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LEARNING GOALS TODAY / OVERVIEW

» Supervised learning: summary

» Support vector machines
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UNIVERSITAT
BIELEFELD




SUPERVISED LEARNING

» There is a functional relationship
foRISV

we would like to understand, or learn.
» Regression: V =R
» Classification: V = {1, ..., k}

» To learn it, we are given m data points

(i f*(%i) = Yi)i=1,..m
that reflect this functional relationship.

Final goal: Predict f*(x) well on unknown data points x.
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SUPERVISED VERSUS UNSUPERVISED LEARNING

» Unsupervised Learning:
» Given unlabeled data

» Goal: Infer subgroups of data points
» Alternative Problem Formulation: Learn the probability

distribution
P(X)

that governs the generation of data points
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UNSUPERVISEED LEARNING: EXAMPLE

).

Generative distribution yielding four clusters
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SUPERVISED VERSUS UNSUPERVISED LEARNING

» Supervised Learning:

» Given labeled data
(X0, Yi)i=1,....m
» Goul: Learn functional relationship f* : RY — V,
sty = f*(xi)
» Alternative Problem Formulation: Learn the probability
distribution
P(X,y) or P(y[X)

as a more general version of functional relationship
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UNSUPERVISEED LEARNING: EXAMPLE

P(11y)=0.35
P(21y)=0.65

P(212)=04

P(412)=06
P(11w)=0.5
P(31w)=0.5

Labels: 123

Generative distribution yielding four clusters and corresponding labels
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SUPERVISED LEARNING: TRAINING

» The idea is to set up a training procedure (an algorithm) that
learns f* from the training data.

> Learning f* means to approximate itby f : RY — V
sufficiently well, where f € M for a certain class of
functions M.

» In most cases, f € M are parameterized by parameters w.

This means that we have to pick an appropriate choice of
parameters w for learning f*.
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SUPERVISED LEARNING

» We need to determine a cost (or loss) function C where
C(f,f*) measures how well f € M approximates f*.

» Optimization: Pick f € M (by picking the right set of
parameters) that yields small (possibly minimal) cost
Clf.f7)

» Generalization: Optimization procedure should address
that f is to approximate f* well on unknown data points.
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LINEAR REGRESSION
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PERCEPTRON
EXAMPLE: f:R? — {0,1}

Perceptron model
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SUPERVISED LEARNING

SUMMARY

We need to specify:
» How to set up the data being used for training
» A model class M, for example linear functions

» A cost function C(f,f*) that evaluates the goodness of
feM

» An optimization procedure that picks f such that C(f,f*) is
minimal, or very small

» Keep in mind that f is to perform well on previously
unseen data
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SUPERVISED LEARNING

NOTATION

> The dataset is given by a design matrix X € R"*? where m is
the number of data points and d is the number of features

» Each data point x; (a row in X) is assigned to a label y; that
reflects the true functional relationship y; = f*(x;), where
further y = (y1, ..., ym) € V"™ is the label vector.
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Generalization

UNIVERSITAT
BIELEFELD




ENABLING GENERALIZATION: DATA

TRAINING, TEST AND VALIDATION

» Split (X,y) into

» training data (x(traim 7 y(train)
> validation data (X2 y(val)
> test data (X yltest))

» Training data:

» Used to pick the optimal set of parameters
» That is, pick the optimal, particular element of M
» Training reflects common optimization procedure
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ENABLING GENERALIZATION: DATA

TRAINING, TEST AND VALIDATION

» Split (X,y) into

> training data (X(rin) y(train)
> validation data (X3, y(val)
> test data ()((test)7 y(test))

» Validation data:

» Used to determine hyperparameters

» Hyperparameters refer to number of training iterations, choosing
optimization procecure, neural network architecture variants

» Some reflect selecting appropriate subsets of M
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ENABLING GENERALIZATION: DATA

TRAINING, TEST AND VALIDATION

» Split (X,y) into

> training data (X(""), y(train))
» validation data (X(Val)’y(val))
» test data (X(tESt)’ y(test))

» Nested training cycle:

1. Train on training data using current hyperparameters

= Yields parameters
2. Evaluate determined parameters on validation data

1= Adjusting hyperparameters yields new hyperparameters
3. Returnto 1.

» Nested training yields optimal parameters and hyperparameters
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ENABLING GENERALIZATION: DATA

TRAINING, TEST AND VALIDATION

» Split (X,y) into

> training data (X(rn) y(train)
> validation data (X" y(val)
» test data (X(‘esﬂ,y(test))

» Test data:

> (X() y(tY) are never touched during training
» Final goal is to minimize cost on test data

» Machine learning dilemma: Optimize with respect to data you do
not know
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ENABLING GENERALIZATION: MODEL

CAPACITY, UNDER- AND OVERFITTING

Underfitting Appropriate capacity Overfitting
e®
- / > -
id L
To Ty To

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

» Choose a class of models that has the right capacity
» Capacity too large: overfitting
» Capacity too small: underfitting
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

Let C(f,f*) be the cost function. Let w = (wq, ...
parameters specifying elements of f,, € M.

, Wy) be the

» Usually, C refers to only known data points. That is, C evaluates
as
C(f.f*) = D Clf () yi = f* (x) )

where x; runs over all training data points.

» Add a regularization term to cost function, and choose f,, that
yields minimal

Clfw,f7) + AQ2(w) ®)

» \is a hyperparameter
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ENABLING GENERALIZATION: COST FUNCTION

REGULARIZATION

» Prominent examples:
» L norm: Q(w) ==Y |w;l
> L, norm: Q(w) := >, w?

» Rationale: Penalize too many non-zero weights
» Virtually less complex model, hence virtually less capacity

» = Prevents overfitting, yields better generalization
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ENABLING GENERALIZATION: OPTIMIZATION

EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.

» Early stopping: Stop the optimization procedure before cost
function reaches an optimum on the training data.

» Dropout: Randomly fix parameters to zero, and optimize
remaining parameters.
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ENABLING GENERALIZATION: SUMMARY

» Training reflects an optimization procedure
» Insight: Optima correspond to overfitting training data

» Solution: Seek to output parameters “nearby” optima
» Nearly all generalization techniques address this:
» Early stopping stops optimization before optimum is
reached
» Dropout carries out optimization in pre-set
lower-dimensional subspace
» Regularization forces to watch out for optima in
lower-dimensional subspaces
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Prominent Supervised Learning Model Examples
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LINEAR REGRESSION

» Design matrix X € R™*4 label vector y € R™
» Model class: Let w € R4

fw=f(x;w): RY —
—

R
X T

w

(4)

X

» Remark: Note that the case w!x + b can be treated as a
special case to be included in M, by augmenting vectors x;
by an entry 1 (think about this...)

» Cost function (recall y; = f*(x;))

CF.f) = 1 Ga) o f on) 1B = Z(fxz—
©)
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LINEAR REGRESSION

Optimization
» Solve for
VWC(fW7f*) =0 (6)

to achieve a minimum. This yields the normal equations
w = (X"X)"XTy 7)

» Global optimum if X' X is invertible
» Do this on training data (so X = X(r2in) y — y(train)) only,
Hope that cost on test data is small.
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NORMAL EQUATIONS

Linear regression example Optimization of w
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» Left: Data points, and the linear function y = w;x that
approximates them best

» Right: Mean squared error (MSE) depending on w;

» Remark on Perceptrons: Optimizing is different, but also
supported by a very easy optimization scheme (the perceptron
algorithm)
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NEAREST NEIGHBOR CLASSIFICATION

» Consider appropriate distance measure
D:RxRT — Ry (8)

» For unknown data point x, determine the closest given
data point
x;+ := argmin;(D(x, x;)) 9)

» Predict label of x as ;-
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SUPPORT VECTOR MACHINES

» Realization: From (7), write
m m
wix = Z aix'x; = Z a; (X, X;) (10)
i=1 i=1

» Replace (., .) by different kernel (i.e. scalar product) k(_, .),
that is by computing (¢(.), ¢(.)) for appropriate ¢

1= Seek a’s to maximize margin: still easy to optimize both
for regression and classification!
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Support Vector Machines
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PERCEPTRON REVISITED

» A perceptron divides the space into two half spaces

» Half spaces capture the two different classes
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» Normal vector alternative description of half space




PERCEPTRON REVISITED

» Several half spaces (normal vectors) divide training data

» Question: any half space optimal, in a sensibly defined way?
» What to do if data cannot be separated (is non-separable)?
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SUPPORT VECTOR MACHINES: MOTIVATION

» Support vector machines (SVM’s) address to choose most
reasonable half space

» SVM'’s choose half space that maximizes the margin

» If separable, maximize distance between hyperplane and closest
data points

» If not separable, minimize loss function that

» penalizes misclassified points
» penalizes points correctly classified by too close to hyperplane (to
a lesser extent)
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SEPARABLE DATA

Support
vectors

» Goal: Select hyperplane w - x + b = 0 that maximizes distance

» Intuition: The further away data from hyperplane, the more
certain their classification

» Increases chances to correctly classify unseen data (to generalize)
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SUPPORT VECTORS

Support
vectors

» Two parallel hyperplanes at distance y touch one or more of
support vectors

» In most cases, d-dimensional data set has d + 1 support vectors
(but there can be more)
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PROBLEM FORMULATION: FIRST TRY

Let (x1,41), --., (Xn, Yn) be a training data set, where
X; € Rd,yi € {—1,—|—1},i= 1,...,n.

PROBLEM: By varying w, b, maximize y such that

yi(wx; +b) >~ foralli=1,..,n (11)

Issue
» Replacing w and b by 2w and 20 yields y;(2wx; + 2b) > 2y

» There is no optimal

Problem badly formulated = try harder!
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PROBLEM FORMULATION: SOLUTION

» Data set (x;,yi),i =1, ..., n as before

» Solution: Impose additional constraint: consider only
combinations w € R b € R such that for support vectors x

yi(wx +b) € {-1,+1} (12)
» Good Formulation: By varying w, b, maximize ~y such that
yiwx; +b) >~ foralli=1,...n (13)
and (12) applies
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PROBLEM FORMULATION: OBSERVATION

> Let
d(x;, H) := min{d(x;,x) | wx + b =0} (14)
be the distance between x; and H.

» Basic linear algebra implies that

1
d(x;,H) = M|wxi + b (15)

15 (13) maximizes distance between hyperplane and data points

i (12) ensures that support vectors are at distance 1/||wl]
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ALTERNATIVE PROBLEM FORMULATION I

Wil wll

WX+b=+1

wx+b=0
WX +b=-1

» w,b, vy determined according to (12),(13)

» X is support vector on lower hyperplane, so by (12),
wx, +b=-1

» Let x; be the projection of x, onto upper hyperplane:

X1 = X2 + 2’}/
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ALTERNATIVE PROBLEM FORMULATION II

That is, further, x; is on the hyperplane defined by wx + b =1,
meaning
wx;+b=1

Substituting (16) into (17) yields

w

By further regrouping, we obtain

WW

=1
[|wl]

wxy + b+ 2y

Because ww = ||w|[?, by further regrouping, we conclude that
1
Y= T
[wl|
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ALTERNATIVE PROBLEM FORMULATION III

Let dataset (x;,yi),i = 1, ..., n be as before.
EQUIVALENT PROBLEM FORMULATION:
By varying w, b, minimize ||w|| subject to

yi(wx; +b) >1 foralli=1,..,n

Optimizing under Constraints
» Topic is broadly covered
» Many packages can be used

> Target function >, w? quadratic; well manageable
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NON SEPARABLE DATA SETS

Misclassified

S wx+b=+1
Too close -~
to boundary WX+b=0
Situation:

wX +b=-1

» Some points misclassified, some too close to boundary
= bad points
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» Non separable data: any choice of w, b yields bad points




NON SEPARABLE DATA: MOTIVATION

Misclassified  ~- _ O
N Te)

WX +b=+1

Too close " -~

to boundary wx+b=0

@ WX +b=-1

» Situation: No hyperplane can separate the data points correctly

» Approach:

» Determine appropriate penalties for bad points
» Solve original problem, by involving penalties
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NON SEPARABLE DATA: MOTIVATION II

Let (x;,yi),i = 1,...n be training data, where
> X = (Xi1, s Xid),
> yie{-1,+1}

and let w = (wy, ..., wy).

Minimize the following function:

d n d
1
f(w,b) = 5 Z w]2 +C Z max{0,1 — yi(z wixij +b)}  (22)
=1 i=1 j=1
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NON SEPARABLE DATA: MOTIVATION II

d

n d
f(w,b) = %wa +CZmaX{O,1—yi(ijxlj+b)}

j=1 i=1 j=1
——
Seek minimal ||wl| Bad point penalty

» Minimizing ||w|| equivalent to minimizing monotone function of ||w/|
1w Minimizing f seeks minimal ||w]|

» Vectors w and training data balanced in terms of basic units:

AWIP/2) _y ang Ot

= X;i
awi 8’(1),‘ g

» Cis aregularization parameter

» Large C: minimize misclassified points, but accept narrow margin
» Small C: accept misclassified points, but widen margin
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NON SEPARABLE DATA: HINGE FUNCTION
Let the hinge function L be defined by

d
L(xi,y:) = max{0,1 —y:(D>_ wjxj + b)} (23)

j=1

max{0,1-z }

-2 -1 0 1 2 3
=y, (w.xX + D)

» L(x;,yi) = 01iff x; on the correct side of hyperplane with sufficient
margin

» The worse x; is located the greater L(x;, y;)
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NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

d
L(x;,yi) = max{0,1 — ]/i(z wixij + b)}

j=1
Partial derivatives of hinge function:

oL {o if yi (7 wi +b) > 1

7= 24
Ow; —yixij otherwise @)

Reflecting:
» If x; is on right side with suffcient margin: nothing to be done
» Otherwise adjust w; to have x; better placed
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GENERAL / FURTHER READING

Literature
» Mining Massive Datasets, Sections 12.1-12.3

http://infolab.stanford.edu/~ullman/mmds/
chl0.pdf
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http://infolab.stanford.edu/~ullman/mmds/ch10.pdf
http://infolab.stanford.edu/~ullman/mmds/ch10.pdf

