Mining Data Streams III Social Networks I

Alexander Schönhuth

Bielefeld University
June 22, 2023

Learning Goals Today / Overview

- Mining Data Streams III
- Estimating Moments: Alon-Matias-Szegedy algorithm
- Social Networks
- Intro: Social Networks are Graphs
- How to Cluster Social Networks into Groups
- Non-overlapping communities: the Girvan-Newman Algorithm

Data Stream Management System

A data stream management system
Adopted from mmds.org

Estimating Moments
The Alon-Matias-Szegedy Algorithm

Moments: Definition and Problem

Let \mathcal{U} be the set of universal elements, that is each element of the stream is from \mathcal{U}. Assume that

- \mathcal{U} is ordered, and
- its elements u_{i} are indexed by $1 \leq i \leq I$, where
- $I=|\mathcal{U}|$ is the cardinality of the universal set

K-TH MOMENT
Consider a stream x_{1}, \ldots, x_{n} where $x_{j} \in \mathcal{U}, j=1, \ldots, n$

- Let $m_{i}:=\left|\left\{j \in\{1, \ldots, n\} \mid x_{j}=u_{i}\right\}\right|$ be the count of u_{i} in the stream
- The k-th order moment of the stream is defined to be

$$
\begin{equation*}
\sum_{i=1}^{I}\left(m_{i}\right)^{k} \tag{1}
\end{equation*}
$$

MOMENTS: EXAMPLES

$$
\text { k-th order moment: } \quad \sum_{i=1}^{I}\left(m_{i}\right)^{k}
$$

Examples

- The 0-th moment of a stream is the number of distinct stream elements
- The 1-st moment of a stream is the overall number of stream elements
- The 2-nd moment of a stream is sometimes called the surprise number
- Consider a stream of length 100, on 11 different elements
- The most even distribution, 10 appearances for one particular element, and 9 for all others, yields surprise number $10^{2}+10 \cdot 9^{2}=910$
- The most uneven ("surprising") distribution, 90 appearances for one particular element, and 1 for all others, yields surprise number $90^{2}+10 \cdot 1^{2}=8110$

Alon-Matias-Szegedy Algorithm: Notation

- Keeping a count for each element in main memory is infeasible
- Therefore, we need to estimate the k-th order moments The Alon-Matias-Szegedy algorithm does this

Notation:

- Let n be the length of the stream
- Let X be variables for which we store attributes
- X.element is an element of the universal set
- X.index is a position $1 \leq j \leq n$ where X.element appears
- X.value is defined as the number of times X.element appears in the stream between (and including) positions X.index and n

Alon-Matias-Szegedy Algorithm: Notation

Example
Let the stream be $a, b, c, b, d, a, c, d, a, b, d, c, a, a, b$

- Stream length is $n=15$
- The true second moment is $5^{2}+4^{2}+3^{2}+3^{2}=59$
- Let us keep three variables, X_{1}, X_{2} and X_{3}, for which X_{1}.index $=3, X_{2}$.index $=8, X_{3}$.index $=13$
- X_{1}.element $=c, X_{2}$.element $=d, X_{3}$.element $=a$
- X_{1}. value $=3, X_{2}$. value $=2, X_{3}$. value $=2$

Along-MAtias-Szegedy Algorithm: 2nd Moment

Alon-Matias-Szegedy Algorithm

- As estimate for the 2nd-order moment, compute, for any X,

$$
\begin{equation*}
n(2 X . v a l u e ~-~ 1) ~ \tag{2}
\end{equation*}
$$

- As many estimates as there are stream elements!
- General strategy for using several X: average single estimates

Questions:

- Which one is the best?
- Should we better average several estimates at once?
- What can we guarantee for any such estimate?

Along-Matias-Szegedy Algorithm: 2nd Moment

Example (cont.): Stream $=a, b, c, b, d, a, c, d, a, b, d, c, a, a, b$

- We had X_{1}.value $=3, X_{2}$.value $=2, X_{3}$. value $=2$
- $n\left(2 X_{1}\right.$.value -1$)=15(2 \cdot 3-1)=75, n\left(2 X_{2}\right.$.value -1$)=$ $n\left(2 X_{3}\right.$.value -1$)=45$
- Yields average $(75+45+45) / 3=55$, close to true value 59

Alon-Matias-Szegedy Algorithm: Theorem

The expected value $E(n(2 X . v a l u e-1))$ is defined as the average across all individual estimates $n(2 X . v a l u e-1)$.
Theorem
The 2nd-order moment

$$
\begin{equation*}
\sum_{i=1}^{I}\left(m_{i}\right)^{2} \tag{3}
\end{equation*}
$$

agrees with

$$
E(n(2 X . v a l u e-1)) .
$$

Alon-MatiAs-Szegedy Algorithm: Proof I

- Let $e(j)$ be the stream element appearing at position j
- Let $c(j)$ be number of times $e(j)$ appears between (and including) positions j to n
- In example stream from above

$$
a, b, c, b, d, \underbrace{\stackrel{e(6)}{a}, c, d, a, b, d, c, a, a, b}_{4 \text { appearances of } a: c(6)=4}
$$

e.g. $e(6)=a$ and $c(6)=4$

- For X.index $=j$
- $e(j)$ corresponds to X.element
- $c(j)$ corresponds to X.value

Alon-Matias-Szegedy Algorithm: Proof I

- $e(j)$ corresponds to X.element for X.index $=j$
- $c(j)$ corresponds to X.value for X.index $=j$

Inserting this in the definition of $E(n(2 X . v a l u e-1))$, one obtains

$$
\begin{equation*}
E(n(2 X . v a l u e-1))=\frac{1}{n} \sum_{X} n(2 X . v a l u e-1)=\frac{1}{n} \sum_{j=1}^{n} n(2 c(j)-1) \tag{4}
\end{equation*}
$$

by canceling factors further simplifying to

$$
\begin{equation*}
E(n(2 \text { X.value }-1))=\sum_{j=1}^{n}(2 c(j)-1) \tag{5}
\end{equation*}
$$

Alon-Matias-Szegedy Algorithm: Proof II

Regroup summands by their associated values $e(j)$:

$$
\begin{equation*}
\sum_{j=1}^{n}(2 c(j)-1)=\sum_{a} \sum_{j: e(j)=a}(2 c(j)-1) \tag{6}
\end{equation*}
$$

Consider one particular a, let m_{a} be count of a in stream:

- Last j where a appears: $2 c(j)-1=2 \times 1-1=1$
- Second last j where a appears: $2 c(j)-1=2 \times 2-1=3$
-
- First j where a appears: $2 \times m_{a}-1$

Alon-Matias-Szegedy Algorithm: Proof III

Consider one particular a, let m_{a} be the number of times a appears in stream:

- Last j where a appears: $2 c(j)-1=2 \times 1-1=1$
- Second last j where a appears: $2 c(j)-1=2 \times 2-1=3$
-
- First j where a appears: $2 c(j)-1=2 \times m_{a}-1$

This yields

$$
\begin{equation*}
\sum_{j: e(j)=a}(2 c(j)-1)=1+3+5+\ldots+\left(2 m_{a}-1\right) \stackrel{(*)}{=}\left(m_{a}\right)^{2} \tag{7}
\end{equation*}
$$

where $(*)$ reflects a well-known equality from basic calculus.

Alon-Matias-Szegedy Algorithm: Proof IV

This yields

$$
\sum_{i: e(i)=a}(2 c(j)-1)=1+3+5+\ldots+\left(2 m_{a}-1\right)=\left(m_{a}\right)^{2}
$$

where the last equation follows from an easy induction.
Overall,

$$
\begin{equation*}
E(n(2 X . v a l u e-1)) \stackrel{(5)}{=} \sum_{j=1}^{n}(2 c(j)-1) \stackrel{(6)}{=} \sum_{a} \sum_{j: e(j)=a}(2 c(j)-1) \stackrel{(7)}{=} \sum_{a}\left(m_{a}\right)^{2} \tag{8}
\end{equation*}
$$

which concludes the proof.

Estimating Higher-Order Moments

- Observation: Adding $2 v-1$ for $v=1, \ldots, m_{a}$ amounts to $\left(m_{a}\right)^{2}$
- The elementary proof makes use of the equation: $2 v-1=v^{2}-(v-1)^{2}$ which can be exploited using the "telescope property":

$$
\begin{align*}
& 2 m_{a}-1+2\left(m_{a}-1\right)-1+\ldots \\
= & m_{a}^{2} \underbrace{-\left(m_{a}-1\right)^{2}+\left(m_{a}-1\right)^{2}}_{=0} \underbrace{-\left(m_{a}-2\right)^{2}+\left(m_{a}-2\right)^{2}}_{=0}-\ldots \tag{9}\\
= & m_{a}^{2}
\end{align*}
$$

- Analogously, by $v^{3}-(v-1)^{3}=3 v^{2}-3 v+1$:

$$
\begin{equation*}
\sum_{v=1}^{m_{a}} 3 v^{2}-3 v+1=\left(m_{a}\right)^{3} \tag{10}
\end{equation*}
$$

Estimating Higher-Order Moments

- We had

$$
\begin{equation*}
\sum_{v=1}^{m_{a}} 3 v^{2}-3 v+1=\left(m_{a}\right)^{3} \tag{11}
\end{equation*}
$$

- So, for a variable X, we can use

$$
\begin{equation*}
n\left(3\left((\text { X.value })^{2}-3 \text { X.value }+1\right)\right) \tag{12}
\end{equation*}
$$

as an estimate for the third order moment

- For arbitrary k, for a variable X, take

$$
\begin{equation*}
n\left((\text { X.value })^{k}-(\text { X.value }-1)^{k}\right) \tag{13}
\end{equation*}
$$

as estimate for k-th order moment

Moments for Infinite Streams

- Situation: Stream length n grows with time
- Problem: Need to select variables X, such that X.index is uniformly distributed
- So, selecting variables X a priori tends to be biased non-uniform
- Solution: Maintain as many variables as possible. As stream grows:
- Discard existing variables
- Replace by new ones
- such that at all times, variables are uniformly distributed

Moments for Infinite Streams

- Solution: As stream grows:
- Replace existing variables by new ones
- such that at all times, variables are uniformly distributed
- Remark: This establishes a generally applicable strategy for sampling elements from a stream:
- Recall the problem of selecting representative samples
- Recall the general sampling problem

Moments for Infinite Streams: Solution

- Suppose we can store/maintain s variables
- Suppose we have seen n stream elements
- Suppose the s different X.index are uniformly distributed
- That is, the probability to see position $1 \leq j \leq n$ among the selected X.index is s / n

Moments for Infinite Streams: Solution

- The probability to see position $1 \leq j \leq n$ among the selected X.index is s / n
- Upon arrival of $(n+1)$-st element, do
- Pick position $n+1$ with probability $s /(n+1)$
- If picked, create variable X with X. index $=n+1$, and throw out any earlier X with equal probability $1 / s$
- If not picked, keep existing variables
- Claim: Afterwards, each position has been selected with probability $s /(n+1)$

Moments for Infinite Streams: Solution

- Upon arrival of $(n+1)$-st element, do
- Pick position $n+1$ with probability $s /(n+1)$
- If picked, create variable X with X.index $=n+1$, and throw out any earlier X with equal probability $1 / s$
- If not picked, keep existing variables
- Claim: Afterwards, each position has been selected with probability $s /(n+1)$

Proof:

- $(n+1)$-st position is picked with probability $s /(n+1)$
- Let $1 \leq j \leq n$ any other position: proof by induction
- Induction hypothesis: before $(n+1)$-st element arrived, j had been picked with probability s / n
- With probability $1-s /(n+1)$, probability for having j stays s / n
- With probability $s /(n+1)$, probability for having j is $(s-1) / s$

Moments for Infinite Streams: Solution

Proof:

- $(n+1)$-st position is picked with probability $s /(n+1)$
- With probability $1-s /(n+1)$, probability for having j stays s / n
- With probability $s /(n+1)$, probability for having j is $(s-1) / n$

Overall

$$
\begin{equation*}
\left(1-\frac{s}{n+1}\right)\left(\frac{s}{n}\right)+\left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right)\left(\frac{s}{n}\right) \tag{14}
\end{equation*}
$$

simplifying to

$$
\begin{equation*}
\left(1-\frac{s}{n+1}\right)\left(\frac{s}{n}\right)+\left(\frac{s-1}{n+1}\right)\left(\frac{s}{n}\right)=\left(\left(1-\frac{s}{n+1}\right)+\left(\frac{s-1}{n+1}\right)\right)\left(\frac{s}{n}\right) \tag{15}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\left(\frac{n}{n+1}\right)\left(\frac{s}{n}\right)=\frac{s}{n+1} \tag{16}
\end{equation*}
$$

Social Networks as Graphs

Social Networks: Introduction

BASIC EXAMPLES

- Facebook, Twitter, Google+

Defining Properties

- Collection of entities participating in network
- Usually people, but other entities conceivable
- There is a relationship between the entities
- Being friends is frequent relationship
- Relationship can be of 0-1 type, or weighted
- Assumption of nonrandomness or locality
- Hard to formalize, intuition is that relationships tend to cluster
- If entity A is related with both B and C, B and C are related with larger probability

Social Network Graphs: Entities and Relationships

Adopted from mmds.org

- Entities: Nodes A to G
- Relationships: Represented by edges between nodes
- Example: A is "friends" with B and C

Social Network Graphs: Locality

Adopted from mmds.org

- Locality:
- There are 9 out of 21 possible edges: $\frac{9}{21}=0.429$
- Given nodes X, Y, Z such that there are edges $(X, Y),(Y, Z)$, random occurrence of (X, Z) is $\frac{7}{19}=0.368$
- However, across all pairs of existing edges $(X, Y),(Y, Z)$, probability that (X, Z) exists is $\frac{9}{16}=0.563$
Network exhibits locality

Social Networks: Examples

- Telephone Networks:
- Nodes are phone numbers, edges exist if one number called another
- Edge weights: Number of calls (within certain period of time)
- Communities: Groups of friends, members of a club, people working at same company
- Email Networks:
- Nodes are email addresses, edges indicate exchange of emails
- Edge directionality may matter, so graph with directed edges
- Communities: Similar to telephone networks

Social Networks: Examples

- Collaboration Networks:
- Nodes e.g. represent authors, edges indicate working on same document
- Alternatively: nodes represent documents, edges indicate that identical author contributed
- Communities: Groups interested in / working on same subjects; documents sharing related content
- Other:
- Information networks: Documents, web graphs, patents
- Infrastructure networks: Roads, planes, water pipes, power grids
- Biological networks: Genes, proteins, drugs
- Product co-purchasing networks: E.g. Groupon

Several Types of Nodes

Adopted from mmds.org
Examples

- Figure: Users (U) put tags (T) on web pages (W): tri-partite network
- Put documents and authors into one bi-partite network

Clustering Social Networks

Clustering Social Networks: Introduction

- An important aspect of social networks are communities
- Communities reveal themselves as groups of nodes that share unusually many edges
- Clustering social networks relates to the discovery of such communities

COMMUNITIES

Differently Colored Communities in Social Network

Clustered Network

Adopted from mmds.org

Distance Measures in Social Networks

- Standard clustering techniques work with distance measures
- Distance measures are not obvious to define in social networks
- Let $x, y \in V$ be two nodes in a social network $G=(V, E)$. The measure

$$
d(x, y)= \begin{cases}0 & (x, y) \in E \\ 1 & (x, y) \notin E\end{cases}
$$

violates the triangle inequality, hence is no distance measure

- Exchanging 0 with 1 , and 1 with ∞ does not help
- Other binary-valued measures (e.g. 1 and 1.5) agree with triangle inequality
- But: Additional issues apply

Social Networks: Clustering Issues

Communities: A-B-C and D-E-F-G
Adopted from mmds.org

- Hierarchical Clustering: Randomly picks closest nodes/clusters
- Distance between clusters: distance between closest points
- As soon as clusters are joined on B and D, clusters not as desired
- Summary: Standard clustering techniques difficult/impossible to sensibly implement

Betweenness

Idea: Identify edges that are least likely to be within community
Definition [BETWEENNESS]
The betweenness of an edge (a, b) is

- the number of pairs of nodes (x, y) such that (a, b) makes part of the shortest path leading from x to y
- If for (x, y) there are several shortest paths, (a, b) is credited the fraction of shortest paths leading through (a, b) when computing its betweenness

Betweenness

Telephone network:
Links between communities have great betweenness

Adopted from mmds.org

Explanation

- High betweenness means that (a, b) is a bottleneck for shortest paths
- If nodes (a, b) lie within community, there are too many options for shortest paths to circumvent (a, b) (so (a, b) gets credited only small fractions)

Betweenness: Example

Adopted from mmds.org

- (B, D) has the greatest betweenness, 12
- It is on any shortest path between A, B, C and D, E, F, G
- (D, F) has betweenness 4
- It lies on all shortest paths between A, B, C, D and F

General / Further Reading

Literature

- Mining Massive Datasets, 10.1, 10.2 http://infolab.stanford.edu/~ullman/mmds/ ch10.pdf
- Next lecture: "Social Networks II"; 10.3, 10.5 in Mining of Massive Datasets

