Lecture 11
 Frequent Itemsets II

Alexander Schönhuth

Bielefeld University
June 1, 2023

TODAY

Overview: Frequent Itemsets II

- Mining Frequent Itemsets: Recap
- The Algorithm of Park, Chen and Yu (PCY)
- The Multistage Algorithm
- The Multihash Algorithm
- Toivonen's Algorithm

Learning Goals: Understand these topics and get familiarized

Mining Frequent Itemsets Recap

Frequent Itemsets: Overview

Foundations

- There are items available in the market
- There are baskets, sets of items having been purchased together
- A frequent itemset is a set of items that is found to commonly appear in many baskets
- The frequent-itemset problem is to identify frequent itemsets

Frequent Itemsets: Definition

Definition [FRequent Itemset]:

- Let $s>0$ be a support threshold
- Let I be a set of items
- $\operatorname{supp}(I)$, the support of I, is the number of baskets in which I appears as a subset

An itemset I is referred to as frequent if

$$
\begin{equation*}
\operatorname{supp}(I) \geq s \tag{1}
\end{equation*}
$$

that is, if the support of I is at least the support threshold

A Priori Algorithm Recap

A-Priori Algorithm: Candidate Generation And Filtering

A-Priori algorithm: Alternating between candidate generation and filtering Adopted from mmds.org

- Construct: C_{k} itemsets of size k, whose $k-1$-subsets belong to L_{k-1}
- E.g. C_{2} pairs of single items that are members of L_{1}, so are frequent
- Filter: Members of C_{k} whose count exceeds s belongs to L_{k}
- Bottleneck: Size of C_{2}, the candidate pairs
- Why? Monotonicity implies in practice(!) that $\left|C_{2}\right|>\left|C_{3}\right|>\left|C_{4}\right|>\ldots$
- Although $\binom{n}{2}$ (possible pairs) $<\binom{n}{3}$ (possible triples) $<\binom{n}{4} \ldots$

Monotonicity to the Rescue

Itemsets for items A,B,C,D,E
Neglecting supersets of infrequent pair $\{\mathrm{A}, \mathrm{B}\}$
Adopted from mmds.org

A-Priori Generating C_{2} : Main Memory Usage

$\begin{gathered} \hline \text { Item } \\ \text { names } \\ \text { to } \\ \text { integers } \end{gathered}$	$l_{1}^{1} 2$	Item counts
Unused		

Pass 1

Item names to integers	1 2
Fre- quent items	
Data structure for counts of pairs	

Pass 2

Use of main memory during A-Priori passes
Pass 1: Generating L_{1}; Pass 2: Generating L_{2}
Adopted from mmds.org

A-Priori Generating C_{2} : Main Memory Usage

Adopted from mmds.org

From C_{3} main memory no longer an issue naive approaches work, one pass enough

A-Priori Algorithm Extensions The PCY Algorithm

Bottleneck: Size of C_{2}

- The predominant bottleneck in most applications of A-Priori is the size of C_{2}, the candidate pairs
- Several algorithms address to trim down that size
- Exemplary algorithms:
- The algorithm of Park, Chen and Yu (PCY algorithm)
- The Multistage algorithm
- The Multihash algorithm
- We will treat all algorithms in the following

The PCY Algorithm

- Observation: Much of main memory during first pass of A-Priori remains unused
- Use that space for a hash table H that
- hashes pairs of items $\{i, j\}$ to
- buckets holding integers $H[\{i, j\}] \in \mathbb{N}$, where

$$
\begin{equation*}
H[\{i, j\}] \quad \text { is number of times any pair hashed to that bucket } \tag{2}
\end{equation*}
$$

- To construct H, use double loop through baskets:
- hash each resulting pair to bucket
- increase the integer in that bucket by one
- A frequent bucket b exceeds the support threshold s

THE PCY Algorithm

- A frequent bucket b exceeds the support threshold s
- So, for any bucket b :
- If b is infrequent, none of the pairs that hashed to b are frequent
- If b is frequent, pairs hashing to it could be frequent
- Definition of candidate set C_{2} : For $\{i, j\} \in C_{2}$, both
- i and j must be frequent
- $\{i, j\}$ must hash to a frequent bucket
- Use of H in second pass:
- Transform H into bitmap H^{\prime}

$$
H^{\prime}[\{i, j\}]= \begin{cases}1 & \text { if } H[\{i, j\}] \geq s \tag{3}\\ 0 & \text { if } H[\{i, j\}]<s\end{cases}
$$

PCY Algorithm: Main Memory Usage

Pass 1

Pass 2

Use of main memory during A-Priori passes

The Multistage Algorithm

The Multistage Algorithm

- Particular Motivation: Selecting $\{i, j\}$ to be in C_{2}
- In PCY: even when reducing to frequent i and j, and $\{i, j\}$ hashing to frequent buckets, still too many pairs to be counted
- So, need to decrease size of C_{2} further
- Do this by introducing extra pass:
- First pass: as before in PCY
- Second pass: create another hash table raising a third condition
- Third pass: count only pairs that fulfill all three conditions

The Multistage Algorithm: Second Pass

- Second pass data structures from PCY:
- List A on item names to integers
- List C on frequent items: $C[i]=k$ if item i is k-th frequent item, and $C[i]=0$ if i-th item is not frequent
- Bitmap $H^{\prime}: H^{\prime}[\{i, j\}]=1$ iff $\{i, j\}$ hashed to frequent bucket
- Multistage second pass: consider only $\{i, j\}$, where
- (${ }^{*}$) both i and j are frequent
- (**) $H^{\prime}[\{i, j\}]=1$, that is $\{i, j\}$ hashes to frequent bucket
- Create H_{2} hashing such $\{i, j\}$ to buckets holding integers

$$
H_{2}[\{i, j\}] \in \mathbb{N}
$$

The Multistage Algorithm: Second Pass

- To construct H_{2}, use double loop through baskets:
- hash each pair that meets $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ to bucket, and
- increase the integer in that bucket by one
- Again, a frequent bucket b in H_{2} exceeds the support threshold s
- Relative to number of frequent buckets using first H, the number of frequent buckets in H_{2} should be much reduced, because much less pairs are hashed

The Multistage Algorithm

- Definition of Multistage C_{2} : For $\{i, j\} \in C_{2}$, both
- (${ }^{*}$) i and j must be frequent
- $\left({ }^{* *}\right)\{i, j\}$ must hash to a frequent bucket according to H
- $\left.{ }_{(* * *)}{ }^{* i}, j\right\}$ must hash to a frequent bucket according to H_{2}
- Use of C_{2} in third pass:
- Keep A (items to integers), C (frequent items), H^{\prime} (bitmap for H)
- Transform H_{2} into bitmap $\mathrm{H}^{\prime \prime}$ where

$$
H^{\prime \prime}[b]= \begin{cases}1 & \text { if } H_{2}[\{i, j\}] \geq s \tag{4}\\ 0 & \text { if } H_{2}[\{i, j\}]<s\end{cases}
$$

where b is the bucket $\{i, j\}$ hashes to by H_{2}

The Multistage Algorithm

- (Tricky?) Question: Why does (***) not imply (**) and (*)? Weren't all $\{i, j\}$ hashed with H_{2} selected to hash to frequent bucket with H and consist of frequent i and j ?
- Answer:
- Yes: for the second part.
- But: Any $\{i, j\}$ that does not consist of frequent i, j, or hash to frequent bucket with H could hash to frequent bucket with H_{2} nevertheless, although not having contributed to count in the bucket it hashes to

Multistage Algorithm: Main Memory Usage

Pass 1

Pass 2

Pass 3

Use of main memory during Multistage passes

> Adopted from mmds.org

The Multihash Algorithm

The Multihash Algorithm

- Particular Motivation: Try to profit from virtues of Multistage algorithm in one, and not two passes
- So, in first pass, use two hash tables H_{1} and H_{2},
- Both H_{1} and H_{2} have only half as many buckets
- For proceeding with second pass, turn H_{1} and H_{2} into bitmaps $H^{\prime}, H^{\prime \prime}$ as in Multistage
- Apply exact same conditions as in Multistage for pair $\{i, j\}$ to be counted

The Multihash Algorithm

- Both H_{1} and H_{2} have only half as many buckets
- That is like merging original buckets
- Applicability:
- Majority of buckets infrequent
- Average bucket size in PCY much lower than threshold s
- Number of frequent buckets limited even when using half as many buckets

The Multihash Algorithm: Example

- Imagine average bucket count in PCY is $s / 10$
- Particular Assumption: Number of pairs of items randomly hashing to frequent bucket is $1 / 10$
- So, with half as many buckets, average count in Multihash is $s / 5$
- Number of pairs of items randomly hashing to frequent buckets with both H_{1} and H_{2} is $1 / 25$
- So, we deal with approximately 2.5 times less frequent pairs in Multihash than in PCY

Multihash Algorithm: Main Memory Usage

Pass 1

$\begin{gathered} \hline \text { Item } \\ \text { names } \\ \text { to } \\ \text { integers } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & n \end{aligned}$	$\begin{aligned} & \text { Fre- } \\ & \text { quent } \\ & \text { items } \end{aligned}$
Bitmap		map 2
Data structure for counts of pairs		

Pass 2

Use of main memory during Multihash passes
Adopted from mmds.org

Limited-Pass Algorithms

Limited-Pass Algorithms

Strategy

- To save on main memory, consider only a subsample of baskets
- Take into account that one may have
- False negatives: itemsets not identified as frequent although they are
- False positives: itemsets identified as frequent although they are not
- In many applications, a certain amount of false negatives and/or positives is acceptable

Algorithms

- Simple Randomized Algorithm: basic strategy is briefly discussed
- Savasere, Omiecinski, Navate (SON): not considered in the following
- Toivonen: explained here

Simple Randomized Algorithm

Simple Randomized Algorithm: Strategy

- Let m be the overall number of baskets
- Situation: main memory can deal with only k baskets
- Select probability p such that $p m=k$
- Run through basket file, and select each basket to be part of sample with probability p
- If s is original support threshold, set $s^{\prime}:=s p$ for sample
- Run any A-Priori type algorithm on resulting subset of baskets using s^{\prime} as support threshold
- Declare itemsets frequent in subsample as frequent overall

Simple Randomized Algorithm: Errors

- False positive: Itemset frequent in sample, but not in whole
- False negative: Itemset frequent in whole, but not in sample
- Eliminating false positives: Evaluate each itemset found to be frequent in sample by running through whole dataset
- Eliminating false negatives: Cannot eliminate false negatives entirely, but reduce them by choosing $s^{\prime}<s p$, e.g. $s^{\prime}=0.9 s p$

Toivonen's Algorithm

Toivonen's Algorithm I

Algorithm

- Run simple sample strategy at $s^{\prime}=0.9 p s$ or $s^{\prime}=0.8 p s$
- Construct all frequent itemsets from sampled baskets for support threshold s^{\prime}
- Subsequently, construct negative border of itemsets in sample

Definition [Negative Border]:
An itemset I is in the negative border iff
(i) I is not frequent, $\operatorname{so} \operatorname{supp}(I)<s^{\prime}$
(ii) All $I^{\prime} \subset I$ with $\left|I^{\prime}\right|=|I|-1$ are frequent, $\operatorname{sosupp}\left(I^{\prime}\right) \geq s^{\prime}$

Negative Border

Definition [Negative Border]:

An itemset I is in the negative border iff

- I is not frequent, so $\operatorname{supp}(I)<s^{\prime}$
- All $I^{\prime} \subset I$ with $\left|I^{\prime}\right|=|I|-1$ are frequent, $\operatorname{sosupp}\left(I^{\prime}\right) \geq s^{\prime}$

Negative Border: Illustration
From https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

Negative Border: Example

- Consider items $\{A, B, C, D, E\}$
- Itemsets found to be frequent: $\{A\},\{B\},\{C\},\{D\},\{B, C\},\{C, D\}$
- For formal reasons also the empty set \emptyset is frequent
- Negative border:
- $\{E\}$ not frequent, but \emptyset is frequent $|\emptyset|=|\{E\}|-1$ and \emptyset only subset of $\{E\}$ qualifying for (ii) from definition two slides before
- $\{A, B\},\{A, C\},\{A, D\},\{B, D\}$: not frequent, but singletons contained in them, $\{A\},\{B\},\{C\},\{D\}$, are
- No triples in negative border (e.g. $\{B, D\}$ in $\{B, C, D\}$ not frequent)

TOIVONEN's AlGORITHM II

- Pass through full dataset: Count all itemsets, found to be frequent or in the negative border in the sample, in the whole
- Two possible outcomes:

1. No member of negative border is frequent in whole dataset: frequent itemsets are frequent in sample and in whole
2. Some member of negative border is frequent in whole dataset: there could be even larger sets frequent in the whole no guarantees, repeat the algorithm

Toivonen's Algorithm: Proof

- Eliminating false positives: As usual for simple randomized algorithms, by raising counts in the whole dataset, one can filter out itemsets that are frequent in the sample, but not in the whole dataset $\sqrt{ }$
- No false negatives: If no member of the negative border is frequent in the whole dataset, show there is no itemset that
- is frequent in the whole
- while, in the sample not among the frequent itemsets

Toivonen's Algorithm: Proof

- Proof of no false negatives: Suppose the contrary: there is S
- that is frequent in the whole
- but not frequent in the sample
- By monotonicity, all subsets of S are frequent in the whole
- Choose $T \subseteq S$ of the smallest possible size such that still T is not frequent in the sample

Negative Border: Illustration

Toivonen's Algorithm: Proof

- Claim: T is in the negative border of the sample
- Proof of Claim:
- All proper subsets of T are frequent in the sample, because T was chosen of the smallest possible size
- T itself is not frequent in the sample
- We obtain that T was in the negative border of the sample, but frequent in the whole, which is a contradiction!

Materials / Outlook

- See Mining of Massive Datasets, sections 6.1-6.4
- As usual, see http://www.mmds.org/in general for further resources
- Next lecture: 'Recommendation Systems"
- See Mining of Massive Datasets, 9.1, 9.3, 9.4

