Mining Data Streams II

Alexander Schönhuth

Bielefeld University
June 21, 2023

TODAY

Mining Data Streams II: Overview

- Counting Ones in a Window:

Datar-Gionis-Indyk-Motwani algorithm

- Decaying Windows

Learning Goals: Understand these topics and get familiarized

Counting Ones in a Window
 The Datar-Gionis-Indyk-Motwani Algorithm

Data Stream Management System

A data stream management system
Adopted from mmds.org

Data Stream Queries

Issues

- Streams deliver elements rapidly: need to act quickly
- Thus, data to work on should fit in main memory
- New techniques required:

Compute approximate, not exact answers
Hashing is a useful technique

Counting Ones in Window: Problem

- Let $x_{i} \in\{0,1\}$, earliest $=$ leftmost $=x_{1}$ (unlike before)

$$
\begin{equation*}
x_{1}, \ldots, x_{t}, \underbrace{x_{t+1}, \ldots, \overbrace{x_{t+N-k+1}, \ldots, x_{t+N}}^{k \leq N}}_{\text {window of length } N} \tag{1}
\end{equation*}
$$

- Situation:
- We have a window of length N on a binary stream
- Query: "how many ones are there in the last $k \leq N$ bits?"
- We cannot afford to store entire window
- Approximate algorithms required
- Present solution for binary streams first
- Thereafter extension for summing numbers

The Cost of Exact Counts

- One needs to store N bits to answer count-one-queries for arbitrary $k \leq N$:
- Assume one could use less than N bits
- We need 2^{N} different representations to represent all possible 2^{N} bit strings of length N
- Since we use less than N bits, there are two different bit strings $w \neq x$, for which we use the same representation
- Let k be the first bit from the right where w and x disagree
- Example:
- For $w=0101, x=1010$, we have $k=1$
- For $w=1001, x=0101$, we have $k=3$

The Cost of Exact Counts

- One needs to store N bits to answer count-one-queries for arbitrary $k \leq N$:
- Let k be the first bit from the right where w and x disagree
- Example:
- For $w=0101, x=1010$, we have $k=1$
- For $w=1001, x=0101$, we have $k=3$
- So the counts of ones in the window of length k for w and x differ
- But because we use identical representations for w and x, we will output the same count
- This proves that one needs the full N bits to represent bit strings for exact count-one-queries.

The Datar-Gionis-Indyk-Motwani Algorithm

- Situation:
- We consider a binary stream: elements are bits
- Let each element of the stream have a timestamp
- The first, leftmost element has timestamp 1, the second leftmost has timestamp 2, and so on; i is timestamp for x_{i}

$$
\begin{equation*}
\underbrace{x_{1}, \ldots, x_{t}, x_{t+1}, \ldots, x_{M}}_{\text {timestamps: } 1, \ldots, t, t+1, \ldots, M} \tag{2}
\end{equation*}
$$

- Goal: We like to count the ones among the N most recent (rightmost) elements/bits

The Datar-Gionis-Indyk-Motwani Algorithm

- Goal: We like to count the ones among the N most recent (rightmost) elements/bits
- Space requirements:
- Storing timestamps modulo N, and
- marking rightmost timestamp as most recent
- allows to store positions of individual bits using $\log _{2} N$ bits
- Illustration: Let $t=m N+r$.

The Datar-Gionis-Indyk-Motwani Algorithm

- Algorithm: Divide window into buckets, contiguous bit substrings
- Bucket Representation: Store
- The timestamp (TS) of its right end (figure: $t-7$), and
- The size of the bucket, as the number of 1's in the bucket
- The size is supposed to be a power of 2 (figure: 2^{2})

- Bucket Space Requirements:
- Storing buckets: (TS, size)
- TS between 0 and $N-1$, so requires $\log _{2} N$ bits
- Size: Storing $\log _{2} j, 0 \leq j \leq \log _{2} N$ amount to $\log _{2} \log _{2} N$ bits
- Requires $O(\log N)$ bits overall

Datar-Gionis-Indyk-Motwani Bucket Rules

Bit stream divided into buckets following DGIM rules

> From mmds.org

- Buckets do not overlap; right end always is a 1
- Every 1, but not necessarily every 0 of window in some bucket
- Either one or two buckets for each possible size
- Size cannot decrease on earlier timestamps (moving to the left)

The Datar-Gionis-Indyk-Motwani Algorithm

Key Ideas / Considerations

- Number of buckets representing a window must be small
- Estimate number of 1's in last k bits by exploiting known (because stored) bucket structure
- For any k, estimate has error of no more than 50%
- How to re-establish DGIM Bucket Rules quickly, on new bits arriving?

The Datar-Gionis-Indyk-Motwani Algorithm

Storage Requirements Overall

- Each bucket represented using $O(\log N)$ bits (see before)
- Let 2^{j} be size of largest bucket: $2^{j}<N$ implies $j \leq \log _{2} N$
- So there are at most 2 buckets of sizes $2^{j}, j=\log _{2} N, \ldots, 1$
- This means that there are $O(\log N)$ buckets overall
- $O(\log N)$ buckets of $O(\log N)$ bits: $O\left(\log ^{2} N\right)$ space overall

The Datar-Gionis-Indyk-Motwani Algorithm

Bit stream divided into buckets following DGIM rules

Answering Queries

- Let $1 \leq k \leq N$: how many 1 's are among the last k bits?
- Answer:
- Find leftmost (= with earliest timestamp) bucket b containing some of last k bits
- Estimate: Sum of sizes of buckets right of b plus half the size of b

The Datar-Gionis-Indyk-Motwani Algorithm

Bit stream divided into buckets following DGIM rules
From mmds.org

Example

- Let $k=10$: how many 1 's are among 0110010110 ?
- Let t be timestamp of rightmost bit
- Buckets of timestamps $t-1, t-2$ and size 1 fully included in k righmost bits
- Bucket of size 2 with timestamp $t-4$ is also included
- Bucket of size 4 with timestamp $t-8$ is only partially included
- Estimate: $1+1+2+(1 / 2 \times 4)=6$, one more than true count

DGIM: ERROR OF Estimate

Case 1: estimate is less than c

- Let c be true count; let leftmost bucket b be of size 2^{j}
- Worst case: all 1's in b are among k most recent bits
- Worst case example:
k most recent bits

- Left timestamp of leftmost bucket is $t-k+1$
- All ones of left most bucket (here: 8) belong to true count
- Estimate counts only half of them (here: 4)
- Because $c \geq 2^{j}$, error is at most half of c :

$$
\begin{equation*}
\frac{\text { estimate }}{\text { true count }}=\frac{c-2^{j-1}}{c}=1-\frac{2^{j-1}}{c} \stackrel{c \geq 2^{j}}{\geq} 1-\frac{2^{j-1}}{2^{j}}=\frac{1}{2} \tag{6}
\end{equation*}
$$

DGIM: ERROR OF ESTIMATE

Case 2: estimate is larger than c

- Let c be true count; let leftmost bucket b be of size 2^{j}
- Worst case: only rightmost bit of b is among k most recent bits, and
- There is only one bucket for each of sizes $2^{j-1}, \ldots, 1$
- Worst case example:

$$
[10110110110 \underbrace{\overbrace{1}^{t-k+1}] 0\left[\begin{array}{llll}
\text { only one bucket of each size } \tag{7}
\end{array} 01011\right] 0[1001] 0[1] \overbrace{0}^{t}}_{\text {k most recent bits }}
$$

- Timestamp of leftmost bucket is $t-k+1$
- Estimate counts half of ones (here: 4); true count is 1
- That yields $c=1+2^{j-1}+\ldots+1=1+2^{j}-1=2^{j}$
- Estimate is $2^{j-1}+2^{j-1}+\ldots+1=2^{j-1}+2^{j}-1$, so
- Error $\frac{2^{j-1}+2^{j}-1}{2^{j}}$ is no greater than 50% of true count

Maintaining DGIM Rules

Upon a new bit with timestamp t having arrived:

- Check timestamp s of leftmost bucket b :
- if $s \leq t-N$, drop b from list of buckets
- If the new bit is 0 , do nothing
- If the new bit is 1 , do
- Create new bucket with timestamp t and size 1
- On increasing size, while there are three buckets of the same size, do
- keep the rightmost bucket of that size as is
- join the two left buckets into one of double the size
- where the timestamp is that of the rightmost bit
- For example: joining the two left of the three buckets of size 1 into a bucket of size 2 may create a third bucket of size 2 , and so on
- Runtime: Need to look at $O(\log N)$ buckets, joining is constant time, so processing new bit requires $O(\log N)$ time overall

The Datar-Gionis-Indyk-Motwani Algorithm

Part VI

Buckets following DGIM rules (top), with new 1 arriving (bottom)
From mmds.org

DGIM Algorithm: Reducing the Error

- For some $r>2$, allow either r or $r-1$ buckets of the same size
- Allow this for all but size 1 and largest size, whose numbers may be any of $1, \ldots, r$
- Compute estimate as before
- Extend maintaining the DGIM Bucket Rules in the obvious way
- Recall: largest error $\frac{2^{j-1}+2^{j}-1}{2^{j}}$ was made when only one 1 from leftmost bucket b was within window

DGIM Algorithm: Reducing the Error

- Recall: largest error $\frac{2^{j-1}+2^{j}-1}{2^{j}}$ was made when only one 1 from leftmost bucket b was within window
- New error:
- True count is at most $1+(r-1)\left(2^{j-1}+\ldots+1\right)=1+(r-1)\left(2^{j}-1\right)$
- Estimate is $2^{j-1}+(r-1)\left(2^{j}-1\right)$, difference between estimate and true count is $2^{j-1}-1$, so fractional error is

$$
\frac{2^{j-1}-1}{1+(r-1)\left(2^{j}-1\right)}
$$

which is upper bounded by $1 / 2(r-1)$

- Picking large r can limit error to any $\epsilon>0$

DGIM Algorithm: Extensions

- DGIM can be extended to integers instead of bits
- Question is to estimate the sum of last $k \leq N$ integers from a window of N integers overall
- However, DGIM cannot be extended to streams containing negative integers
- Consider case of integers in range of 0 to $2^{m}-1$, represented by m bits
- Example: $m=3$, integers 0 to 7

$$
\begin{array}{rccccccc}
\text { integer stream : } & 2 & 4 & 3 & 1 & 6 & 7 & \ldots \tag{8}\\
\text { bit stream : } & 010 & 100 & 011 & 001 & 110 & 111 & \ldots
\end{array}
$$

DGIM AlGorithm: Extensions

- Consider case of integers in range of 0 to $2^{m}-1$, represented by m bits
- Example: $m=3$, integers 0 to 7

$$
\begin{array}{rccccccc}
\text { integer stream : } & 2 & 4 & 3 & 1 & 6 & 7 & \ldots \tag{9}\\
\text { bit stream : } & 010 & 100 & 011 & 001 & 110 & 111 & \ldots
\end{array}
$$

- Solution:
- Treat each bit of integers as separate stream
- Example from above:

$c_{0}:$	rightmost bit	0	0	1	1	0	1	\ldots
$c_{1}:$	middle bit	1	0	1	0	1	1	\ldots
$c_{2}:$	leftmost bit	0	1	0	0	1	1	\ldots

DGIM Algorithm: Extensions

- Solution:
- Treat each bit of integers as separate stream
- Example from above:

$c_{0}:$	rightmost bit	0	0	1	1	0	1	\ldots
$c_{1}:$	middle bit	1	0	1	0	1	1	\ldots
$c_{2}:$	leftmost bit	0	1	0	0	1	1	\ldots

- Apply DGIM algorithm to each of m streams estimate c_{i} for i-th stream
- Overall estimate:

$$
\sum_{i=0}^{m-1} c_{i} 2^{i}
$$

- If error is at most ϵ for all i, overall error is also at $\operatorname{most} \epsilon$

Most Common Elements Decaying Windows

Decaying Windows: Motivation

- Stream: Movie tickets purchased all over the world
- Goal: Listing currently most "popular" movies
- Currently popular:
- Movie that sold plenty of tickets years ago not to be listed
- Movie that sold $2 n$ tickets last week, for large n, currently popular
- Movie that sold n tickets in last 10 weeks is even more popular
- How to grasp that idea?

Decaying Windows: Motivation

- Stream: Movie tickets purchased all over the world
- Goal: Listing currently most "popular" movies
- Possible solution:
- One bit stream for each movie
- i-th bit in a movie stream is 1 if i-th ticket was for that movie
- Example: Three movies M_{1}, M_{2}, M_{3}

$$
\begin{array}{llllll}
M_{1}: & 0 & 0 & 0 & 1 & \ldots \tag{12}\\
M_{2}: & 1 & 0 & 0 & 0 & \ldots \\
M_{3}: & 0 & 1 & 1 & 0 & \ldots
\end{array}
$$

First ticket to M_{2}, second and third ticket to M_{3}, fourth ticket to M_{1}

- Pick window of size N, where N is to reflect tickets to be recent

Decaying Windows: Motivation

- Possible solution:
- Example: Three movies M_{1}, M_{2}, M_{3}

$$
\begin{array}{llllll}
M_{1}: & 0 & 0 & 0 & 1 & \ldots \tag{13}\\
M_{2}: & 1 & 0 & 0 & 0 & \ldots \\
M_{3}: & 0 & 1 & 1 & 0 & \ldots
\end{array}
$$

First ticket to M_{2}, second and third ticket to M_{3}, fourth ticket to M_{1}

- Pick window of size N, where N is to reflect tickets to be recent
- Estimate number of ones in each stream
- E.g. use Datar-Gionis-Indyk-Motwani (DGIM) algorithm
- Estimates number of tickets sold for each movie
- Rank movies by the estimated counts

Decaying Windows: Motivation

- Possible solution, summary:
- One bit stream for each movie
- i-th bit in a movie stream is 1 iff i-th ticket was for that movie
- Count number of ones in each stream...
- ... counts tickets for each movie
- Rank movies by ticket counts
- Works for movies, because there only thousands of movies
- Drawback:
- Does not work for items at Amazon or tweets per Twitter-user
- too many items or users

Decaying Windows: Motivation

- Stream: Movie tickets purchased all over the world
- Goal: Listing currently most "popular" movies
- Alternative approach:
- Do not count ones in fixed-size window
- Rather, compute "smooth aggregation" of all ones in stream
- Smooth: use weights to rate stream elements in terms of recentness
- The further back in the stream, the less weight given
- Example: a_{t} most recent stream element

$$
\begin{array}{rccccc}
\text { Stream : } & a_{1} & a_{2} & \cdots & a_{t-1} & a_{t} \tag{14}\\
\text { Weights : } & w_{1} & w_{2} & \cdots & w_{t-1} & w_{t}
\end{array}
$$

where

$$
w_{1} \leq w_{2} \leq \ldots \leq w_{t-1} \leq w_{t}
$$

Exponentially Decaying Window: Definition

Definition [Exponentially Decaying Window]:

- Let $a_{1}, a_{2}, \ldots, a_{t}$ be a stream, with a_{t} most recent element
- Let c be small constant, e.g. $c \in\left[10^{-9}, 10^{-6}\right]$

The exponentially decaying window for the stream is defined to be

$$
\begin{equation*}
\sum_{i=0}^{t-1} a_{t-i}(1-c)^{i} \tag{15}
\end{equation*}
$$

Weight is $(1-c)^{i}$, it holds

$$
(1-c)^{0} \geq(1-c) \geq(1-c)^{2} \geq(1-c)^{3} \geq \ldots \geq(1-c)^{t-1}
$$

Exponentially Decaying Window: Definition

Decaying window and fixed-length window of equal weight

- Decaying window puts weight $(1-c)^{i}$ on $(t-i)$-th element
- A window of length $1 / c$ puts equal weight 1 on the first $1 / c$ elements
- Both principles distribute the same weight to stream elements overall

Updating Exponentially Decaying Windows

Upon arrival of a new element a_{t+1}, one updates the exponentially decaying window $\sum_{i=0}^{t-1} a_{t-i}(1-c)^{i}$ by

1. multiplying the current window by $(1-c)$, yielding

$$
\sum_{i=0}^{t-1} a_{t-i}(1-c)^{i+1}
$$

2. adding a_{t+1}, yielding

$$
\sum_{i=0}^{t-1} a_{t-i}(1-c)^{i+1}+a_{t+1}=\sum_{i=0}^{(t+1)-1} a_{(t+1)-i}(1-c)^{i}
$$

Exponentially Decaying Windows: Finding Most Popular Movies

- Most Popular Movies: Idea
- Have a bit stream for each movie, as before
- Use e.g. $c=10^{-9}\left(\approx\right.$ sliding window of size $\left.1 / c=10^{9}\right)$
- On incoming movie ticket sale, update all decaying windows, as described above
- First, multiply all decaying windows by $1-c$
- Add 1 for stream of the movie of the ticket; if there is no stream for that movie, create one
- Do nothing (add 0) for all other streams
- If any decaying window drops below threshold of $1 / 2$, drop window
- Because the sum of all scores is $1 / c$, there cannot be more than $2 / c$ movies with score of $1 / 2$ or more
- So, $2 / c$ is limit on number of movies being tracked at any time
- In practice, there should be much less movies counted
- Therefore, one can apply the technique also for Amazon items and Twitter-users

Materials / Outlook

- See Mining of Massive Datasets, chapter 4.6, 4.7
- As usual, see http://www.mmds.org/in general for further resources
- Next lecture: "Mining Data Streams III / Social Networks I"
- See Mining of Massive Datasets 4.5; 10.1, 10.2, 10.3

