITY

Given

I two columns (sets) S1,S2 of a characteristic matrix

I a randomly picked permutation π on the rows (on {1, ...,m})

THEOREM [MINHASH AND JACCARD SIMILARITY]:
The probability that hπ(S1) = hπ(S2) is SIM(S1,S2).

MINHASH AND JACCARD SIMILARITY - PROOF

THEOREM [MINHASH AND JACCARD SIMILARITY]:
The probability that hπ(S1) = hπ(S2) is SIM(S1,S2).

PROOF.
Distinguish three different classes of rows:

I Type X rows have a 1 in both S1,S2

I Type Y rows have a 1 in only one of S1,S2

I Type Z rows have a 0 in both S1,S2

Let x be the number of type X rows and y the number of type Y rows.

I So x = |S1 ∩ S2| and x + y = |S1 ∪ S2|
I Hence

SIM(S1,S2) =
|S1 ∩ S2|
|S1 ∪ S2|

=
x

x + y
(10)

MINHASH AND JACCARD SIMILARITY - PROOF

PROOF. (CONT.)

I Consider the probability that h(S1) = h(S2)

I Imagine rows to be permuted randomly; proceed from the top

I The probability to encounter type X before type Y is

x
x + y

(11)

I If first non type Z row is type X, then h(S1) = h(S2)
I If first non type Z row is type Y, then h(S1) 6= h(S2)

I So h(S1) = h(S2) happens with probability (11), which by (10)
concludes the proof.

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 3.1–3.3

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Finding Similar Items II”

I See Mining of Massive Datasets 3.4–3.6

http://www.mmds.org/

EXAMPLE / ILLUSTRATION

