
Social Networks III
Support Vector Machines I

Alexander Schönhuth

Bielefeld University
July 5, 2023

LEARNING GOALS TODAY / OVERVIEW

I Overlapping communities: the Graph Affiliation Model

I Direct discovery of overlapping communities

I Supervised learning: summary

Reminder: Graph Affiliation Model

OVERLAPPING COMMUNITIES

Subgraph from Facebook
Adopted from mmds.org

I Observation: Communities in social networks can overlap

I Graph partitioning does not help in these cases

I Would like to have a statistical interpretation of network data

mmds.org

COMMUNITY DISCOVERY: GOAL

Revealing (overlapping) communities
Adopted from mmds.org

I Goal: Discover communities correctly

I Regardless of whether they overlap or not

Determine the statistically most plausible community structure

mmds.org

AFFILIATION GRAPH MODEL: INTRODUCTION

I Issue: Statistical control over community structure of a network
I Idea: Design generative probability distribution
I Given a number of nodes, this generative distribution generates edges

I The generative distribution represents a particular community
structure

I The distribution knows about nodes belonging to communities
I It generates more edges within communities
I It generates less edges between communities

AFFILIATION GRAPH MODEL: INTRODUCTION

I Issue: Statistical control over community structure of a network
I Idea: Design generative probability distribution
I Given a number of nodes, this generative distribution generates edges

Distribution representing a community structure generating network
Adopted from mmds.org

mmds.org

AFFILIATION GRAPH MODEL: INTRODUCTION

Distribution representing a community structure (left) generating network (right)
Adopted from mmds.org

I We can generate networks when knowing community structure

I But: We would like to determine the community structure when
knowing the network

Isn’t that exactly the opposite?

mmds.org

GENERATIVE DISTRIBUTIONS

We can do this: generating network from distribution...
Adopted from mmds.org

...but we want this: inferring distribution from network
Adopted from mmds.org

mmds.org
mmds.org

GENERATIVE DISTRIBUTIONS: MAXIMUM

LIKELIHOOD INFERENCE

We want to infer distribution from network
Adopted from mmds.org

Maximum Likelihood Estimation
I Let P(N | θ) be the probability that distribution θ ∈ Θ generates

network N
I Maximum likelihood estimation: Determine distribution θ̂ that generated

N with greatest likelihood:

θ̂ := arg max
θ∈Θ

P(N | θ) (1)

I This computes most reasonable distribution θ̂ for network N

mmds.org

AFFILIATION GRAPH MODEL: DEFINITION I

I An AGM θ generates a network N = (V,E) by adding edges E to
a given set of nodes V

I For u, v ∈ V, edge (u, v) is generated with probability Pθ((u, v))

I Pθ((u, v)) depends on the parameters θ

I Recall that θ specifies community structure

So, what exactly is θ supposed to be?

AFFILIATION GRAPH MODEL: PARAMETERS

I C, as a set of communities
I M ∈ {0, 1}C×V , specifying assignment of nodes v ∈ V to communities

C ∈ C, where

MC,v =

{
1 v belongs to C
0 otherwise

(2)

I M specifies “affiliations” of nodes v ∈ V
I Note that one can vary C, as a parameter, but not V

I (pC)C∈C as probabilities to generate edges (u, v) because u, v ∈ C
I Summary: A particular AGM θ corresponds to

θ = (C,M, (pC)C∈C) (3)

AFFILIATION GRAPH MODEL: Pθ((u, v))

Several C containing both u, v

I Let Mu,Mv ⊂ C be the subsets of communities that contain u and v,
respectively

I Existence of communities that contain both u, v means

Mu ∩ Mv 6= ∅

I Memberships in different communities have no influence on each other
I That is, we assume statistical independence

AFFILIATION GRAPH MODEL: Pθ((u, v))

Several C containing both u, v

I Statistical independence is expressed by∏
C∈Mu∩Mv

(1− pC)

as probability of no edge (u, v) in any community C ∈ Mu ∩Mv

I Hence, the probability to generate (u, v) is

1−
∏

C∈Mu∩Mv

(1− pC) (4)

Done? No: What about Mu ∩ Mv = ∅?

AFFILIATION GRAPH MODEL: Pθ((u, v))

No C containing both u, v

I For Mu ∩ Mv = ∅, computing (4) yields (empty product is 1)

1−
∏
C∈∅

(1− pC) = 1− 1 = 0

I No edges across communities makes no sense
I Let ε > 0 be small; we generate an edge (u, v) with probability

Pθ((u, v)) = ε if Mu ∩ Mv = ∅

AFFILIATION GRAPH MODEL: Pθ((u, v))

AFFILIATION GRAPH MODEL (AGM)

I An edge (u, v) is generated with probability

Pθ((u, v)) =

{
1−

∏
C∈Mu∩Mv

(1− pC) Mu ∩ Mv 6= ∅
ε Mu ∩ Mv = ∅

(5)

I Edges (u, v) are generated independently from one another
I Overall: The probability Pθ(E) to generate edges E given AGM θ

computes as

Pθ(E) =
∏

(u,v)∈E

Pθ((u, v))×
∏

(u,v) 6∈E

1− Pθ((u, v)) (6)

where Pθ((u, v)) are computed following (5), with θ = (C,M, pC)
determining pC and Mu,Mv and so on.

AFFILIATION GRAPH MODEL: OVERALL PROBABILITY

AFFILIATION GRAPH MODEL (AGM)

I The probability Pθ(E) to generate E given θ is

Pθ(E) =
∏

(u,v)∈E

Pθ((u, v))×
∏

(u,v) 6∈E

1− Pθ((u, v)) (7)

I Reminder: For a given network N = (V,E), the goal is to determine

θ̂ := arg max
θ∈Θ

Pθ(E)

I That is, we need to vary θ = (C,M, pC) until Pθ(E) is maximal

How to systematically vary θ = (C,M, pC)?

COMPUTING THE MLE θ̂

ISSUES

I Search space of combinations of
I Communities C,
I Assignments of nodes to communities M, and
I Probabilities pC for communities

tends to be huge
I Concise formulas of (7) for Pθ(E) as function of θ too difficult
I Analytical solution for determining θ̂ := arg maxθ∈Θ Pθ(E) not

available
I Moreover, parameters are both discrete (C,M) and continuous ((pC)C∈C)

COMPUTING THE MLE θ̂

APPROACH

1. Pick initial set of parameters θ0

2. Vary θ such that Pθ(E) iteratively increases

3. Vary C or M first

+ Partial derivates of Pθ(E) wrt. pC computable on fixed C,M

4. Determine optimal (pC)C∈C , e.g. by gradient descent

5. Keep change if Pθ(E) has increased, discard otherwise

COMPUTING THE MLE θ̂

ITERATIVE VARIATIONS OF C,M

I Varying M:
I Delete node from community, i.e. for MC,v = 1, set MC,v = 0
I Add node to community, i.e. for MC,v = 0, set MC,v = 1

I Varying C:
I Merge two communities
I Split community
I Delete community
I Add new community, with initial random selection of members

COMPUTING THE MLE θ̂

SOFT COMMUNITY MEMBERSHIP

I Instead of MC,v ∈ {0, 1}, allow any real-numbered MC,v ≥ 0

I For (u, v) to be generated because of u, v ∈ C, let

Pθ((u, v)) = 1− e−MC,uMC,v (8)

be the individual probability

I Proceeding exactly as before, we obtain

Pθ(E) =
∏

(u,v)∈E

(1− e−
∑

C MC,uMC,v)
∏

(u,v) 6∈E

e−
∑

C MC,uMC,v (9)

COMPUTING THE MLE θ̂

SOFT COMMUNITY MEMBERSHIP

I Probability for edges E:

Pθ(E) =
∏

(u,v)∈E

(1− e−
∑

C MC,uMC,v)
∏

(u,v)6∈E

e−
∑

C MC,uMC,v (10)

I On fixed communities, include M in gradient descent (or
related) optimization step

I Advantages:
I Only one gradient descent run necessary
I Less prone to get stuck in unfavorable local optima

I If necessary, add or delete communities, and re-run

Direct Discovery of Overlapping Communities

INTRODUCTION

I Popular idea: Determine communities as (induced) subgraphs of
a certain type

I Subgraphs should contain unusually large amount of edges

I Subgraphs are allowed to overlap

I Will treat two types briefly here:
I Cliques
I Complete bipartite subgraphs

FINDING CLIQUES

DEFINITION [INDUCED SUBGRAPH]
Let G = (V,E) be a graph. A subgraph C = (V′ ⊂ V,E′ ⊂ E) is induced iff

(v′,w′) ∈ E implies (v′,w′) ∈ E′

for any v′,w′ ∈ V′.

DEFINITION [CLIQUE]
Let G = (V,E) be a graph.

I An induced subgraph C = (V′,E′) is called a clique iff any pair of nodes
in C is connected by an edge.

I A clique C = (V′,E′) is maximal iff extending the clique by any node
and its edges implies that the clique property no longer holds.

COMMUNITIES AS CLIQUES

I Possible idea: Determine communities as maximal cliques

I Caveat: The number of maximal cliques in a graph may be
exponential in the number of nodes

I So, listing all maximal cliques is a computationally demanding
problem

I Nevertheless, identifying communities as clique like
arrangements is popular

COMPLETE BIPARTITE GRAPHS

DEFINITION [(COMPLETE) BIPARTITE GRAPHS]
A graph G = (V,E) with vertices V and edges E is referred to as bipartite iff

I there are V1,V2 ⊂ V such that

V = V1 ∪̇ V2 and E ⊂ (V1 × V2)

I A bipartite graph G = (V,E) is complete iff

V = V1 ∪̇ V2 and E = (V1 × V2)

that is iff each node from V1 is connected with each node from V2

I A complete bipartite graph where |V1| = s, |V2| = t is referred to as Ks,t

I A complete bipartite graph is also referred to as biclique

COMPLETE BIPARTITE GRAPHS AND COMMUNITIES

I Strategy: Seek to discover all sufficiently large bicliques

I Treat them as “nuclei” (or seeds) of communities

I Theoretical Advantage over Cliques: While it is not possible to
guarantee the existence of large cliques for graphs with many
edges, one can guarantee the existence of large bicliques

FINDING COMPLETE BIPARTITE GRAPHS

Frequent Itemset Mining Problem

I Let G = (V,E) on V = V1 ∪̇ V2 be a (large) bipartite graph

I Items are nodes from V1

I Baskets are nodes from V2

I Items in baskets are nodes from V1 connected to basket node

I Ks,t in G is itemset of size s that appears in t baskets

I So mining for frequent itemsets at threshold t dicovers all Ks,t

Supervised Learning

SUPERVISED LEARNING

I There is a functional relationship

f ∗ : Rd → V

we would like to understand, or learn.
I Regression: V = R
I Classification: V = {1, ..., k}

I To learn it, we are given m data points

(xi, f ∗(xi) = yi)i=1,...,m

that reflect this functional relationship.

Final goal: Predict f ∗(x) well on unknown data points x.

SUPERVISED VERSUS UNSUPERVISED LEARNING

I Unsupervised Learning:
I Given unlabeled data

(xi)i=1,...,m

I Goal: Infer subgroups of data points
I Alternative Problem Formulation: Learn the probability

distribution
P(X)

that governs the generation of data points

UNSUPERVISEED LEARNING: EXAMPLE

Generative distribution yielding four clusters

SUPERVISED VERSUS UNSUPERVISED LEARNING

I Supervised Learning:
I Given labeled data

(xi, yi)i=1,...,m

I Goal: Learn functional relationship f ∗ : Rd → V,
s.t. yi = f ∗(xi)

I Alternative Problem Formulation: Learn the probability
distribution

P(X,y) or P(y | X)

as a more general version of functional relationship

UNSUPERVISEED LEARNING: EXAMPLE

Generative distribution yielding four clusters and corresponding labels

SUPERVISED LEARNING: TRAINING

I The idea is to set up a training procedure (an algorithm) that
learns f ∗ from the training data.

I Learning f ∗ means to approximate it by f : Rd → V
sufficiently well, where f ∈M for a certain class of
functionsM.

I In most cases, f ∈M are parameterized by parameters w.
This means that we have to pick an appropriate choice of
parameters w for learning f ∗.

SUPERVISED LEARNING

I We need to determine a cost (or loss) function C where
C(f , f ∗) measures how well f ∈M approximates f ∗.

I Optimization: Pick f ∈M (by picking the right set of
parameters) that yields small (possibly minimal) cost
C(f , f ∗)

I Generalization: Optimization procedure should address
that f is to approximate f ∗ well on unknown data points.

LINEAR REGRESSION
EXAMPLE: f : R→ R

PERCEPTRON
EXAMPLE: f : R2 → {0, 1}

f R2 −→ {0 = blue, 1 = red}

(x1, x2) 7→

{
1 x2 − x1 > 0
0 x2 − x1 ≤ 0

(11)

SUPERVISED LEARNING
SUMMARY

We need to specify:
I How to set up the data being used for training
I A model classM, for example linear functions
I A cost function C(f , f ∗) that evaluates the goodness of

f ∈M
I An optimization procedure that picks f such that C(f , f ∗) is

minimal, or very small
I Keep in mind that f is to perform well on previously

unseen data

SUPERVISED LEARNING
NOTATION

I The dataset is given by a design matrix X ∈ Rm×d where m is
the number of data points and d is the number of features

I Each data point xi (a row in X) is assigned to a label yi that
reflects the true functional relationship yi = f ∗(xi), where
further y = (y1, ..., ym) ∈ Vm is the label vector.

Generalization

ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I Training data:
I Used to pick the optimal set of parameters
I That is, pick the optimal, particular element ofM
I Training reflects common optimization procedure

ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I Validation data:
I Used to determine hyperparameters
I Hyperparameters refer to number of training iterations, choosing

optimization procecure, neural network architecture variants
I Some reflect selecting appropriate subsets ofM

ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I Nested training cycle:

1. Train on training data using current hyperparameters
+ Yields parameters

2. Evaluate determined parameters on validation data
+ Adjusting hyperparameters yields new hyperparameters

3. Return to 1.

I Nested training yields optimal parameters and hyperparameters

ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I Test data:
I (X(test), y(test)) are never touched during training
I Final goal is to minimize cost on test data

I Machine learning dilemma: Optimize with respect to data you do
not know

ENABLING GENERALIZATION: MODEL
CAPACITY, UNDER- AND OVERFITTING

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

I Choose a class of models that has the right capacity

I Capacity too large: overfitting

I Capacity too small: underfitting

ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

Let C(f , f ∗) be the cost function. Let w = (w1, ...,wk) be the
parameters specifying elements of fw ∈M.

I Usually, C refers to only known data points. That is, C evaluates
as

C(f , f ∗) =
∑

i

C(f (xi), yi = f ∗(xi)) (12)

where xi runs over all training data points.

I Add a regularization term to cost function, and choose fw that
yields minimal

C(fw, f ∗) + λΩ(w) (13)

I λ is a hyperparameter

ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

I Prominent examples:
I L1 norm: Ω(w) :=

∑
i |wi|

I L2 norm: Ω(w) :=
∑

i w2
i

I Rationale: Penalize too many non-zero weights
I Virtually less complex model, hence virtually less capacity
I + Prevents overfitting, yields better generalization

ENABLING GENERALIZATION: OPTIMIZATION
EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.
I Early stopping: Stop the optimization procedure before cost

function reaches an optimum on the training data.
I Dropout: Randomly fix parameters to zero, and optimize

remaining parameters.

ENABLING GENERALIZATION: SUMMARY

I Training reflects an optimization procedure
I Insight: Optima correspond to overfitting training data
I Solution: Seek to output parameters “nearby” optima
I Nearly all generalization techniques address this:

I Early stopping stops optimization before optimum is
reached

I Dropout carries out optimization in pre-set
lower-dimensional subspace

I Regularization forces to watch out for optima in
lower-dimensional subspaces

Prominent Supervised Learning Model Examples

LINEAR REGRESSION

I Design matrix X ∈ Rm×d, label vector y ∈ Rm

I Model class: Let w ∈ Rd

fw = f (x; w) : Rd −→ R
x 7→ wTx

(14)

I Remark: Note that the case wTx + b can be treated as a
special case to be included inM, by augmenting vectors xi
by an entry 1 (think about this...)

I Cost function (recall yi = f ∗(xi))

C(f , f ∗) :=
1
m
||(f (x1), ..., f (xm))− y||22 =

1
m

m∑
i=1

(f (xi)− yi)
2

(15)

LINEAR REGRESSION

Optimization

I Solve for
∇wC(fw, f ∗) = 0 (16)

to achieve a minimum. This yields the normal equations

w = (XTX)−1XTy (17)

I Global optimum if XTX is invertible
I Do this on training data (so X = X(train),y = y(train)) only.

Hope that cost on test data is small.

NORMAL EQUATIONS

I Left: Data points, and the linear function y = w1x that
approximates them best

I Right: Mean squared error (MSE) depending on w1

I Remark on Perceptrons: Optimizing is different, but also
supported by a very easy optimization scheme (the perceptron
algorithm)

NEAREST NEIGHBOR CLASSIFICATION

I Consider appropriate distance measure

D : Rd × Rd −→ R+ (18)

I For unknown data point x, determine the closest given
data point

xi∗ := argmini(D(x, xi)) (19)

I Predict label of x as yi∗

SUPPORT VECTOR MACHINES

I Realization: From (17), write

wTx =

m∑
i=1

αixTxi =

m∑
i=1

αi〈x, xi〉 (20)

I Replace 〈., .〉 by different kernel (i.e. scalar product) k(., .),
that is by computing 〈φ(.), φ(.)〉 for appropriate φ

+ Seek α’s to maximize margin: still easy to optimize both
for regression and classification!

GENERAL / FURTHER READING

Literature
I Mining Massive Datasets, Sections 10.3, 10.5, 12.1–12.3

http://infolab.stanford.edu/˜ullman/mmds/
ch10.pdf

http://infolab.stanford.edu/~ullman/mmds/ch10.pdf
http://infolab.stanford.edu/~ullman/mmds/ch10.pdf

