
Support Vector Machines II

Alexander Schönhuth

Bielefeld University
July 6, 2023



LEARNING GOALS TODAY / OVERVIEW

I Supervised learning: summary

I Support vector machines



Supervised Learning



SUPERVISED LEARNING

I There is a functional relationship

f ∗ : Rd → V

we would like to understand, or learn.
I Regression: V = R
I Classification: V = {1, ..., k}

I To learn it, we are given m data points

(xi, f ∗(xi) = yi)i=1,...,m

that reflect this functional relationship.

Final goal: Predict f ∗(x) well on unknown data points x.



SUPERVISED VERSUS UNSUPERVISED LEARNING

I Unsupervised Learning:
I Given unlabeled data

(xi)i=1,...,m

I Goal: Infer subgroups of data points
I Alternative Problem Formulation: Learn the probability

distribution
P(X)

that governs the generation of data points



UNSUPERVISEED LEARNING: EXAMPLE

Generative distribution yielding four clusters



SUPERVISED VERSUS UNSUPERVISED LEARNING

I Supervised Learning:
I Given labeled data

(xi, yi)i=1,...,m

I Goal: Learn functional relationship f ∗ : Rd → V,
s.t. yi = f ∗(xi)

I Alternative Problem Formulation: Learn the probability
distribution

P(X,y) or P(y | X)

as a more general version of functional relationship



UNSUPERVISEED LEARNING: EXAMPLE

Generative distribution yielding four clusters and corresponding labels



SUPERVISED LEARNING: TRAINING

I The idea is to set up a training procedure (an algorithm) that
learns f ∗ from the training data.

I Learning f ∗ means to approximate it by f : Rd → V
sufficiently well, where f ∈M for a certain class of
functionsM.

I In most cases, f ∈M are parameterized by parameters w.
This means that we have to pick an appropriate choice of
parameters w for learning f ∗.



SUPERVISED LEARNING

I We need to determine a cost (or loss) function C where
C(f , f ∗) measures how well f ∈M approximates f ∗.

I Optimization: Pick f ∈M (by picking the right set of
parameters) that yields small (possibly minimal) cost
C(f , f ∗)

I Generalization: Optimization procedure should address
that f is to approximate f ∗ well on unknown data points.



LINEAR REGRESSION
EXAMPLE: f : R→ R



PERCEPTRON
EXAMPLE: f : R2 → {0, 1}

f R2 −→ {0 = blue, 1 = red}

(x1, x2) 7→

{
1 x2 − x1 > 0
0 x2 − x1 ≤ 0

(1)



SUPERVISED LEARNING
SUMMARY

We need to specify:
I How to set up the data being used for training
I A model classM, for example linear functions
I A cost function C(f , f ∗) that evaluates the goodness of

f ∈M
I An optimization procedure that picks f such that C(f , f ∗) is

minimal, or very small
I Keep in mind that f is to perform well on previously

unseen data



SUPERVISED LEARNING
NOTATION

I The dataset is given by a design matrix X ∈ Rm×d where m is
the number of data points and d is the number of features

I Each data point xi (a row in X) is assigned to a label yi that
reflects the true functional relationship yi = f ∗(xi), where
further y = (y1, ..., ym) ∈ Vm is the label vector.



Generalization



ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I Training data:
I Used to pick the optimal set of parameters
I That is, pick the optimal, particular element ofM
I Training reflects common optimization procedure



ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I Validation data:
I Used to determine hyperparameters
I Hyperparameters refer to number of training iterations, choosing

optimization procecure, neural network architecture variants
I Some reflect selecting appropriate subsets ofM



ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I Nested training cycle:

1. Train on training data using current hyperparameters
+ Yields parameters

2. Evaluate determined parameters on validation data
+ Adjusting hyperparameters yields new hyperparameters

3. Return to 1.

I Nested training yields optimal parameters and hyperparameters



ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I Test data:
I (X(test), y(test)) are never touched during training
I Final goal is to minimize cost on test data

I Machine learning dilemma: Optimize with respect to data you do
not know



ENABLING GENERALIZATION: MODEL
CAPACITY, UNDER- AND OVERFITTING

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

I Choose a class of models that has the right capacity

I Capacity too large: overfitting

I Capacity too small: underfitting



ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

Let C(f , f ∗) be the cost function. Let w = (w1, ...,wk) be the
parameters specifying elements of fw ∈M.

I Usually, C refers to only known data points. That is, C evaluates
as

C(f , f ∗) =
∑

i

C(f (xi), yi = f ∗(xi)) (2)

where xi runs over all training data points.

I Add a regularization term to cost function, and choose fw that
yields minimal

C(fw, f ∗) + λΩ(w) (3)

I λ is a hyperparameter



ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

I Prominent examples:
I L1 norm: Ω(w) :=

∑
i |wi|

I L2 norm: Ω(w) :=
∑

i w2
i

I Rationale: Penalize too many non-zero weights
I Virtually less complex model, hence virtually less capacity
I + Prevents overfitting, yields better generalization



ENABLING GENERALIZATION: OPTIMIZATION
EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.
I Early stopping: Stop the optimization procedure before cost

function reaches an optimum on the training data.
I Dropout: Randomly fix parameters to zero, and optimize

remaining parameters.



ENABLING GENERALIZATION: SUMMARY

I Training reflects an optimization procedure
I Insight: Optima correspond to overfitting training data
I Solution: Seek to output parameters “nearby” optima
I Nearly all generalization techniques address this:

I Early stopping stops optimization before optimum is
reached

I Dropout carries out optimization in pre-set
lower-dimensional subspace

I Regularization forces to watch out for optima in
lower-dimensional subspaces



Prominent Supervised Learning Model Examples



LINEAR REGRESSION

I Design matrix X ∈ Rm×d, label vector y ∈ Rm

I Model class: Let w ∈ Rd

fw = f (x; w) : Rd −→ R
x 7→ wTx

(4)

I Remark: Note that the case wTx + b can be treated as a
special case to be included inM, by augmenting vectors xi
by an entry 1 (think about this...)

I Cost function (recall yi = f ∗(xi))

C(f , f ∗) :=
1
m
||(f (x1), ..., f (xm))− y||22 =

1
m

m∑
i=1

(f (xi)− yi)
2

(5)



LINEAR REGRESSION

Optimization

I Solve for
∇wC(fw, f ∗) = 0 (6)

to achieve a minimum. This yields the normal equations

w = (XTX)−1XTy (7)

I Global optimum if XTX is invertible
I Do this on training data (so X = X(train),y = y(train)) only.

Hope that cost on test data is small.



NORMAL EQUATIONS

I Left: Data points, and the linear function y = w1x that
approximates them best

I Right: Mean squared error (MSE) depending on w1

I Remark on Perceptrons: Optimizing is different, but also
supported by a very easy optimization scheme (the perceptron
algorithm)



NEAREST NEIGHBOR CLASSIFICATION

I Consider appropriate distance measure

D : Rd × Rd −→ R+ (8)

I For unknown data point x, determine the closest given
data point

xi∗ := argmini(D(x, xi)) (9)

I Predict label of x as yi∗



SUPPORT VECTOR MACHINES

I Realization: From (7), write

wTx =

m∑
i=1

αixTxi =

m∑
i=1

αi〈x, xi〉 (10)

I Replace 〈., .〉 by different kernel (i.e. scalar product) k(., .),
that is by computing 〈φ(.), φ(.)〉 for appropriate φ

+ Seek α’s to maximize margin: still easy to optimize both
for regression and classification!



Support Vector Machines



PERCEPTRON REVISITED

I A perceptron divides the space into two half spaces

I Half spaces capture the two different classes

I Normal vector alternative description of half space



PERCEPTRON REVISITED

I Several half spaces (normal vectors) divide training data

I Question: any half space optimal, in a sensibly defined way?

I What to do if data cannot be separated (is non-separable)?



SUPPORT VECTOR MACHINES: MOTIVATION

I Support vector machines (SVM’s) address to choose most
reasonable half space

I SVM’s choose half space that maximizes the margin

I If separable, maximize distance between hyperplane and closest
data points

I If not separable, minimize loss function that
I penalizes misclassified points
I penalizes points correctly classified by too close to hyperplane (to

a lesser extent)



SEPARABLE DATA

I Goal: Select hyperplane w · x + b = 0 that maximizes distance γ

I Intuition: The further away data from hyperplane, the more
certain their classification

I Increases chances to correctly classify unseen data (to generalize)



SUPPORT VECTORS

I Two parallel hyperplanes at distance γ touch one or more of
support vectors

I In most cases, d-dimensional data set has d + 1 support vectors
(but there can be more)



PROBLEM FORMULATION: FIRST TRY

Let (x1, y1), ..., (xn, yn) be a training data set, where
xi ∈ Rd, yi ∈ {−1,+1}, i = 1, ...,n.

PROBLEM: By varying w, b, maximize γ such that

yi(wxi + b) ≥ γ for all i = 1, ...,n (11)

Issue
I Replacing w and b by 2w and 2b yields yi(2wxi + 2b) ≥ 2γ

I There is no optimal γ

Problem badly formulated + try harder!



PROBLEM FORMULATION: SOLUTION

I Data set (xi, yi), i = 1, ...,n as before

I Solution: Impose additional constraint: consider only
combinations w ∈ Rd, b ∈ R such that for support vectors x

yi(wx + b) ∈ {−1,+1} (12)

I Good Formulation: By varying w, b, maximize γ such that

yi(wxi + b) ≥ γ for all i = 1, ...,n (13)

and (12) applies



PROBLEM FORMULATION: OBSERVATION

I Let
d(xi,H) := min

x
{d(xi, x) | wx + b = 0} (14)

be the distance between xi and H.

I Basic linear algebra implies that

d(xi,H) =
1
||w||

|wxi + b| (15)

+ (13) maximizes distance between hyperplane and data points

+ (12) ensures that support vectors are at distance 1/||w||



ALTERNATIVE PROBLEM FORMULATION I

I w, b, γ determined according to (12),(13)
I x2 is support vector on lower hyperplane, so by (12),

wx2 + b = −1
I Let x1 be the projection of x2 onto upper hyperplane:

x1 = x2 + 2γ
w
||w||

(16)



ALTERNATIVE PROBLEM FORMULATION II
That is, further, x1 is on the hyperplane defined by wx + b = 1,
meaning

wx1 + b = 1 (17)

Substituting (16) into (17) yields

w · (x2 + 2γ
w
||w||

) + b = 1 (18)

By further regrouping, we obtain

wx2 + b + 2γ
ww
||w||

= 1 (19)

Because ww = ||w||2, by further regrouping, we conclude that

γ =
1
||w||

(20)



ALTERNATIVE PROBLEM FORMULATION III

Let dataset (xi, yi), i = 1, ...,n be as before.

EQUIVALENT PROBLEM FORMULATION:

By varying w, b, minimize ||w|| subject to

yi(wxi + b) ≥ 1 for all i = 1, ...,n (21)

Optimizing under Constraints

I Topic is broadly covered

I Many packages can be used

I Target function
∑

i w2
i quadratic; well manageable



NON SEPARABLE DATA SETS

Situation:

I Some points misclassified, some too close to boundary
+ bad points

I Non separable data: any choice of w, b yields bad points



NON SEPARABLE DATA: MOTIVATION

I Situation: No hyperplane can separate the data points correctly

I Approach:
I Determine appropriate penalties for bad points
I Solve original problem, by involving penalties



NON SEPARABLE DATA: MOTIVATION II

Let (xi, yi), i = 1, ...n be training data, where

I xi = (xi1, ..., xid),

I yi ∈ {−1,+1}

and let w = (w1, ...,wd).

Minimize the following function:

f (w, b) =
1
2

d∑
j=1

w2
j + C

n∑
i=1

max{0, 1− yi(

d∑
j=1

wjxij + b)} (22)



NON SEPARABLE DATA: MOTIVATION II

f (w, b) =
1
2

d∑
j=1

w2
j︸ ︷︷ ︸

Seek minimal ||w||

+ C
n∑

i=1

max{0, 1− yi(

d∑
j=1

wjxij + b)}

︸ ︷︷ ︸
Bad point penalty

I Minimizing ||w|| equivalent to minimizing monotone function of ||w||
+ Minimizing f seeks minimal ||w||

I Vectors w and training data balanced in terms of basic units:

∂(||w||2/2)
∂wi

= wi and
∂(

∑d
j=1 wjxij + b)

∂wi
= xij

I C is a regularization parameter
I Large C: minimize misclassified points, but accept narrow margin
I Small C: accept misclassified points, but widen margin



NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

L(xi, yi) = max{0, 1− yi(
d∑

j=1

wjxij + b)} (23)

I L(xi, yi) = 0 iff xi on the correct side of hyperplane with sufficient
margin

I The worse xi is located the greater L(xi, yi)



NON SEPARABLE DATA: HINGE FUNCTION

Let the hinge function L be defined by

L(xi, yi) = max{0, 1− yi(

d∑
j=1

wjxij + b)}

Partial derivatives of hinge function:

∂L
∂wj

=

{
0 if yi(

∑d
j=1 wjxij + b) ≥ 1

−yixij otherwise
(24)

Reflecting:

I If xi is on right side with suffcient margin: nothing to be done

I Otherwise adjust wj to have xi better placed



GENERAL / FURTHER READING

Literature
I Mining Massive Datasets, Sections 12.1–12.3

http://infolab.stanford.edu/˜ullman/mmds/
ch10.pdf

http://infolab.stanford.edu/~ullman/mmds/ch10.pdf
http://infolab.stanford.edu/~ullman/mmds/ch10.pdf

