
Social Networks II

Alexander Schönhuth

Bielefeld University
June 29, 2022



LEARNING GOALS TODAY / OVERVIEW

I Non-overlapping communities: the Girvan-Newman Algorithm
I Overlapping communities: the Graph Affiliation Model



Reminder: Betweenness



BETWEENNESS

Idea: Identify edges that are least likely to be within community

DEFINITION [BETWEENNESS]
The betweenness of an edge (a, b) is

I the number of pairs of nodes (x, y) such that (a, b) makes part of
the shortest path leading from x to y

I If for (x, y) there are several shortest paths, (a, b) is credited the
fraction of shortest paths leading through (a, b) when computing
its betweenness



BETWEENNESS: EXAMPLE

Adopted from mmds.org

I (B,D) has the greatest betweenness, 12
I It is on any shortest path between A,B,C and D,E, F,G

I (D,F) has betweenness 4
I It lies on all shortest paths between A,B,C,D and F

mmds.org


BETWEENNESS

Telephone network:
Links between communities have great betweenness

Adopted from mmds.org

Explanation

I High betweenness means that (a, b) is a bottleneck for shortest paths
I If nodes (a, b) lie within community, there are too many options for

shortest paths to circumvent (a, b) (so (a, b) gets credited only small
fractions)

mmds.org


Computing Betweenness
The Girvan-Newman Algorithm



THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

ALGORITHMIC PRINCIPLE

I Visit each node X once
I Compute shortest paths from X to any other node Y
I To visit nodes Y from X, perform breadth-first search (BFS)

Social Network; consider BFS from E
Adopted from mmds.org

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

ALGORITHMIC PRINCIPLE

I Visit each node X once
I Compute shortest paths from X to any other node Y
I To visit nodes Y from X, perform breadth-first search (BFS)

BFS starting from E on social network from slide before
Adopted from mmds.org

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

BFS starting from E
Adopted from mmds.org

INTUITION / NOTATION

I Length of shortest path from X to
Y: level of BFS starting at X

I Edges within BFS level cannot be
part of shortest paths from X

I Edges between different levels
are referred to as DAG (directed
acyclic graph) edges

I DAG edges are on at least one
shortest path leaving from X

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

BFS starting from E
Adopted from mmds.org

EXAMPLE NOTATION

I Root X = uppermost node,
example X = E

I Solid edges = DAG edges:
e.g. (D,B), (E, F)

I Dashed edges = within level:
e.g. (D, F), (A,C)

I For DAG edge (Y,Z) where Y is
closer to root X than Z:

I Y is said to be the parent
I Z is said to be the child

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

TWO STAGES

I Labeling: For each node, assign number of shortest paths from
root to that node

I Proceed from root to leaves in BFS order

I Crediting: For each edge, compute contribution of shortest paths
from root for betweenness of that edge

I Need to compute credits for nodes as well
I Proceed from leaves to root, bottom-up



THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

BFS starting from E
Adopted from mmds.org

LABELING NODES

I Label each node by the number
of shortest path to the root

I Start by labeling the root with 1
I Top-down, label each node by the

sum of labels of each parents

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

BFS starting from E: Labeling
Adopted from mmds.org

EXAMPLE LABELING

I Label the root E with 1
I Level 1: Each D and F have only E

as parent; label both with 1

I Level 2:
I B has only D as parent, label

with 1
I G has parents D and F, label

with 2

I Level 3: Both A,C have only B as
parent, so both are labeled with 1

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

CREDITING NODES

I Compute fraction of shortest paths from root passing through node

I Credit each leaf with 1

I If several shortest paths run to leaf, fractions add up to 1

I Each non-leaf node v gets credit

1 +
∑

e∈D(v)

c(e) (1)

where D(v) are the DAG edges leaving from v, and c(e) is the credit of
an edge e

How to credit edges?



THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

CREDITING EDGES

I Let uj, j = 1, ..., k be the parents of w; so (uj,w) are the DAG edges
entering w

I Let Nj, j = 1, ..., k be the number of shortest paths from root running
through edges (uj,w)

I Recall: Nj agrees with the label of uj, the number of shortest paths from
root to uj ...

I ... because every shortest path from root to uj extends to shortest path
from root to w

I Let c(w) be the credit of w

I We compute the credit of (ui,w) as

c(ui,w) := c(w)× Ni∑k
j=1 Nj

(2)



THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

Crediting Nodes and Edges in Level 3 and 2
Adopted from mmds.org

EXAMPLE CREDITING

I Level 3 Nodes: Credit each of
nodes A and C with 1

I Level 2-3 Edges: Both A and C
have only one parent, so full
credit 1 is assigned to both (B,A)
and (B,C)

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

Crediting Nodes and Edges in Level 3 and 2
Adopted from mmds.org

EXAMPLE CREDITING

Level 2 Nodes:
I G is a leaf, so gets credit 1
I B is not a leaf, so gets credit 1 +

sum of credits 1 of DAG edges
(B,A), (B,C) leaving from it:
credit 3 overall

I Intuitively, credit 3 for B refers to
all shortest paths from E to
A,B,C going through B.

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

Crediting Nodes and Edges
Adopted from mmds.org

EXAMPLE CREDITING

Level 1-2 Edges:
I B has only one parent, D, so the

edge (D,B) gets all of B’s credit
I (D,G), (F,G): Both D, F have

label (not credit!) 1. So we credit
both (D,G), (F,G) with
1/(1 + 1) = 0.5

I Example: If labels of D and F had
been 3 and 5, the credit of (D,G)
would be 3/(3 + 5) = 3/8 and
that of (F,G) would be 5/8.

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
CALCULATING BETWEENNESS

Crediting Nodes and Edges
Adopted from mmds.org

EXAMPLE CREDITING

Level 1 Nodes / Edges:
I D gets credit 1 + credits of

(D,B), (D,G) = credit 4.5 overall
I F gets credit 1 + credit of (F,G) =

credit 1.5 overall
I Edges (E,D), (E, F) receive

credits of D, F respectively,
because D, F each have only one
parent

Summary: Credit on each edge is
contribution to betweenness of that
edge to shortest paths from E

mmds.org


THE GIRVAN-NEWMAN ALGORITHM
SUMMARY

COMPLETING THE ALGORITHM

I Repeat the calculation illustrated for E for every other node

I Sum up the contributions for each edge across different roots

I Divide each edge weight by 2: each shortest path is counted
twice, with each of its end points as root

Betweenness Scores
Adopted from mmds.org

mmds.org


FINDING COMMUNITIES WITH BETWEENNESS

Betweenness Scores
Adopted from mmds.org

COMPUTING COMMUNITIES: PRINCIPLE

I Remove edges in decreasing order of betweenness
I Stop at reasonably chosen threshold
I Communities are the resulting connected components

mmds.org


FINDING COMMUNITIES WITH BETWEENNESS

Betweenness Scores
Adopted from mmds.org

COMPUTING COMMUNITIES: EXAMPLE THRESHOLD 4
I First, remove (B,D): communities {A,B,C}, {D,E, F,G}
I Second, remove (A,B), (B,C): communities {A,C}, {B}, {D,E, F,G}
I Third, remove (D,E), (D,G): communities {A,C}, {B}, {D,E, F,G}
I Last, remove (D, F): communities {A,C}, {B}, {D}, {E, F,G}

mmds.org


FINDING COMMUNITIES WITH BETWEENNESS

COMPUTING COMMUNITIES: EXAMPLE THRESHOLD 4
I First, remove (B,D): communities {A,B,C}, {D,E, F,G}
I Second, remove (A,B), (B,C): communities {A,C}, {B}, {D,E, F,G}
I Third, remove (D,E), (D,G): communities {A,C}, {B}, {D,E, F,G}
I Last, remove (D, F): communities {A,C}, {B}, {D}, {E, F,G}

Final Communities
Adopted from mmds.org

mmds.org


The Graph Affiliation Model



OVERLAPPING COMMUNITIES

Subgraph from Facebook
Adopted from mmds.org

I Observation: Communities in social networks can overlap

I Graph partitioning does not help in these cases

I Would like to have a statistical interpretation of network data

mmds.org


NONOVERLAPPING VERSUS OVERLAPPING

COMMUNITIES

Left: Nonoverlapping communities
Right: Overlapping communities

Adopted from mmds.org

I Communities may overlap or not
I Issue: How to determine communities correctly?

mmds.org


AFFILIATION GRAPH MODEL: INTRODUCTION

Networks and their adjacency matrices
Adopted from mmds.org

I Left: No overlap, adjacency matrix sparse across communities
I Middle: Loose overlap, adjacency matrix less sparse in shared part
I Right: Tight overlap, adjacency matrix dense in shared part

mmds.org


COMMUNITY DISCOVERY: GOAL

Revealing (overlapping) communities
Adopted from mmds.org

I Goal: Discover communities correctly

I Regardless of whether they overlap or not

Determine the statistically most likely community structure

mmds.org


AFFILIATION GRAPH MODEL: INTRODUCTION

I Issue: Statistical control over community structure of a network
I Idea: Design generative probability distribution
I Given a number of nodes, this generative distribution generates edges

I The generative distribution represents a particular community
structure

I The distribution knows about nodes belonging to communities
I It generates more edges within communities
I It generates less edges between communities



AFFILIATION GRAPH MODEL: INTRODUCTION

I The generative distribution represents community structures
I The distribution knows about nodes belonging to communities
I It generates more edges within communities
I It generates less edges between communities

Distribution representing a community structure generating network
Adopted from mmds.org

mmds.org


AFFILIATION GRAPH MODEL: INTRODUCTION

Distribution representing a community structure (left) generating network (right)
Adopted from mmds.org

I We can generate networks when knowing community structure

I But: We would like to determine the community structure when
knowing the network

Isn’t that exactly the opposite?

mmds.org


GENERATIVE DISTRIBUTIONS

We can do this: generating network from distribution...
Adopted from mmds.org

...but we want this: inferring distribution from network
Adopted from mmds.org

mmds.org
mmds.org


GENERATIVE DISTRIBUTIONS: MAXIMUM

LIKELIHOOD INFERENCE

We want to infer distribution from network
Adopted from mmds.org

Maximum Likelihood Estimation

I Let Θ be a parameterized class of probability distributions that generate
networks

I We identify the different distributions with the different parameterizations
+ Formally not 100% correct, but doesn’t matter here

I Let P(N | θ) be the probability that distribution θ ∈ Θ generates
network N

mmds.org


GENERATIVE DISTRIBUTIONS: MAXIMUM

LIKELIHOOD INFERENCE

We want to infer distribution from network
Adopted from mmds.org

Maximum Likelihood Estimation
I Let P(N | θ) be the probability that distribution θ ∈ Θ generates

network N
I Maximum likelihood estimation: Determine distribution θ̂ that generated

N with greatest likelihood:

θ̂ := arg max
θ∈Θ

P(N | θ) (3)

I This computes most reasonable distribution θ̂ for network N

mmds.org


AFFILIATION GRAPH MODEL: DEFINITION I

I An AGM θ generates a network N = (V,E) by adding edges E to
a given set of nodes V

I For u, v ∈ V, edge (u, v) is generated with probability Pθ((u, v))

I Pθ((u, v)) depends on the parameters θ

I Recall that θ specifies community structure

So, what exactly is θ supposed to be?



AFFILIATION GRAPH MODEL: PARAMETERS

I C, as a set of communities
I M ∈ {0, 1}C×V , specifying assignment of nodes v ∈ V to communities

C ∈ C, where

MC,v =

{
1 v belongs to C
0 otherwise

(4)

I M specifies “affiliations” of nodes v ∈ V
I Note that one can vary C, as a parameter, but not V

I (pC)C∈C as probabilities to generate edges (u, v) because u, v ∈ C
I Summary: A particular AGM θ corresponds to

θ = (C,M, (pC)C∈C) (5)



AFFILIATION GRAPH MODEL: Pθ((u, v))

Several C containing both u, v

I Let Mu,Mv ⊂ C be the subsets of communities that contain u and v,
respectively

I Existence of communities that contain both u, v means

Mu ∩ Mv 6= ∅

I Memberships in different communities have no influence on each other
I That is, we assume statistical independence



AFFILIATION GRAPH MODEL: Pθ((u, v))

Several C containing both u, v

I Statistical independence is expressed by∏
C∈Mu∩Mv

(1− pC)

as probability of no edge (u, v) in any community C ∈ Mu ∩Mv

I Hence, the probability to generate (u, v) is

1−
∏

C∈Mu∩Mv

(1− pC) (6)

Done? No: What about Mu ∩ Mv = ∅?



AFFILIATION GRAPH MODEL: Pθ((u, v))

No C containing both u, v

I For Mu ∩ Mv = ∅, computing (6) yields (empty product is 1)

1−
∏
C∈∅

(1− pC) = 1− 1 = 0

I No edges across communities makes no sense
I Let ε > 0 be small; we generate an edge (u, v) with probability

Pθ((u, v)) = ε if Mu ∩ Mv = ∅



AFFILIATION GRAPH MODEL: Pθ((u, v))

AFFILIATION GRAPH MODEL (AGM)

I An edge (u, v) is generated with probability

Pθ((u, v)) =

{
1−

∏
C∈Mu∩Mv

(1− pC) Mu ∩ Mv 6= ∅
ε Mu ∩ Mv = ∅

(7)

I Edges (u, v) are generated independently from one another
I Overall: The probability Pθ(E) to generate edges E given AGM θ

computes as

Pθ(E) =
∏

(u,v)∈E

Pθ((u, v))×
∏

(u,v) 6∈E

1− Pθ((u, v)) (8)

where Pθ((u, v)) are computed following (7), with θ = (C,M, pC)
determining pC and Mu,Mv and so on.



AFFILIATION GRAPH MODEL: OVERALL PROBABILITY

AFFILIATION GRAPH MODEL (AGM)

I The probability Pθ(E) to generate E given θ is

Pθ(E) =
∏

(u,v)∈E

Pθ((u, v))×
∏

(u,v) 6∈E

1− Pθ((u, v)) (9)

I Reminder: For a given network N = (V,E), the goal is to determine

θ̂ := arg max
θ∈Θ

Pθ(E)

I That is, we need to vary θ = (C,M, pC) until Pθ(E) is maximal

How to systematically vary θ = (C,M, pC)?



COMPUTING THE MLE θ̂

ISSUES

I Search space of combinations of
I Communities C,
I Assignments of nodes to communities M, and
I Probabilities pC for communities

tends to be huge
I Concise formulas of (9) for Pθ(E) as function of θ too difficult
I Analytical solution for determining θ̂ := arg maxθ∈Θ Pθ(E) not

available
I Moreover, parameters are both discrete (C,M) and continuous ((pC)C∈C)



COMPUTING THE MLE θ̂

APPROACH

1. Pick initial set of parameters θ0

2. Vary θ such that Pθ(E) iteratively increases

3. Vary C or M first

+ Partial derivates of Pθ(E) wrt. pC computable on fixed C,M

4. Determine optimal (pC)C∈C , e.g. by gradient descent

5. Keep change if Pθ(E) has increased, discard otherwise



COMPUTING THE MLE θ̂

ITERATIVE VARIATIONS OF C,M

I Varying M:
I Delete node from community, i.e. for MC,v = 1, set MC,v = 0
I Add node to community, i.e. for MC,v = 0, set MC,v = 1

I Varying C:
I Merge two communities
I Split community
I Delete community
I Add new community, with initial random selection of members



COMPUTING THE MLE θ̂

SOFT COMMUNITY MEMBERSHIP

I Instead of MC,v ∈ {0, 1}, allow any real-numbered MC,v ≥ 0

I For (u, v) to be generated because of u, v ∈ C, let

Pθ((u, v)) = 1− e−MC,uMC,v (10)

be the individual probability

I Proceeding exactly as before, we obtain

Pθ(E) =
∏

(u,v)∈E

(1− e−
∑

C MC,uMC,v)
∏

(u,v)6∈E

e−
∑

C MC,uMC,v (11)



COMPUTING THE MLE θ̂

SOFT COMMUNITY MEMBERSHIP

I Probability for edges E:

Pθ(E) =
∏

(u,v)∈E

(1− e−
∑

C MC,uMC,v)
∏

(u,v)6∈E

e−
∑

C MC,uMC,v (12)

I On fixed communities, include M in gradient descent (or
related) optimization step

I Advantages:
I Only one gradient descent run necessary
I Less prone to get stuck in unfavorable local optima

I If necessary, add or delete communities, and re-run



GENERAL / FURTHER READING

Literature
I Mining Massive Datasets, Sections 10.2, 10.3, 10.5

http://infolab.stanford.edu/˜ullman/mmds/
ch10.pdf

I Next lecture: “Web Advertisements”: sections 8.1 – 8.4 in
Mining of Massive Datasets

http://infolab.stanford.edu/~ullman/mmds/ch10.pdf
http://infolab.stanford.edu/~ullman/mmds/ch10.pdf

