
Mining Data Streams I

Alexander Schönhuth

Bielefeld University
June 15, 2023



TODAY

Overview

I Intro: A Data Stream Management Model

I Sampling Data in a Stream

I Filtering Streams: Bloom Filters

I Counting Distinct Elements: Flajolet-Martin algorithm

Learning Goals: Understand these topics and get familiarized



Mining Data Streams: Introduction



MINING DATA STREAMS: INTRODUCTION I

I Situation: Data arrives in a stream (or several streams)
I Too much to be put in active storage (main memory, disk,

database)
I If not processed immediately or stored (in inaccesible archives),

lost forever

I Algorithms involve some summarization of stream(s); e.g.
I create useful samples of stream(s)
I filter the stream(s)
I focus on windows of appropriate length (last n elements)



DATA STREAMS: EXAMPLES

I Sensor data:
I Ocean data (temperature, height): terabytes per day
I Tracking cars (location, speed)

I Image data from satellites

I Internet/web traffic
I Switches that route data also decide on denial of service
I Tracking trends via analyzing clicks



DATA STREAM MANAGEMENT SYSTEM

A data stream management system

Adopted from mmds.org

mmds.org


DATA STREAM QUERIES

I Standing queries
I need to be answered throughout time
I Answers need to be updated when they change
I Example: current or maximum ocean temperature

I Ad-hoc queries
I ask immediate questions
I Example: number of unique users of a web site in the last 4

weeks
I Not all data can be stored/processed

+ Only certain questions feasible
I Need to prepare for queries

+ For example, store data from sliding windows



DATA STREAM QUERIES

Issues
I Streams deliver elements rapidly: need to act quickly
I Thus, data to work on should fit in main memory
I New techniques required:
+ Compute approximate, not exact answers
+ Hashing is a useful technique



Sampling Elements from a Stream



SAMPLING ELEMENTS

I Situation:
I Select subsample from stream to store
I Subsample should be representative of stream as a whole

I Running Example:
I Search engine processes stream of search queries
I Stream consists of tuples (user,query, time)
I Can store only 1/10-th of data
I Consider search queries

(user1,query1, time1) and (user2,query2, time2)

Search query is repeated iff

user1 = user2 and query1 = query2

I Stream Query: Fraction of repeated search queries?



RUNNING EXAMPLE: PITFALL

I Running Example:
I Stream Query: Fraction of repeated search queries?

Naive and bad approach

I For each query, generate random integer from [0, 9]

I Keep only queries if 0 was generated

I Scenario: Suppose a user has issued
I s queries one time
I d queries two times
I no queries more than two times

I Correct answer is d
d+s



RUNNING EXAMPLE: PITFALL

I Running Example:
I Stream Query: Fraction of repeated search queries?

Naive and bad approach

I Correct answer is d
d+s

I But on randomly selected queries, we see that
I Of one-time queries, s/10 appear to show once
I Of two-time queries, d/10× d/10 appear to show twice
I Of two-time queries, d(1/10× 9/10)× 2 appear to show once
I Resulting in estimate

0.01d
(0.1s + 0.18d) + 0.01d

=
d

10s + 19d

for repeated search queries, which is wrong for positive s, d



RUNNING EXAMPLE: PITFALL

I Running Example:
I Stream Query: Fraction of repeated search queries?

Better approach

I For each user (not query!), generate random integer from [0, 9]

I Keep 1/10th of users, e.g. if 0 was generated

I Implement randomness by hashing users to 10 buckets
I + avoids storing for each user whether he was in or out

I For maintaining sample for a/b-th of data, use b buckets, and
keep users in buckets 0 to a− 1



RUNNING EXAMPLE: PITFALL

Better approach

I General Sampling Problem: Generalize from one-valued key to
arbitrary-valued keys, keep a/b-th of (multi-valued) keys by the
same technique

I Reducing sample size: On increasing amounts of data, ratio of
data used for sample to be lowered

I When lowering is necessary, decrease a by 1, so 0 to a− 2 are still
accepted

I Remove all elements with keys hashing to a− 1



Filtering Streams



FILTERING STREAMS: MOTIVATING EXAMPLE

I Problem: Filter for data for which certain conditions apply

I Can be easy: data are numbers, select numbers of at most 10

I Challenge:

I There is a set S that is too large to fit in main memory
I Condition is too check whether stream elements belong to S

I Illustration:

I Let S = {y1, ..., ym}, where m is huge
I Incoming data stream: ..., xn, .xn−1, ..., x1, x0 −→
I Check for each xi, i ≥ 0 whether xi ∈ S
I That is, for each xi look up whether there is j ∈ {1, ...,m} such that

xi = yj ∈ S



FILTERING STREAMS: MOTIVATING EXAMPLE

Motivating Example: Email Spam

I Streamed data: pairs (email address, email text)
I Set S is one billion (109) approved (no spam!) addresses
I Only process emails from these addresses

+ need to determine whether arbitrary address belongs to them
I But, addresses cannot be stored in main memory

I Option 1: make use of disk accesses

I Option 2 (preferrable): Devise method without disk accesses, and
determine set membership correctly in majority of cases

I Solution: “Bloom Filtering”



BLOOM FILTERING: RUNNING EXAMPLE

I Assume that main memory is 1 GB

I Bloom filtering: use main memory as bit array

[x1, x2, ..., xn−1, xn],n = 8 · 109, xi ∈ {0, 1}

Recall that one byte is 8 bits.

I Devise hash function h that hashes email addresses a to buckets

h(a) = k ∈ {1, 2, ..., 8 · 109}

where k corresponds to bucket number

I Hash each member of S (allowed email addresses) to one of the
buckets



BLOOM FILTERING: RUNNING EXAMPLE

I Hash each member a of S (allowed email addresses) to one of the
buckets

I Set bits of hashed-to buckets to 1, leave other bits 0

I After hashing members of S

xi =

{
1 if there is a s.t. h(a) = i
0 otherwise

I About 1/8-th of bits are 1

I Main memory status, afterwards, for example,

[0, 0, 1, ..., 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, ..., 1, 0, 0, 0]

with seven times more zeroes than ones.



BLOOM FILTERING: RUNNING EXAMPLE

I Hash any new email address anew:
I If hashed-to bit is 1

h(anew) = i where xi = 1

classify address as no spam
I If hashed-to bit is 0

h(anew) = i where xi = 0

classify address as spam

I Each address hashed to 0 is indeed spam

I But not every anew hashed to 1 is no spam



BLOOM FILTERING: RUNNING EXAMPLE

I Each address hashed to 0 is indeed spam

I But not every anew hashed to 1 is no spam

I Because about 1/8-th of spam emails hash to 1 by chance

I Still: 80% of emails are spam, filtering out 7/8-th big deal

I Filter cascade: filter out 7/8-th of (remaining) spam in each step



BLOOM FILTER: DEFINITION

DEFINITION [BLOOM FILTER]
A Bloom filter consists of

I A bit array B of n bits, initially all zero

I A set S of m key values

I Hash functions h1, ..., hk hashing key values to bits of B

+ Number of buckets is n

A Bloom filter for set S = {x, y, z} using three hash functions
m = 3, k = 3, n = 18

From Wikipedia, by David Eppstein



BLOOM FILTER: DEFINITION

DEFINITION [BLOOM FILTER]
A Bloom filter consists of

I A bit array B of n bits, initially all zero

I A set S of m key values

I Hash functions h1, ..., hk hashing key values to bits of B

Bloom Filter Workflow

I Initialization
I Take each key value K ∈ S
I Set all bits h1(K), ..., hk(K) to one

I Testing keys:
I Take key Knew to be tested: Knew ∈ S?
I Declare Knew ∈ S if all h1(Knew) = ... = hk(Knew) = 1 are one



BLOOM FILTERING: ANALYSIS

I If K ∈ S, all h1(K), ..., hk(K) are one, so K passes

I If K 6∈ S, all h1(K), ..., hk(K) could be one, so K mistakenly passes
+ False positive!

I Goal: Calculate probability of false positives

I For that, calculate probability that bit is zero after initialization



BLOOM FILTERING: ANALYSIS

I Calculate probability that bit is zero after initialization
I Relates to throwing y darts at x targets, where
I Targets are bits in array, so x = n, so target is

[x1, ..., xn]

I Darts are members in S (= m) times hash functions (= k)

hl(yj), l = 1, ..., k; j = 1, ...,m

so y = km
I Dart hitting target:

hl(yj) = xi

+ What is the probability that target is not hit by any dart?



BLOOM FILTERING: ANALYSIS

Throwing y darts at x targets:
I Probability that a given dart will not hit a given target is (x− 1)/x
I Probability that none of the y darts will hit a given target is

(
x− 1

x
)y = (1− 1

x
)x y

x (1)

I By (1− ε)1/ε = 1/e for small ε, we obtain that (1) is e−y/x

I x = n, y = km: probability that a bit remains 0 is e−km/n

I Would like to have fraction of 0 bits fairly large
I If k is about n/m, then probability of a 0 is e−1 (about 37%)
I In general, false positive comes from hitting k 1-bits by chance
I This evaluates as

(1− e−
km
n )k (2)



Counting Distinct Elements

The Flajolet-Martin Algorithm



COUNTING DISTINCT ELEMENTS: PROBLEM

I Problem: Elements in streams can be identical

I Question: How many different elements has the stream brought
along?

I Model: Consider the universal set of all possible elements

I Consider stream as a subset of the universal set

I Question becomes: What is the cardinality (size) of this subset?

I Example: Unique users of website
I Amazon: determine number of users from user logins
I Google: determine number of users from search queries



COUNTING DISTINCT ELEMENTS: PROBLEM

I Situation: Stream picks elements from universal set

I Question: Size of subset of elements appearing in stream?

I Obvious, but expensive:
I Keep stream elements in main memory
I Store them in efficient search structure (hash table, search tree)
I Works for sufficiently small amounts of distinct elements

I If too many distinct elements, or too many streams:
I Use more machines + Ok if affordable
I Use secondary memory (disk) + slow
I Here: Estimate number of distinct elements using much less main

memory than needed for storing all distinct elements
I The Flajolet-Martin algorithm does this job



THE FLAJOLET-MARTIN ALGORITHM

I Central idea: Hash elements a to bit strings h(a) of sufficient
length

I For example, to hash URL’s, 64-bit strings are sufficiently long

h(URL) = y1y2...y63y64, yj ∈ {0, 1}, j = 1, ..., 64

I Intuition:
I The more different elements, the more different bit strings
I The more different bit strings, the more “unusual” bit strings
I Unusual here = bit string starts with many zeroes

yj = 0, j = 1, ...,m that is y = 00...00︸ ︷︷ ︸
m times

101000...

where m is sufficiently large



THE FLAJOLET-MARTIN ALGORITHM

DEFINITION [TAIL LENGTH]

I Let h be the hash function that hashes stream elements a to bit
strings h(a)

I The tail length of h(a) is the number of zeroes by which it begins

I Alternatively: h(a) number of zeroes a string ends with

FLAJOLET ALGORITHM

I Let A be the set of stream elements

I Let
R := max

a∈A
h(a) (3)

be the maximum tail length observed among stream elements

I Estimate 2R for the number of distinct elements in the stream



FLAJOLET-MARTIN ALGORITHM: EXAMPLE

Hashing user names to 8-bit strings

From towardsdatascience.com

towardsdatascience.com


FLAJOLET-MARTIN ALGORITHM: EXPLANATION

I Probability that bit string h(a) starts with r zeroes is 2−r

I Probability that none of m distinct elements has tail length at
least r is

(1− 2−r)m = ((1− 2−r)2r
)m2−r (1−ε)1/ε≈1/e

= e−m2−r
(4)

I Let Pm,r := 1− (1− 2−r)m ≈ 1− e−m2−r
be the probability that for

m stream elements, the maximum tail length R observed is at
least r.

I Conclude:
I For m >> 2r, it holds that Pm,r approaches 1
I For m << 2r, it holds that Pm,r approaches 0
I So, 2R is unlikely to be much larger or much smaller than m



FLAJOLET-MARTIN ALGORITHM: COMBINING

ESTIMATES
I Idea: Use several hash functions hk, k = 1, ...,K

I Combine their estimates Xk, k = 1, ...,K

I Pitfall 1: Averaging
I Let pr be the probability that the maximum tail length of hk is r
I One can compute that

pr ≥
1
2

pr−1 ≥ ... ≥ 2−r+1p1 ≥ 2−rp0

I So E(Xk), the expected value of Xk computes as

E(Xk) =
∑
r≥0

pr2r ≥ po

∑
r≥0

2−r2r = p0

∑
r≥0

1 =∞

I Therefore 1
K

∑K
k=1 E(Xk) the expected value of the average of the

Xk turns out to be infinite as well
I Conclusion: Overestimates spoil averaging



FLAJOLET-MARTIN ALGORITHM: COMBINING

ESTIMATES

I Idea: Use several hash functions hk, k = 1, ...,K

I Combine their estimates Xk, k = 1, ...,K

I Pitfall 2: Computing Medians
I The median is always a power of two

+ makes only very limited sense

I Solution:
I Group the hash functions into small groups and take averages

within groups
I Estimate m as median of group averages
I Groups should be of size C log2 m for some small C

I Space Requirements: Need to store only value of Xk, requiring
little space as a maximum



MATERIALS / OUTLOOK

I See Mining of Massive Datasets: sections 4.1–4.4

I As usual, see http://www.mmds.org/ in general for further
resources

I For deepening your understanding, consider voluntary
homework: read 2.6.7 and try to make sense of this

I Next lecture: “Mining Data Streams II / PageRank I”

I See Mining of Massive Datasets 4.5–4.7

http://www.mmds.org/

