
Lecture 11
Frequent Itemsets II

Alexander Schönhuth

Bielefeld University
June 1, 2023

TODAY

Overview: Frequent Itemsets II

I Mining Frequent Itemsets: Recap

I The Algorithm of Park, Chen and Yu (PCY)

I The Multistage Algorithm

I The Multihash Algorithm

I Toivonen’s Algorithm

Learning Goals: Understand these topics and get familiarized

Mining Frequent Itemsets
Recap

FREQUENT ITEMSETS: OVERVIEW

Foundations

I There are items available in the market

I There are baskets, sets of items having been purchased together

I A frequent itemset is a set of items that is found to commonly
appear in many baskets

I The frequent-itemset problem is to identify frequent itemsets

FREQUENT ITEMSETS: DEFINITION

DEFINITION [FREQUENT ITEMSET]:

I Let s > 0 be a support threshold

I Let I be a set of items

I supp(I), the support of I, is the number of baskets in which I
appears as a subset

An itemset I is referred to as frequent if

supp(I) ≥ s (1)

that is, if the support of I is at least the support threshold

A Priori Algorithm
Recap

A-PRIORI ALGORITHM: CANDIDATE GENERATION

AND FILTERING

A-Priori algorithm: Alternating between candidate generation and filtering
Adopted from mmds.org

I Construct: Ck itemsets of size k, whose k− 1-subsets belong to Lk−1

I E.g. C2 pairs of single items that are members of L1, so are frequent

I Filter: Members of Ck whose count exceeds s belongs to Lk

I Bottleneck: Size of C2, the candidate pairs
I Why? Monotonicity implies in practice(!) that |C2| > |C3| > |C4| > ...
I Although

(n
2

)
(possible pairs) <

(n
3

)
(possible triples) <

(n
4

)
...

mmds.org

MONOTONICITY TO THE RESCUE

Found to be
infrequent

Pruned supersets

Itemsets for items A,B,C,D,E
Neglecting supersets of infrequent pair {A,B}

Adopted from mmds.org

mmds.org

A-PRIORI GENERATING C2: MAIN MEMORY USAGE

Use of main memory during A-Priori passes
Pass 1: Generating L1; Pass 2: Generating L2

Adopted from mmds.org

mmds.org

A-PRIORI GENERATING C2: MAIN MEMORY USAGE

Adopted from mmds.org

From C3 main memory no longer an issue
+ naive approaches work, one pass enough

mmds.org

A-Priori Algorithm Extensions
The PCY Algorithm

BOTTLENECK: SIZE OF C2

I The predominant bottleneck in most applications of A-Priori is
the size of C2, the candidate pairs

I Several algorithms address to trim down that size

I Exemplary algorithms:
I The algorithm of Park, Chen and Yu (PCY algorithm)
I The Multistage algorithm
I The Multihash algorithm

I We will treat all algorithms in the following

THE PCY ALGORITHM

I Observation: Much of main memory during first pass of A-Priori
remains unused

I Use that space for a hash table H that
I hashes pairs of items {i, j} to
I buckets holding integers H[{i, j}] ∈ N, where

H[{i, j}] is number of times any pair hashed to that bucket (2)

I To construct H, use double loop through baskets:
I hash each resulting pair to bucket
I increase the integer in that bucket by one

I A frequent bucket b exceeds the support threshold s

THE PCY ALGORITHM

I A frequent bucket b exceeds the support threshold s

I So, for any bucket b:
I If b is infrequent, none of the pairs that hashed to b are frequent
I If b is frequent, pairs hashing to it could be frequent

I Definition of candidate set C2: For {i, j} ∈ C2, both
I i and j must be frequent
I {i, j}must hash to a frequent bucket

I Use of H in second pass:
I Transform H into bitmap H′

H′[{i, j}] =

{
1 if H[{i, j}] ≥ s
0 if H[{i, j}] < s

(3)

PCY ALGORITHM: MAIN MEMORY USAGE

Use of main memory during A-Priori passes
Adopted from mmds.org

mmds.org

The Multistage Algorithm

THE MULTISTAGE ALGORITHM

I Particular Motivation: Selecting {i, j} to be in C2

I In PCY: even when reducing to frequent i and j, and {i, j}
hashing to frequent buckets, still too many pairs to be counted

I So, need to decrease size of C2 further

I Do this by introducing extra pass:
I First pass: as before in PCY
I Second pass: create another hash table raising a third condition
I Third pass: count only pairs that fulfill all three conditions

THE MULTISTAGE ALGORITHM: SECOND PASS

I Second pass data structures from PCY:
I List A on item names to integers
I List C on frequent items: C[i] = k if item i is k-th frequent item,

and C[i] = 0 if i-th item is not frequent
I Bitmap H′: H′[{i, j}] = 1 iff {i, j} hashed to frequent bucket

I Multistage second pass: consider only {i, j}, where
I (*) both i and j are frequent
I (**) H′[{i, j}] = 1, that is {i, j} hashes to frequent bucket
I Create H2 hashing such {i, j} to buckets holding integers

H2[{i, j}] ∈ N

THE MULTISTAGE ALGORITHM: SECOND PASS

I To construct H2, use double loop through baskets:
I hash each pair that meets (*) and (**) to bucket, and
I increase the integer in that bucket by one

I Again, a frequent bucket b in H2 exceeds the support threshold s

I Relative to number of frequent buckets using first H, the number
of frequent buckets in H2 should be much reduced, because
much less pairs are hashed

THE MULTISTAGE ALGORITHM

I Definition of Multistage C2: For {i, j} ∈ C2, both
I (*) i and j must be frequent
I (**) {i, j}must hash to a frequent bucket according to H
I (***) {i, j}must hash to a frequent bucket according to H2

I Use of C2 in third pass:
I Keep A (items to integers), C (frequent items), H′ (bitmap for H)
I Transform H2 into bitmap H′′ where

H′′[b] =

{
1 if H2[{i, j}] ≥ s
0 if H2[{i, j}] < s

(4)

where b is the bucket {i, j} hashes to by H2

THE MULTISTAGE ALGORITHM

I (Tricky?) Question: Why does (***) not imply (**) and (*)? Weren’t
all {i, j} hashed with H2 selected to hash to frequent bucket with
H and consist of frequent i and j?

I Answer:
I Yes: for the second part.
I But: Any {i, j} that does not consist of frequent i, j, or hash to

frequent bucket with H could hash to frequent bucket with H2

nevertheless, although not having contributed to count in the
bucket it hashes to

MULTISTAGE ALGORITHM: MAIN MEMORY USAGE

Use of main memory during Multistage passes
Adopted from mmds.org

mmds.org

The Multihash Algorithm

THE MULTIHASH ALGORITHM

I Particular Motivation: Try to profit from virtues of Multistage
algorithm in one, and not two passes

I So, in first pass, use two hash tables H1 and H2,

I Both H1 and H2 have only half as many buckets

I For proceeding with second pass, turn H1 and H2 into bitmaps
H′,H′′ as in Multistage

I Apply exact same conditions as in Multistage for pair {i, j} to be
counted

THE MULTIHASH ALGORITHM

I Both H1 and H2 have only half as many buckets

I That is like merging original buckets

I Applicability:
I Majority of buckets infrequent
I Average bucket size in PCY much lower than threshold s
I + Number of frequent buckets limited even when using half as

many buckets

THE MULTIHASH ALGORITHM: EXAMPLE

I Imagine average bucket count in PCY is s/10

I Particular Assumption: Number of pairs of items randomly
hashing to frequent bucket is 1/10

I So, with half as many buckets, average count in Multihash is s/5

I Number of pairs of items randomly hashing to frequent buckets
with both H1 and H2 is 1/25

I So, we deal with approximately 2.5 times less frequent pairs in
Multihash than in PCY

MULTIHASH ALGORITHM: MAIN MEMORY USAGE

Use of main memory during Multihash passes
Adopted from mmds.org

mmds.org

Limited-Pass Algorithms

LIMITED-PASS ALGORITHMS

Strategy

I To save on main memory, consider only a subsample of baskets

I Take into account that one may have
I False negatives: itemsets not identified as frequent although they are
I False positives: itemsets identified as frequent although they are not

I In many applications, a certain amount of false negatives and/or
positives is acceptable

Algorithms

I Simple Randomized Algorithm: basic strategy is briefly discussed
I Savasere, Omiecinski, Navate (SON): not considered in the following
I Toivonen: explained here

Simple Randomized Algorithm

SIMPLE RANDOMIZED ALGORITHM: STRATEGY

I Let m be the overall number of baskets

I Situation: main memory can deal with only k baskets

I Select probability p such that pm = k

I Run through basket file, and select each basket to be part of
sample with probability p

I If s is original support threshold, set s′ := sp for sample

I Run any A-Priori type algorithm on resulting subset of baskets
using s′ as support threshold

I Declare itemsets frequent in subsample as frequent overall

SIMPLE RANDOMIZED ALGORITHM: ERRORS

I False positive: Itemset frequent in sample, but not in whole

I False negative: Itemset frequent in whole, but not in sample

I Eliminating false positives: Evaluate each itemset found to be
frequent in sample by running through whole dataset

I Eliminating false negatives: Cannot eliminate false negatives
entirely, but reduce them by choosing s′ < sp, e.g. s′ = 0.9sp

Toivonen’s Algorithm

TOIVONEN’S ALGORITHM I

Algorithm

I Run simple sample strategy at s′ = 0.9ps or s′ = 0.8ps

I Construct all frequent itemsets from sampled baskets for
support threshold s′

I Subsequently, construct negative border of itemsets in sample

DEFINITION [NEGATIVE BORDER]:
An itemset I is in the negative border iff

(i) I is not frequent, so supp(I) < s′

(ii) All I′ ⊂ I with |I′| = |I| − 1 are frequent, so supp(I′) ≥ s′

NEGATIVE BORDER

DEFINITION [NEGATIVE BORDER]:
An itemset I is in the negative border iff

I I is not frequent, so supp(I) < s′

I All I′ ⊂ I with |I′| = |I| − 1 are frequent, so supp(I′) ≥ s′

Negative Border: Illustration
From https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

NEGATIVE BORDER: EXAMPLE

I Consider items {A,B,C,D,E}
I Itemsets found to be frequent: {A}, {B}, {C}, {D}, {B,C}, {C,D}
I For formal reasons also the empty set ∅ is frequent

I Negative border:
I {E} not frequent, but ∅ is frequent + |∅| = |{E}| − 1 and ∅ only

subset of {E} qualifying for (ii) from definition two slides before
I {A,B}, {A,C}, {A,D}, {B,D}: not frequent, but singletons

contained in them, {A}, {B}, {C}, {D}, are
I No triples in negative border (e.g. {B,D} in {B,C,D} not frequent)

TOIVONEN’S ALGORITHM II

I Pass through full dataset: Count all itemsets, found to be frequent
or in the negative border in the sample, in the whole

I Two possible outcomes:

1. No member of negative border is frequent in whole dataset:
frequent itemsets are frequent in sample and in whole

2. Some member of negative border is frequent in whole dataset:
there could be even larger sets frequent in the whole
+ no guarantees, repeat the algorithm

TOIVONEN’S ALGORITHM: PROOF

I Eliminating false positives: As usual for simple randomized
algorithms, by raising counts in the whole dataset, one can filter
out itemsets that are frequent in the sample, but not in the whole
dataset 3

I No false negatives: If no member of the negative border is
frequent in the whole dataset, show there is no itemset that

I is frequent in the whole
I while, in the sample not among the frequent itemsets

TOIVONEN’S ALGORITHM: PROOF

I Proof of no false negatives: Suppose the contrary: there is S
I that is frequent in the whole
I but not frequent in the sample

I By monotonicity, all subsets of S are frequent in the whole

I Choose T ⊆ S of the smallest possible size such that still T is not
frequent in the sample

Negative Border: Illustration
From https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm

TOIVONEN’S ALGORITHM: PROOF

I Claim: T is in the negative border of the sample

I Proof of Claim:
I All proper subsets of T are frequent in the sample, because T was

chosen of the smallest possible size
I T itself is not frequent in the sample

I We obtain that T was in the negative border of the sample, but
frequent in the whole, which is a contradiction!

MATERIALS / OUTLOOK

I See Mining of Massive Datasets, sections 6.1–6.4

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: ‘Recommendation Systems”

I See Mining of Massive Datasets, 9.1, 9.3, 9.4

http://www.mmds.org/

