Lecture 12 Recommendation Systems

Alexander Schönhuth

Bielefeld University June 7, 2023

LEARNING GOALS TODAY

- ► Intro: Model for Recommendation Systems
- ► Collaborative Filtering
- ► Dimensionality Reduction: The UV Decomposition

Recommendation Systems Introduction

RECOMMENDATION SYSTEMS

- ► *Recommendation systems*
 - ► are web applications
 - predict user responses to options
- ► *Examples*:
 - Offering articles to online newspaper readers based on predicting reader interests
 - Offering online retailer suggestions to customers based on prior purchases / searches
- ► Classification:
 - Content based systems: characterize properties of items examined movie is "cowboy" movie if watched by many users liking cowboy movies
 - Collaborative filtering systems: recommend items based on similarity measures between users and/or items

RECOMMENDATION SYSTEMS: FOUNDATIONS

- ► The *Utility Matrix*: Putting users and items into context
- ► Long Tails: Contain items that serve only small amounts of users
 - Long tail items not displayable in regular stores, while full range of products available online
 - ► Recommending in online and regular stores differs decisively
- ► *Applications*:
 - ► Recommending products
 - ► Recommending movies
 - ► Recommending news articles

THE UTILITY MATRIX

DEFINITION [UTILITY MATRIX]:

- ▶ Let *m* be the number of users
- ▶ Let *n* be the number of items
- ► Let *S* be a set of ratings/values, including an element "__" representing "unknown"
- ▶ The utility matrix $M \in S^{m \times n}$ has m rows and n columns where

$$M_{ui} \in S$$
 (1)

reflects the *degree of preference* of user $u \in \{1, ..., m\}$ for item $i \in \{1, ..., n\}$.

▶ If $M_{ui} = ...$, the degree of preference of user u for item i is unknown.

THE UTILITY MATRIX: EXAMPLE

▶ The utility matrix $M \in S^{m \times n}$ has m rows and n columns where

$$M_{ui} \in S$$

reflects the *degree of preference* of user *u* for item *i*.

▶ If $M_{ui} = ...$, the degree of preference of user u for item i is unknown.

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S = \{1, 2, 3, 4, 5, \ldots\}$

THE UTILITY MATRIX: GOAL

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix reflecting users \times movies, where $S = \{1, 2, 3, 4, 5, \ldots\}$ Adopted from <code>mmds.org</code>

- ► *Goal*: Predict values from *S* other than __ for unknown entries $M_{ui} = _$
- ▶ Note that in applications, not every value needs to be predicted
- ► Sufficiently many predictions for a user suffice

THE UTILITY MATRIX: EXAMPLE

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix reflecting users \times movies, where $S = \{1,2,3,4,5, \ldots\}$ Adopted from mmds .org

- ► HP = Harry Potter, TW = Twilight, SW = Star Wars
- ► E.g. user *A* likes Twilight, user *B* likes Harry Potter
- ► *Possible question:* Will user *A* like movie *SW2*?
- ▶ Note similarity between *SW1* and *SW2*, note that *A* disliked *SW1*
- ► *Answer:* Possibly not!

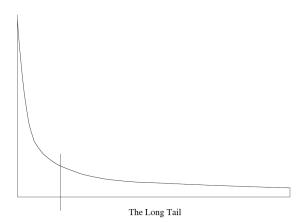
POPULATING THE UTILITY MATRIX

- ► Acquiring data from which to build utility matrix can be difficult
- ► *User Ratings:* Ask users to provide estimates; *however*
 - Users are unwilling to provide responses
 - ► Ratings are biased towards those willing
- ► Infer from users' behaviour
 - Once bought item / watched movie, rate as liked by user
 - ► Value system only has 0 and 1, where 0 reflects __

THE LONG TAIL

- ► Physical stores
 - suffer from limited resources for items
 - e.g. can offer several thousands of books
 - Recommendation: Pick most purchased items and recommend to everyone
- ► Online stores
 - do not suffer from lack of resources
 - e.g. can offer several millions of books
 - ► *Recommendation:* Substantially more involved
- ► The Long Tail Phenomenon explains why recommendations systems are necessary

THE LONG TAIL: ILLUSTRATION



Items (x-axis) rated by popularity (y-axis); vertical bar: cutoff in physical stores

Adopted from mmds.org

RECOMMENDATION SYSTEMS: APPLICATIONS

► Product Recommendations

- Amazon offers products to returning users based on prior purchases
- Extreme example: "Touching the Void" only increased in popularity after "Into Thin Air" appeared on the market

► Movie Recommendations

- ► *Netflix* suggests movies to watch to users
- ▶ Netflix offered one million dollars for algorithm beating their own recommendation system by 10%
- Price was won in 2009 by team of researchers called "Bellkor's Pragmatic Chaos"

► News Articles

- ► Identify articles of interest to readers
- Similarity based on similarity of important words and/or articles read by people with similar interests
- ► *YouTube* is another example

CONTENT BASED RECOMMENDATIONS

- ► Content based systems focus on properties of items
 - ► Determine features that describe the items
 - Represent items as vector in feature space
 - E.g. represent movies as bitvectors where entries relate to actors: 1 means actor plays in movie, 0 s/he doesn't
- ► For recommending items to users:
 - ▶ Develop user representations referring to the same feature space
 - ► E.g. represent movie watchers as vector where entries represent preferences for actors
 - Recommendation: Item bitvectors that are similar to user vector representations
 - ► Jaccard distance, Cosine distance etc.

Collaborative Filtering

COLLABORATIVE FILTERING: INTRODUCTION

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S = \{1, 2, 3, 4, 5, \ldots\}$ Adopted from mmds.org

- ► Instead of item profiles, make direct use of utility matrix
- Items are represented by columns in utility matrix
- Users are represented by rows in utility matrix
- ► Recommendations:
 - ► Identify users that are similar to the particular user
 - ► Recommend items considered by the users identified as similar

How to compute user similarity?

COLLABORATIVE FILTERING: INTRODUCTION

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S = \{1, 2, 3, 4, 5, \ldots\}$ Adopted from mmds . org

- ► A and B watched only one movie together, which they both liked
- A and C watched two movies together, but seem to have opposite opinions in both cases

Good similarity measure supposed to reflect this

COLLABORATIVE FILTERING: JACCARD DISTANCE

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S = \{1, 2, 3, 4, 5, \ldots\}$ Adopted from mmds.org

- Users = sets of movies, containing all movies they watched
- **>**

$$SIM(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{1}{5} < \frac{1}{2} = \frac{2}{4} = \frac{|A \cap C|}{|A \cup C|} = SIM(A, C)$$

► Conclusion: Not a good idea when utility matrix contains ratings

COLLABORATIVE FILTERING: COSINE DISTANCE

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Utility matrix users \times movies, where $S = \{1, 2, 3, 4, 5, \ldots\}$

- ► Users are vectors of integers
- Compute cosine of angle between user vectors
- ► Treat blanks as zeroes

 ☐ Questionable idea: missing rating = bad rating

COLLABORATIVE FILTERING: COSINE DISTANCE

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

Rounded utility matrix users \times movies

Adopted from mmds.org

$$\frac{4\times 5}{\sqrt{4^2+5^2+1^2}\sqrt{5^2+5^2+4^2}}=0.380$$

$$\frac{5 \times 2 + 1 \times 4}{\sqrt{4^2 + 5^2 + 1^2}\sqrt{2^2 + 4^2 + 5^2}} = 0.322$$

► *Conclusion:* Points in the right direction

COLLABORATIVE FILTERING: ROUNDING DATA

	HP1	HP2	$_{ m HP3}$	TW	SW1	SW2	SW3
\overline{A}	1			1			
B	1	1	1				
C					1	1	
D		1					1

Utility matrix users \times movies, where $S = \{1, 2, 3, 4, 5, ...\}$ Adopted from mmds.org

- ▶ Round at cutoff: $0, 1, 2 \rightarrow 0$; $3, 4, 5 \rightarrow 1$
- ▶

$$SIM(A, B) = \frac{1}{4} > 0 = SIM(A, C)$$

► Conclusion: Points in the right direction as well

COLLABORATIVE FILTERING: NORMALIZING DATA

			HP3	TW	SW1	SW2	SW3
\overline{A}	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C		1/3		-5/3	1/3	4/3	
D		0					0

Utility matrix users \times movies, where $S = \{1, 2, 3, 4, 5, \ldots\}$ Adopted from mmds.org

- Subtract average rating of respective user from each rating
 - Low ratings become negative numbers
 - ► High ratings become positive numbers
- ► Cosine distance:
 - ► Users with opposite views = vectors pointing in opposite directions
 - ► Users with similar views = small angle between vectors

COLLABORATIVE FILTERING: NORMALIZING DATA

Utility matrix users \times movies, where $S = \{1, 2, 3, 4, 5, \ldots\}$ Adopted from mmds.org

- ► User *D* essentially disappeared (because of too indifferent ratings)
- ► Cosine(A,B):

$$\frac{(2/3) \times (1/3)}{\sqrt{(2/3)^2 + (5/3)^2 + (-7/3)^2} \sqrt{(1/3)^2 + (1/3)^2 + (-2/3)^2}} = 0.092$$

► Cosine(A,C):

$$\frac{(5/3) \times (-5/3) + (-7/3) \times (1/3)}{\sqrt{(2/3)^2 + (5/3)^2 + (-7/3)^2} \sqrt{(-5/3)^2 + (1/3)^2 + (4/3)^2}} = -0.559$$

COLLABORATIVE FILTERING: NORMALIZING DATA

				TW	SW1	SW2	SW3
\overline{A}	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		1/3					0

Utility matrix users \times movies, where $S = \{1, 2, 3, 4, 5, \ldots\}$ Adopted from mmds.org

- Cosine(A,B) = 0.092; Cosine(A,C) = -0.559
- ► Conclusion: Makes sense
 - ► *A*, *B* slight similarity, just one movie rated in common
 - ► *A*, *C* disagree to a stronger degree

DUALITY OF SIMILARITY

- ▶ Utility matrix tells about users, or items, or both
- ► While we focused on user similarity, techniques presented so far can be applied to identify similar items, too
- ► *However, difference* is that items are classifiable, while users are not
 - ► Movies can be classified according to genres
 - Users are rather heterogeneous in terms of genres
- ► Consequence: Similar items are easier to discover

DUALITY OF SIMILARITY: PREDICTIONS

Predicting entries in utility matrix M

- ► First, normalize utility matrix (as described above)
- ► Let *sim* denote similarity measure of choice
- ▶ Let u be user, i be item; we would like to predict M_{ui} , where
 - ightharpoonup only predicting M_{ui} is useless
 - we need to predict M_{ui} for many i, to put entries into mutual context

DUALITY OF SIMILARITY

Predicting entries in utility matrix M

► *First approach:* Select top m users u_j , j = 1, ..., m similar to u and compute

$$M_{ui} = \frac{1}{m} \sum_{j=1}^{m} sim(u_j, u) M_{u_j i}$$
 (2)

- ► *Advantage*: One computation for several M_{ui} for one u
- ► *Disadvantage*: Based on user similarity, which is less reliable
- ► Second approach: Select top m items i_j , j = 1, ..., m similar to i and compute

$$M_{ui} = \frac{1}{m} \sum_{i=1}^{m} sim(i_j, i) M_{ui_j}$$
 (3)

- ► *Advantage*: Based on item similarity, which is more reliable
- ► *Disadvantage*: Need to consider several items *i* for one *u*

CLUSTERING UTILITY MATRIX

- ► The utility matrix is sparse; many entries are missing
 - Two items, even if classified identically, miss users with entries for both of them
 - Two users, even if having identical interests, miss items that they both have entries for
- ► For increasing coherence, and decreasing sparsity: cluster items, or users, or both

CLUSTERING UTILITY MATRIX

- ► For clustering, apply iterative procedure (hierarchical clustering):
 - ► Cluster items, e.g. decreasing number of columns by factor of two
 - ► Entries for clustered columns are averages of single entries
 - Cluster users, e.g. decreasing number of rows by factor of two
 - Entries for clustered rows are averages of single entries

	HP	TW	SW
A	4	5	1
$\frac{A}{B}$	4.67		
C		2	4.5
D	3		3

Utility matrix after one iteration of clustering items

Adopted from mmds.org

CLUSTERING UTILITY MATRIX: PREDICTIONS

	HP	TW	SW
\overline{A}	4	5	1
B	4.67		
C		2	4.5
D	3		3

Utility matrix after one iteration of clustering items

Adopted from mmds.org

- ▶ After clustering, predict items M_{ui} as follows:
 - ► Identify clusters of user *u* (cluster *X*) and item *i* (cluster *Y*)
 - ▶ Predict M_{ui} as M_{XY} in the clustered utility matrix
 - ▶ If M_{XY} is empty, use distance based methods to predict M_{XY} , and predict M_{ui} as M_{XY} when done

Dimensionality Reduction

THE UV-DECOMPOSITION

- ► Let *M* be utility matrix, for *m* users and *n* items

 *Important: In https://mmds.org, *m* and *n* are reversed
- ▶ *Assumption:* There are $d \le m, n$ hidden features such that
 - Users u can be represented as d-dimensional vectors across these features
 - Items i can be represented as d-dimensional vectors across these features
 - For example, for movies and watchers, hidden features may refer to genres
- ► How to reveal such hidden features?
- ► Solution: Apply UV-decomposition of M
- ► *Note:* Interpretation of meaning of hidden features may remain unclear

THE UV-DECOMPOSITION

DEFINITION [UV-DECOMPOSITION]

- ▶ Let $M \in \mathbb{R}^{m \times n}$ be a utility matrix; let $d \leq n, m$
- ▶ Let $U \in \mathbb{R}^{m \times d}$, $V \in \mathbb{R}^{d \times n}$ such that

$$UV \in \mathbb{R}^{m \times n}$$
 approximates $M \in \mathbb{R}^{m \times n}$ closely

ightharpoonup Then U, V is called a UV-Decomposition (relative to d) of M

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ u_{31} & u_{32} \\ u_{41} & u_{42} \\ u_{51} & u_{52} \end{bmatrix} \times \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \end{bmatrix}$$

UV-decomposition of matrix *M*

Adopted from mmds.org

THE UV-DECOMPOSITION

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ u_{31} & u_{32} \\ u_{41} & u_{42} \\ u_{51} & u_{52} \end{bmatrix} \times \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \end{bmatrix}$$

UV-decomposition of matrix *M*

Adopted from mmds.org

- ▶ *Prediction:* Estimate missing entry M_{ui} as $(UV)_{ui} = \sum_{k=1}^{d} u_{uk} v_{ki}$
- ► Example: Predict missing M_{32} as $u_{31}v_{12} + u_{32}v_{22}$

MEASURING CLOSENESS

DEFINITION [ROOT-MEAN-SQUARE ERROR]

- ▶ Let $M \in \mathbb{R}^{m \times n}$ be decomposed into UV for $U \in \mathbb{R}^{m \times d}$, $V \in \mathbb{R}^{d \times n}$
- ► Let *l* be the number of non-blank entries in *M*

The *root-mean-square error* (*RMSE*) of *M* and *UV* is defined to be

$$\sqrt{\frac{1}{l} \sum_{\substack{(u,i) \\ M_{ui} \neq -}} (M_{ui} - (UV)_{ui})^2}$$
 (4)

that is the square root of the average over the squares of differences between M_{ui} and $(UV)_{ui}$ for all (u,i) where M_{ui} is not missing.

Example

► In the example from above

RMSE(M, UV) =
$$\sqrt{\frac{1}{23}}(5 - (u_{11}v_{11} + u_{12}v_{21}))^2 + ... + (4 - (u_{51}v_{14} + u_{52}v_{24})^2)^2$$

Computing U, V: Idea

- ► Start with arbitrary (while still reasonably chosen) *U*, *V*
- ▶ Iterating through elements U_{uk} , V_{ki} , decrease RMSE(M, UV) by adjusting single entries U_{uk} or V_{ki} in U or V
- ▶ Do this until convergence; eventually, *U*, *V* may reflect local minima
- Repeat this by varying inital choices for *U*, *V* to get global minimum or suitable local minimum

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix}$$

Matrix *M* to be decomposed into *UV*

Adopted from mmds.org

Initial choice for *U*, *V*

Adopted from mmds.org

Initial RMSE: $\sqrt{\frac{75}{23}} = 1.806$

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix}$$

Matrix *M* to be decomposed into *UV*

Adopted from mmds.org

Varying
$$x = U_{11}$$

Adopted from mmds.org

Minimize contribution from $x = U_{11}$ to sum of squares:

$$(5-(x+1))^2+(2-(x+1))^2+(4-(x+1))^2+(4-(x+1))^2+(3-(x+1))^2$$

Minimize contribution from $x = U_{11}$ to sum of squares:

$$(5-(x+1))^2+(2-(x+1))^2+(4-(x+1))^2+(4-(x+1))^2+(3-(x+1))^2$$

which simplifies to

$$(4-x)^2 + (1-x)^2 + (3-x)^2 + (3-x)^2 + (2-x)^2$$

Take derivative and set to zero:

$$-2 \times ((4-x)+(1-x)+(3-x)+(3-x)+(2-x)) = 0$$
 or $-2 \times (13-5x) = 0$

from which we obtain x = 2.6.

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix}$$

Matrix *M* to be decomposed into *UV*

Adopted from mmds.org

$$\begin{bmatrix} 2.6 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} y & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2.6y + 1 & 3.6 & 3.6 & 3.6 & 3.6 \\ y + 1 & 2 & 2 & 2 & 2 \\ y + 1 & 2 & 2 & 2 & 2 \\ y + 1 & 2 & 2 & 2 & 2 \\ y + 1 & 2 & 2 & 2 & 2 \end{bmatrix}$$

Varying
$$y = V_{11}$$

Adopted from mmds.org

Minimize contribution from $y = V_{11}$ to sum of squares:

$$(5-(2.6y+1))^2+(3-(y+1))^2+(2-(y+1))^2+(2-(y+1))^2+(4-(y+1))^2$$

Minimize contribution from $y = V_{11}$ to sum of squares:

$$(5-(2.6y+1))^2+(3-(y+1))^2+(2-(y+1))^2+(2-(y+1))^2+(4-(y+1))^2$$

which simplifies to

$$(4-2.6y)^2 + (2-y)^2 + (1-y)^2 + (1-y)^2 + (3-y)^2$$

Take derivative and set to zero:

$$-2 \times (2.6(4-2.6y) + (2-y) + (1-y) + (1-y) + (3-y)) = 0$$

from which we obtain y = 1.617.

- $ightharpoonup \sum_i$ be shorthand for sum over all *i* such that m_{ui} is not missing
- ightharpoonup be shorthand for sum over all u such that m_{ui} is not missing
- ▶ $\sum_{i\neq k}$ shorthand for sum over all j=1,...,d except for j=k
- General formula for determining optimal $x = U_{uk}$:

$$x = \frac{\sum_{i} V_{ki} (M_{ui} - \sum_{j \neq k} U_{uj} V_{ji})}{\sum_{i} V_{ki}^{2}}$$
 (5)

• General formula for determining optimal $y = V_{ki}$:

$$y = \frac{\sum_{u} U_{uk} (M_{ui} - \sum_{j \neq k} U_{uj} V_{ji})}{\sum_{u} U_{uk}^{2}}$$
(6)

COMPLETE UV-DECOMPOSITION ALGORITHM

There are four issues to deal with:

- 1. Preprocessing M
 - ► Normalize *M*; undo normalization when making predictions
- 2. Initializing *U* and *V*
 - ► Let *a* be average across non-blank elements of *M*
 - Choose $\sqrt{a/d}$ for each entry of *U* and *V*
 - ▶ Perturb value $\sqrt{a/d}$ randomly and independently for varying initialization
- 3. Determine order in which to optimize elements of *U*, *V*
 - ► Do row-by-row or column-by-column
 - Choose entries randomly
- 4. Convergence? Stop the iteration.
 - ► Stop when improvements in RMSE become negligible

MATERIALS / OUTLOOK

- ► See *Mining of Massive Datasets*, chapter 9.1, 9.3, 9.4
- ► As usual, see http://www.mmds.org/in general for further resources
- ► Next lecture:
- ► See *Mining of Massive Datasets*: sections 4.1–4.4

