
Mining Data Streams II

Alexander Schönhuth

Bielefeld University
June 21, 2023

TODAY

Mining Data Streams II: Overview

I Counting Ones in a Window:
+ Datar-Gionis-Indyk-Motwani algorithm

I Decaying Windows

Learning Goals: Understand these topics and get familiarized

Counting Ones in a Window

The Datar-Gionis-Indyk-Motwani Algorithm

DATA STREAM MANAGEMENT SYSTEM

A data stream management system

Adopted from mmds.org

mmds.org

DATA STREAM QUERIES

Issues
I Streams deliver elements rapidly: need to act quickly
I Thus, data to work on should fit in main memory
I New techniques required:
+ Compute approximate, not exact answers
+ Hashing is a useful technique

COUNTING ONES IN WINDOW: PROBLEM

I Let xi ∈ {0, 1}, earliest = leftmost = x1 (unlike before)

x1,, xt, xt+1, ...,

k≤N︷ ︸︸ ︷
xt+N−k+1, ..., xt+N︸ ︷︷ ︸

window of length N

(1)

I Situation:
I We have a window of length N on a binary stream
I Query: “how many ones are there in the last k ≤ N bits?”
I We cannot afford to store entire window
I Approximate algorithms required

I Present solution for binary streams first

I Thereafter extension for summing numbers

THE COST OF EXACT COUNTS

I One needs to store N bits to answer count-one-queries for
arbitrary k ≤ N:

I Assume one could use less than N bits
I We need 2N different representations to represent all possible 2N

bit strings of length N
I Since we use less than N bits, there are two different bit strings

w 6= x, for which we use the same representation
I Let k be the first bit from the right where w and x disagree
I Example:

I For w = 0101, x = 1010, we have k = 1
I For w = 1001, x = 0101, we have k = 3

THE COST OF EXACT COUNTS

I One needs to store N bits to answer count-one-queries for
arbitrary k ≤ N:

I Let k be the first bit from the right where w and x disagree
I Example:

I For w = 0101, x = 1010, we have k = 1
I For w = 1001, x = 0101, we have k = 3

I So the counts of ones in the window of length k for w and x differ
I But because we use identical representations for w and x, we will

output the same count
I This proves that one needs the full N bits to represent bit strings

for exact count-one-queries.

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

I Situation:
I We consider a binary stream: elements are bits
I Let each element of the stream have a timestamp
I The first, leftmost element has timestamp 1, the second leftmost

has timestamp 2, and so on; i is timestamp for xi

x1, ..., xt, xt+1, ..., xM︸ ︷︷ ︸
timestamps: 1,...,t,t+1,...,M

(2)

I Goal: We like to count the ones among the N most recent
(rightmost) elements/bits

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

I Goal: We like to count the ones among the N most recent
(rightmost) elements/bits

I Space requirements:
I Storing timestamps modulo N, and
I marking rightmost timestamp as most recent
I allows to store positions of individual bits using log2 N bits

I Illustration: Let t = mN + r.

x1, ...,

window of length N︷ ︸︸ ︷
xt−N+1︸ ︷︷ ︸

r+1

, xt−N+2︸ ︷︷ ︸
r+2

, ..., xt−r−1︸ ︷︷ ︸
N−1

, xt−r︸︷︷︸
0

, xt−r+1︸ ︷︷ ︸
1

, ..., xt−1︸︷︷︸
r−1

, xt︸︷︷︸
r︸ ︷︷ ︸

stored timestamps

(3)

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

I Algorithm: Divide window into buckets, contiguous bit substrings

I Bucket Representation: Store
I The timestamp (TS) of its right end (figure: t− 7), and
I The size of the bucket, as the number of 1’s in the bucket
I The size is supposed to be a power of 2 (figure: 22)

N︷ ︸︸ ︷
0 [1 0 1 1 1︸︷︷︸

xt−7

]

︸ ︷︷ ︸
size 4=22
TS: t−7

0 1 1 0 0 0 1︸︷︷︸
xt

(4)

I Bucket Space Requirements:
I Storing buckets: (TS, size)
I TS between 0 and N − 1, so requires log2 N bits
I Size: Storing log2 j, 0 ≤ j ≤ log2 N amount to log2 log2 N bits
I Requires O(logN) bits overall

DATAR-GIONIS-INDYK-MOTWANI BUCKET RULES

Bit stream divided into buckets following DGIM rules
From mmds.org

I Buckets do not overlap; right end always is a 1

I Every 1, but not necessarily every 0 of window in some bucket

I Either one or two buckets for each possible size

I Size cannot decrease on earlier timestamps (moving to the left)

mmds.org

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Key Ideas / Considerations
I Number of buckets representing a window must be small
I Estimate number of 1’s in last k bits by exploiting known

(because stored) bucket structure
I For any k, estimate has error of no more than 50%
I How to re-establish DGIM Bucket Rules quickly, on new

bits arriving?

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Storage Requirements Overall

I Each bucket represented using O(logN) bits (see before)

I Let 2j be size of largest bucket: 2j < N implies j ≤ log2 N

I So there are at most 2 buckets of sizes 2j, j = log2 N, ..., 1

I This means that there are O(logN) buckets overall

I O(logN) buckets of O(logN) bits: O(log2 N) space overall

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Bit stream divided into buckets following DGIM rules
From mmds.org

Answering Queries

I Let 1 ≤ k ≤ N: how many 1’s are among the last k bits?

I Answer:
I Find leftmost (= with earliest timestamp) bucket b containing

some of last k bits
I Estimate: Sum of sizes of buckets right of b plus half the size of b

mmds.org

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM

Bit stream divided into buckets following DGIM rules
From mmds.org

Example

I Let k = 10: how many 1’s are among 0110010110?
I Let t be timestamp of rightmost bit
I Buckets of timestamps t − 1, t − 2 and size 1 fully included in k righmost bits
I Bucket of size 2 with timestamp t − 4 is also included
I Bucket of size 4 with timestamp t − 8 is only partially included
I Estimate: 1 + 1 + 2 + (1/2 × 4) = 6, one more than true count

mmds.org

DGIM: ERROR OF ESTIMATE

Case 1: estimate is less than c

I Let c be true count; let leftmost bucket b be of size 2j

I Worst case: all 1’s in b are among k most recent bits

I Worst case example:

k most recent bits︷ ︸︸ ︷
[1 0 1 1 0 1 1 0 1 1 0 1]︸ ︷︷ ︸

leftmost bucket b

0 [1 0 1... (5)

I Left timestamp of leftmost bucket is t − k + 1
I All ones of left most bucket (here: 8) belong to true count
I Estimate counts only half of them (here: 4)

I Because c ≥ 2j, error is at most half of c:

estimate
true count

=
c− 2j−1

c
= 1− 2j−1

c

c≥2j

≥ 1− 2j−1

2j =
1
2

(6)

DGIM: ERROR OF ESTIMATE

Case 2: estimate is larger than c

I Let c be true count; let leftmost bucket b be of size 2j

I Worst case: only rightmost bit of b is among k most recent bits, and
I There is only one bucket for each of sizes 2j−1, ..., 1
I Worst case example:

[
1 0 1 1 0 1 1 0 1 1 0

t−k+1︷︸︸︷
1

]
0
[

1 0 1 0 1 1
]

0
[

1 0 0 1
]

0
[

1
] t︷︸︸︷

0︸ ︷︷ ︸
k most recent bits only one bucket of each size

(7)

I Timestamp of leftmost bucket is t − k + 1
I Estimate counts half of ones (here: 4); true count is 1

I That yields c = 1 + 2j−1 + ...+ 1 = 1 + 2j − 1 = 2j

I Estimate is 2j−1 + 2j−1 + ...+ 1 = 2j−1 + 2j − 1, so

I Error 2j−1+2j−1
2j is no greater than 50% of true count

MAINTAINING DGIM RULES

Upon a new bit with timestamp t having arrived:

I Check timestamp s of leftmost bucket b:
I if s ≤ t − N, drop b from list of buckets

I If the new bit is 0, do nothing

I If the new bit is 1, do
I Create new bucket with timestamp t and size 1
I On increasing size, while there are three buckets of the same size, do

I keep the rightmost bucket of that size as is
I join the two left buckets into one of double the size
I where the timestamp is that of the rightmost bit

I For example: joining the two left of the three buckets of size 1 into a bucket
of size 2 may create a third bucket of size 2, and so on

I Runtime: Need to look at O(logN) buckets, joining is constant time, so
processing new bit requires O(logN) time overall

THE DATAR-GIONIS-INDYK-MOTWANI ALGORITHM
PART VI

Buckets following DGIM rules (top), with new 1 arriving (bottom)
From mmds.org

mmds.org

DGIM ALGORITHM: REDUCING THE ERROR

I For some r > 2, allow either r or r− 1 buckets of the same size
I Allow this for all but size 1 and largest size, whose numbers may be

any of 1, ..., r
I Compute estimate as before
I Extend maintaining the DGIM Bucket Rules in the obvious way

I Recall: largest error 2j−1+2j−1
2j was made when only one 1 from leftmost

bucket b was within window

DGIM ALGORITHM: REDUCING THE ERROR

I Recall: largest error 2j−1+2j−1
2j was made when only one 1 from leftmost

bucket b was within window

I New error:
I True count is at most 1 + (r − 1)(2j−1 + ...+ 1) = 1 + (r − 1)(2j − 1)
I Estimate is 2j−1 + (r − 1)(2j − 1), difference between estimate and true

count is 2j−1 − 1, so fractional error is

2j−1 − 1
1 + (r − 1)(2j − 1)

which is upper bounded by 1/2(r − 1)
I Picking large r can limit error to any ε > 0

DGIM ALGORITHM: EXTENSIONS

I DGIM can be extended to integers instead of bits
I Question is to estimate the sum of last k ≤ N integers from a window of

N integers overall
I However, DGIM cannot be extended to streams containing negative

integers
I Consider case of integers in range of 0 to 2m − 1, represented by m bits
I Example: m = 3, integers 0 to 7

integer stream : 2 4 3 1 6 7 ...
bit stream : 010 100 011 001 110 111 ...

(8)

DGIM ALGORITHM: EXTENSIONS

I Consider case of integers in range of 0 to 2m − 1, represented by m bits
I Example: m = 3, integers 0 to 7

integer stream : 2 4 3 1 6 7 ...
bit stream : 010 100 011 001 110 111 ...

(9)

I Solution:
I Treat each bit of integers as separate stream
I Example from above:

c0 : rightmost bit 0 0 1 1 0 1 ...
c1 : middle bit 1 0 1 0 1 1 ...
c2 : leftmost bit 0 1 0 0 1 1 ...

(10)

DGIM ALGORITHM: EXTENSIONS

I Solution:
I Treat each bit of integers as separate stream
I Example from above:

c0 : rightmost bit 0 0 1 1 0 1 ...
c1 : middle bit 1 0 1 0 1 1 ...
c2 : leftmost bit 0 1 0 0 1 1 ...

(11)

I Apply DGIM algorithm to each of m streams + estimate ci for i-th stream
I Overall estimate:

m−1∑
i=0

ci2i

I If error is at most ε for all i, overall error is also at most ε

Most Common Elements

Decaying Windows

DECAYING WINDOWS: MOTIVATION

I Stream: Movie tickets purchased all over the world

I Goal: Listing currently most “popular” movies

I Currently popular:
I Movie that sold plenty of tickets years ago not to be listed
I Movie that sold 2n tickets last week, for large n, currently popular
I Movie that sold n tickets in last 10 weeks is even more popular
I How to grasp that idea?

DECAYING WINDOWS: MOTIVATION

I Stream: Movie tickets purchased all over the world

I Goal: Listing currently most “popular” movies

I Possible solution:
I One bit stream for each movie
I i-th bit in a movie stream is 1 if i-th ticket was for that movie
I Example: Three movies M1,M2,M3

M1 : 0 0 0 1 ...
M2 : 1 0 0 0 ...
M3 : 0 1 1 0 ...

(12)

First ticket to M2, second and third ticket to M3, fourth ticket to M1
I Pick window of size N, where N is to reflect tickets to be recent

DECAYING WINDOWS: MOTIVATION

I Possible solution:
I Example: Three movies M1,M2,M3

M1 : 0 0 0 1 ...
M2 : 1 0 0 0 ...
M3 : 0 1 1 0 ...

(13)

First ticket to M2, second and third ticket to M3, fourth ticket to M1
I Pick window of size N, where N is to reflect tickets to be recent
I Estimate number of ones in each stream

I E.g. use Datar-Gionis-Indyk-Motwani (DGIM) algorithm
I Estimates number of tickets sold for each movie

I Rank movies by the estimated counts

DECAYING WINDOWS: MOTIVATION

I Possible solution, summary:
I One bit stream for each movie
I i-th bit in a movie stream is 1 iff i-th ticket was for that movie
I Count number of ones in each stream...
I ... counts tickets for each movie
I Rank movies by ticket counts

I Works for movies, because there only thousands of movies

I Drawback:
I Does not work for items at Amazon or tweets per Twitter-user
I + too many items or users

DECAYING WINDOWS: MOTIVATION

I Stream: Movie tickets purchased all over the world

I Goal: Listing currently most “popular” movies

I Alternative approach:
I Do not count ones in fixed-size window
I Rather, compute “smooth aggregation” of all ones in stream
I Smooth: use weights to rate stream elements in terms of

recentness
I The further back in the stream, the less weight given
I Example: at most recent stream element

Stream : a1 a2 · · · at−1 at

Weights : w1 w2 · · · wt−1 wt
(14)

where
w1 ≤ w2 ≤ ... ≤ wt−1 ≤ wt

EXPONENTIALLY DECAYING WINDOW: DEFINITION

DEFINITION [EXPONENTIALLY DECAYING WINDOW]:

I Let a1, a2, ..., at be a stream, with at most recent element

I Let c be small constant, e.g. c ∈ [10−9, 10−6]

The exponentially decaying window for the stream is defined to be

t−1∑
i=0

at−i(1− c)i (15)

Weight is (1− c)i, it holds

(1− c)0 ≥ (1− c) ≥ (1− c)2 ≥ (1− c)3 ≥ ... ≥ (1− c)t−1

EXPONENTIALLY DECAYING WINDOW: DEFINITION

Decaying window and fixed-length window of equal weight
From mmds.org

I Decaying window puts weight (1− c)i on (t− i)-th element
I A window of length 1/c puts equal weight 1 on the first 1/c elements
I Both principles distribute the same weight to stream elements overall

mmds.org

UPDATING EXPONENTIALLY DECAYING WINDOWS

Upon arrival of a new element at+1, one updates the exponentially
decaying window

∑t−1
i=0 at−i(1− c)i by

1. multiplying the current window by (1− c), yielding

t−1∑
i=0

at−i(1− c)i+1

2. adding at+1, yielding

t−1∑
i=0

at−i(1− c)i+1 + at+1 =

(t+1)−1∑
i=0

a(t+1)−i(1− c)i

EXPONENTIALLY DECAYING WINDOWS:
FINDING MOST POPULAR MOVIES

I Most Popular Movies: Idea
I Have a bit stream for each movie, as before
I Use e.g. c = 10−9 (≈ sliding window of size 1/c = 109)
I On incoming movie ticket sale, update all decaying windows, as described

above
I First, multiply all decaying windows by 1 − c
I Add 1 for stream of the movie of the ticket; if there is no stream for

that movie, create one
I Do nothing (add 0) for all other streams

I If any decaying window drops below threshold of 1/2, drop window
I Because the sum of all scores is 1/c, there cannot be more than 2/c movies

with score of 1/2 or more
I So, 2/c is limit on number of movies being tracked at any time
I In practice, there should be much less movies counted

I Therefore, one can apply the technique also for Amazon items and
Twitter-users

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, chapter 4.6, 4.7

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: “Mining Data Streams III / Social Networks I”

I See Mining of Massive Datasets 4.5; 10.1, 10.2, 10.3

http://www.mmds.org/

