Mining Data Streams III Social Networks I

Alexander Schönhuth

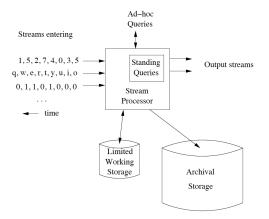
Bielefeld University June 22, 2023

LEARNING GOALS TODAY / OVERVIEW

- Mining Data Streams III
 - Estimating Moments: Alon-Matias-Szegedy algorithm
- ► Social Networks
 - Intro: Social Networks are Graphs
 - How to Cluster Social Networks into Groups
 - Non-overlapping communities: the Girvan-Newman Algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DATA STREAM MANAGEMENT SYSTEM



A data stream management system

Adopted from mmds.org

Estimating Moments The Alon-Matias-Szegedy Algorithm

(ロ)

Moments: Definition and Problem

Let \mathcal{U} be the set of universal elements, that is each element of the stream is from \mathcal{U} . Assume that

- ► *U* is ordered, and
- its elements u_i are indexed by $1 \le i \le I$, where
- $I = |\mathcal{U}|$ is the cardinality of the universal set

K-TH MOMENT

Consider a stream $x_1, ..., x_n$ where $x_j \in U, j = 1, ..., n$

- ▶ Let $m_i := |\{j \in \{1, ..., n\} | x_j = u_i\}|$ be the count of u_i in the stream
- ▶ The *k*-th order moment of the stream is defined to be

$$\sum_{i=1}^{l} (m_i)^k \tag{1}$$

Moments: Examples

k-th order moment:
$$\sum_{i=1}^{I} (m_i)^k$$

Examples

- ▶ The 0-th moment of a stream is the number of *distinct* stream elements
- ► The 1-st moment of a stream is the *overall* number of stream elements
- ▶ The 2-nd moment of a stream is sometimes called the *surprise number*
 - ► Consider a stream of length 100, on 11 different elements
 - ► The most even distribution, 10 appearances for one particular element, and 9 for all others, yields surprise number $10^2 + 10 \cdot 9^2 = 910$
 - The most uneven ("surprising") distribution, 90 appearances for one particular element, and 1 for all others, yields surprise number 90² + 10 · 1² = 8110

ALON-MATIAS-SZEGEDY ALGORITHM: NOTATION

- Keeping a count for each element in main memory is infeasible
- Therefore, we need to *estimate* the *k*-th order moments
 The *Alon-Matias-Szegedy algorithm* does this

Notation:

- ► Let *n* be the length of the stream
- Let *X* be variables for which we store attributes
 - X.element is an element of the universal set
 - *X.index* is a position $1 \le j \le n$ where *X.element* appears
 - X.value is defined as the number of times X.element appears in the stream between (and including) positions X.index and n

ALON-MATIAS-SZEGEDY ALGORITHM: NOTATION

Example

Let the stream be a, b, c, b, d, a, c, d, a, b, d, c, a, a, b

- Stream length is n = 15
- The true second moment is $5^2 + 4^2 + 3^2 + 3^2 = 59$
- Let us keep three variables, X_1, X_2 and X_3 , for which $X_1.index = 3, X_2.index = 8, X_3.index = 13$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $X_1.element = c, X_2.element = d, X_3.element = a$

•
$$X_1.value = 3, X_2.value = 2, X_3.value = 2$$

Along-Matias-Szegedy Algorithm: 2nd Moment

ALON-MATIAS-SZEGEDY ALGORITHM

► As estimate for the 2nd-order moment, compute, for any *X*,

$$n(2X.value - 1) \tag{2}$$

- ► S Many estimates as there are stream elements!
- General strategy for using several X: average single estimates

Questions:

- ► Which one is the best?
- Should we better average several estimates at once?
- ► What can we guarantee for any such estimate?

Along-Matias-Szegedy Algorithm: 2nd Moment

Example (cont.): Stream = *a*, *b*, *c*, *b*, *d*, *a*, *c*, *d*, *a*, *b*, *d*, *c*, *a*, *a*, *b*

• We had
$$X_1$$
.value = 3, X_2 .value = 2, X_3 .value = 2

▶
$$n(2X_1.value - 1) = 15(2 \cdot 3 - 1) = 75, n(2X_2.value - 1) = n(2X_3.value - 1) = 45$$

• Yields average (75 + 45 + 45)/3 = 55, close to true value 59

ALON-MATIAS-SZEGEDY ALGORITHM: THEOREM

The expected value E(n(2X.value - 1)) is defined as the average across *all* individual estimates n(2X.value - 1).

THEOREM The 2nd-order moment

$$\sum_{i=1}^{l} (m_i)^2$$
 (3)

agrees with

E(n(2X.value - 1)).

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF I

- Let e(j) be the stream element appearing at position j
- Let c(j) be number of times e(j) appears between (and including) positions j to n
- ► In example stream from above

$$a, b, c, b, d, \underbrace{\overset{e(6)}{\underbrace{a}}, c, d, a, b, d, c, a, a, b}_{4 \text{ appearances of } a: c(6)=4}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

e.g. e(6) = a and c(6) = 4

- For *X*.index = j
 - e(j) corresponds to *X*.element
 - c(j) corresponds to *X*.value

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF I

- e(j) corresponds to *X*.element for *X*.index = j
- c(j) corresponds to *X*.value for *X*.index = j

Inserting this in the definition of E(n(2X.value - 1)), one obtains

$$E(n(2X.value - 1)) = \frac{1}{n} \sum_{X} n(2X.value - 1) = \frac{1}{n} \sum_{j=1}^{n} n(2c(j) - 1) \quad (4)$$

by canceling factors further simplifying to

$$E(n(2X.value - 1)) = \sum_{j=1}^{n} (2c(j) - 1)$$
(5)

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF II

Regroup summands by their associated values e(j):

$$\sum_{j=1}^{n} (2c(j) - 1) = \sum_{a} \sum_{j: \ e(j) = a} (2c(j) - 1)$$
(6)

Consider one particular a, let m_a be count of a in stream:

- Last *j* where *a* appears: $2c(j) 1 = 2 \times 1 1 = 1$
- Second last *j* where *a* appears: $2c(j) 1 = 2 \times 2 1 = 3$
- ►∃
- First *j* where *a* appears: $2 \times m_a 1$

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF III

Consider one particular a, let m_a be the number of times a appears in stream:

- Last *j* where *a* appears: $2c(j) 1 = 2 \times 1 1 = 1$
- Second last *j* where *a* appears: $2c(j) 1 = 2 \times 2 1 = 3$
- ►∃

First *j* where *a* appears: $2c(j) - 1 = 2 \times m_a - 1$ This yields

$$\sum_{i:e(j)=a} (2c(j)-1) = 1 + 3 + 5 + \dots + (2m_a - 1) \stackrel{(*)}{=} (m_a)^2 \tag{7}$$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

where (*) reflects a well-known equality from basic calculus.

ALON-MATIAS-SZEGEDY ALGORITHM: PROOF IV

This yields

$$\sum_{i:e(i)=a} (2c(j)-1) = 1 + 3 + 5 + \dots + (2m_a - 1) = (m_a)^2$$

where the last equation follows from an easy induction.

Overall,

$$E(n(2X.value - 1)) \stackrel{(5)}{=} \sum_{j=1}^{n} (2c(j) - 1) \stackrel{(6)}{=} \sum_{a} \sum_{j: \ e(j)=a} (2c(j) - 1) \stackrel{(7)}{=} \sum_{a} (m_a)^2 \quad (8)$$

which concludes the proof.

ESTIMATING HIGHER-ORDER MOMENTS

- Observation: Adding 2v 1 for $v = 1, ..., m_a$ amounts to $(m_a)^2$
- The elementary proof makes use of the equation: $2v - 1 = v^2 - (v - 1)^2$ which can be exploited using the "telescope property":

$$2m_a - 1 + 2(m_a - 1) - 1 + \dots$$

$$= m_a^2 \underbrace{-(m_a - 1)^2 + (m_a - 1)^2}_{=0} \underbrace{-(m_a - 2)^2 + (m_a - 2)^2}_{=0} - \dots$$

$$= m_a^2$$
(9)

• Analogously, by $v^3 - (v-1)^3 = 3v^2 - 3v + 1$:

$$\sum_{v=1}^{m_a} 3v^2 - 3v + 1 = (m_a)^3 \tag{10}$$

ESTIMATING HIGHER-ORDER MOMENTS

► We had

$$\sum_{v=1}^{m_a} 3v^2 - 3v + 1 = (m_a)^3 \tag{11}$$

► So, for a variable *X*, we can use

$$n(3((X.value)^2 - 3X.value + 1))$$
 (12)

as an estimate for the third order moment

► For arbitrary *k*, for a variable *X*, take

$$n((X.value)^{k} - (X.value - 1)^{k})$$
(13)

as estimate for k-th order moment

Moments for Infinite Streams

- ► *Situation:* Stream length *n* grows with time
- *Problem:* Need to select variables *X*, such that *X.index* is uniformly distributed
- So, selecting variables X a priori tends to be biased
 non-uniform
- Solution: Maintain as many variables as possible. As stream grows:
 - Discard existing variables
 - Replace by new ones
 - such that at all times, variables are uniformly distributed

Moments for Infinite Streams

- ► *Solution:* As stream grows:
 - Replace existing variables by new ones
 - such that at all times, variables are uniformly distributed
- *Remark:* This establishes a generally applicable strategy for sampling elements from a stream:
 - Recall the problem of selecting representative samples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall the general sampling problem

- Suppose we can store/maintain s variables
- ► Suppose we have seen *n* stream elements
- ► Suppose the *s* different *X*.*index* are uniformly distributed
- ► That is, the probability to see position 1 ≤ j ≤ n among the selected *X.index* is s/n

- ► The probability to see position 1 ≤ j ≤ n among the selected X.index is s/n
- Upon arrival of (n + 1)-st element, do
 - Pick position n + 1 with probability s/(n + 1)
 - ▶ If picked, create variable *X* with *X*.*index* = *n* + 1, and throw out any earlier *X* with equal probability 1/*s*
 - If not picked, keep existing variables
- ► Claim: Afterwards, each position has been selected with probability s/(n + 1)

- Upon arrival of (n + 1)-st element, do
 - Pick position n + 1 with probability s/(n + 1)
 - If picked, create variable X with X.*index* = n + 1, and throw out any earlier X with equal probability 1/s
 - If not picked, keep existing variables

► *Claim:* Afterwards, each position has been selected with probability s/(n + 1)

Proof:

- (n + 1)-st position is picked with probability s/(n + 1)
- Let $1 \le j \le n$ any other position: proof by induction
- ► Induction hypothesis: before (n + 1)-st element arrived, j had been picked with probability s/n
- With probability 1 s/(n+1), probability for having *j* stays s/n
- With probability s/(n + 1), probability for having *j* is (s 1)/s

Proof:

- (n + 1)-st position is picked with probability s/(n + 1)
- With probability 1 s/(n+1), probability for having *j* stays s/n
- With probability s/(n + 1), probability for having *j* is (s 1)/n

Overall

$$(1 - \frac{s}{n+1})(\frac{s}{n}) + (\frac{s}{n+1})(\frac{s-1}{s})(\frac{s}{n})$$
(14)

simplifying to

$$(1 - \frac{s}{n+1})(\frac{s}{n}) + (\frac{s-1}{n+1})(\frac{s}{n}) = ((1 - \frac{s}{n+1}) + (\frac{s-1}{n+1}))(\frac{s}{n})$$
(15)

yielding

$$\left(\frac{n}{n+1}\right)\left(\frac{s}{n}\right) = \frac{s}{n+1} \tag{16}$$

Social Networks as Graphs

SOCIAL NETWORKS: INTRODUCTION

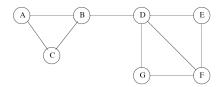
BASIC EXAMPLES

► Facebook, Twitter, Google+

DEFINING PROPERTIES

- Collection of entities participating in network
 - Usually people, but other entities conceivable
- ► There is a relationship between the entities
 - Being friends is frequent relationship
 - Relationship can be of 0-1 type, or weighted
- Assumption of nonrandomness or locality
 - ► Hard to formalize, intuition is that relationships tend to cluster
 - ► If entity A is related with both B and C, B and C are related with larger probability

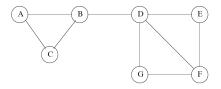
SOCIAL NETWORK GRAPHS: ENTITIES AND RELATIONSHIPS



Adopted from mmds.org

- ► *Entities:* Nodes A to G
- Relationships: Represented by edges between nodes
 - ► *Example:* A is "friends" with B and C

SOCIAL NETWORK GRAPHS: LOCALITY



Adopted from mmds.org

- ► Locality:
 - There are 9 out of 21 possible edges: $\frac{9}{21} = 0.429$
 - ► Given nodes *X*, *Y*, *Z* such that there are edges (*X*, *Y*), (*Y*, *Z*), random occurrence of (*X*, *Z*) is $\frac{7}{19} = 0.368$
 - ► However, across all pairs of existing edges (X, Y), (Y, Z), probability that (X, Z) exists is ⁹/₁₆ = 0.563
 - Network exhibits locality

SOCIAL NETWORKS: EXAMPLES

► Telephone Networks:

- ► *Nodes* are phone numbers, *edges* exist if one number called another
- *Edge weights:* Number of calls (within certain period of time)
- Communities: Groups of friends, members of a club, people working at same company
- ► Email Networks:
 - ▶ Nodes are email addresses, edges indicate exchange of emails
 - Edge directionality may matter, so graph with directed edges

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Communities: Similar to telephone networks

SOCIAL NETWORKS: EXAMPLES

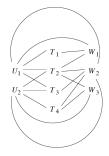
► Collaboration Networks:

- Nodes e.g. represent authors, edges indicate working on same document
- Alternatively: nodes represent documents, edges indicate that identical author contributed
- Communities: Groups interested in / working on same subjects; documents sharing related content

► Other:

- ▶ Information networks: Documents, web graphs, patents
- ▶ Infrastructure networks: Roads, planes, water pipes, power grids
- Biological networks: Genes, proteins, drugs
- Product co-purchasing networks: E.g. Groupon

Several Types of Nodes



Adopted from mmds.org

EXAMPLES

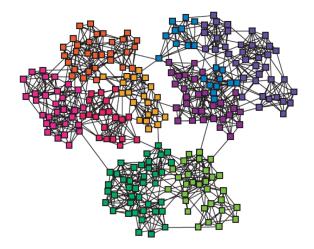
- ► Figure: Users (U) put tags (T) on web pages (W): tri-partite network
- Put documents and authors into one bi-partite network

Clustering Social Networks

CLUSTERING SOCIAL NETWORKS: INTRODUCTION

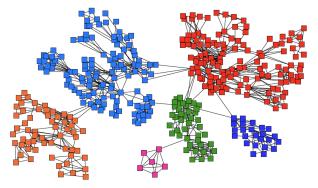
- ► An important aspect of social networks are *communities*
- Communities reveal themselves as groups of nodes that share unusually many edges
- Clustering social networks relates to the discovery of such communities

COMMUNITIES



Differently Colored Communities in Social Network

CLUSTERED NETWORK



Differently Colored Clusters in Social Network

Adopted from mmds.org

イロト イロト イヨト イヨト

Э

500

DISTANCE MEASURES IN SOCIAL NETWORKS

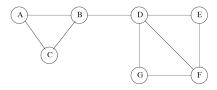
- Standard clustering techniques work with distance measures
- Distance measures are not obvious to define in social networks
 - Let $x, y \in V$ be two nodes in a social network G = (V, E). The measure

$$d(x,y) = \begin{cases} 0 & (x,y) \in E\\ 1 & (x,y) \notin E \end{cases}$$

violates the triangle inequality, hence is no distance measure

- ▶ Exchanging 0 with 1, and 1 with ∞ does not help
- Other binary-valued measures (e.g. 1 and 1.5) agree with triangle inequality
- ► *But:* Additional issues apply

SOCIAL NETWORKS: CLUSTERING ISSUES



Communities: A-B-C and D-E-F-G

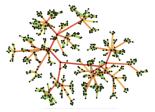
- ► Hierarchical Clustering: Randomly picks closest nodes/clusters
- Distance between clusters: distance between closest points
- As soon as clusters are joined on B and D, clusters not as desired
- Summary: Standard clustering techniques difficult/impossible to sensibly implement

Betweenness

Idea: Identify edges that are least likely to be within community DEFINITION [BETWEENNESS] The *betweenness* of an edge (a, b) is

- the number of pairs of nodes (x, y) such that (a, b) makes part of the *shortest path* leading from x to y
- ► If for (*x*, *y*) there are several shortest paths, (*a*, *b*) is credited the fraction of shortest paths leading through (*a*, *b*) when computing its betweenness

Betweenness



Telephone network: Links between communities have great betweenness

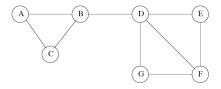
Adopted from mmds.org

Explanation

- ▶ High betweenness means that (*a*, *b*) is a bottleneck for shortest paths
- ► If nodes (*a*, *b*) lie within community, there are too many options for shortest paths to circumvent (*a*, *b*) (so (*a*, *b*) gets credited only small fractions)

UNIVERSITÄT BIELEFELD

BETWEENNESS: EXAMPLE



• (B, D) has the greatest betweenness, 12

▶ It is on any shortest path between *A*, *B*, *C* and *D*, *E*, *F*, *G*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- (D, F) has betweenness 4
 - ▶ It lies on all shortest paths between *A*, *B*, *C*, *D* and *F*

GENERAL / FURTHER READING

Literature

- Mining Massive Datasets, 10.1, 10.2 http://infolab.stanford.edu/~ullman/mmds/ ch10.pdf
- Next lecture: "Social Networks II"; 10.3, 10.5 in *Mining of* Massive Datasets

