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TODAY

Overview
» Link Analysis III
» Hubs and Authorities: Alternative, Non-PageRank Approach
» Frequent Itemsets 1

» The Market-Basket Model

» Frequent Itemsets: Definition and Applications
» Association Rules

» The A-Priori Algorithm

Learning Goals: Understand these topics and get familiarized
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HUBS AND AUTHORITIES: INTRODUCTION

» The hubs-and-authorities algorithm, also called HITS
(hyperlink-induced topic search), is an alternative to PageRank

» Similarities:

» Quantifies importance of pages
» Involves fixedpoint computation by iterative matrix-vector
multiplication

» Differences:

» Divides pages into hubs and authorities
» Not a preprocessing step: ranks importance of responses to query
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HITS: INTUITION

» Importance is twofold

» Authorities are pages deemed to be valuable because they provide
information on a topic

» E.g. course website at university

» Hubs are pages deemed to be valuable because of providing directions
about topics

» E.g. department directory providing links to all course websites
» Mutually recursive definition:

» Good hub links to good authorities
» Good authority is linked to by good hubs
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HUBBINESS AND AUTHORITY: DEFINITION

DEFINITION [HUBBINESS, AUTHORITY]

» Let the number of webpages be n

» Leth € R" a € R" be two vectors where

» h; quantifies the goodness of page i as a hub
» a; quantifies the goodness of page i as an authority

» h; is also referred to as hubbiness of page i

REMARK

» Values of h, a are generally scaled such that

» cither the largest component is 1
» or the sum of components is 1
» In the following, first option will be used here
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LINK MATRIX: DEFINITION

DEFINITION [LINK MATRIX]

» Let the number of webpages be n
» The link matrix L € {0,1}"*" of the Web is defined by

{1 there is a link from page i to page j )
ij =

0 otherwise

» Its transpose L is defined by Lf; = Ly, thatis L], = 1 if there isa
link from the j-th to the i-th page, and zero otherwise

REMARK
» LT is similar to the PageRank web transition matrix M insofar as
L; #0 ifandonlyif M; #0
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LINK MATRIX: EXAMPLE

Example web graph
Adopted from mmds . org
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L=]1000 01 I™=|1 0 0 1 0
01100 11000
00000 00100

Corresponding link matrix and its transpose
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HUBS AND AUTHORITIES: FORMAL RELATIONSHIP

» Good hub links to good authorities:
n
h; =\ Z Lijaj or, equivalently h=)\La (2)
j=1

where )\ represents the necessary scaling of h

» Good authority is linked to by good hubs:
aj=p Z Lghj or, equivalently a=uL™h 3)
j=1
where p represents the necessary scaling of a.
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HUBS AND AUTHORITIES: FORMAL RELATIONSHIP

» Substituting (3) into (2) yields:

h = \uLL"h (4)
» Substituting (2) into (3) yields:

a=puA"La (5)

» h,a can be determined by solving linear equations

» However: LLT, LTL are not sufficiently sparse for their size to
allow for solving corresponding linear equations

» Solution: HITS algorithm
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THE HITS ALGORITHM

Initialization: Seth; = 1 for all i, thatish = (1, ...,1)
Iteration:
1. Compute
a=L"h
2. Scale such that largest component of a is 1

3. Compute
h=1Ia

4. Scale such that largest component of hiis 1

5. Repeat until convergence
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HITS ALGORITHM: EXAMPLE

1 1 1/2 3

1 2 1 3/2

1 2 1 1/2

1 2 1 2

1 1 1/2 0

h L™h a La
1/2 3/10 29/10 1
5/3 1 6/5 12/29
5/3 1 1/10 1/29
3/2 9/10 2 20/29
1/6 1/10 0 0
L™h a La h

First two iterations of HITS algorithm

Adopted from mmds . org
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HITS ALGORITHM: EXAMPLE
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A and D are good hubs, B and C are good authorities
Adopted from mmds . org

1 0.2087
0.3583 1
h= 0 a= 1
0.7165 0.7913
0 0
UNIVERSITAT

Limits of h, a on graph
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Frequent Itemsets
Introduction
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FREQUENT ITEMSETS: OVERVIEW

Foundations
» There are items available in the market
» There are baskets, sets of items having been purchased together

» A frequent itemset is a set of items that is found to commonly
appear in many baskets

» The frequent-itemset problem is to identify frequent itemsets

UNIVERSITAT
BIELEFELD



MARKET-BASKET MODEL

Market-basket model

» The market-basket model is a many-many-relationship

» One basket holds many items
» One item appears in several baskets

» FEach basket is an itemset, i.e. a set of (one or several) items

» Usually, the number of items in a basket is small compared to
number of items overall

» Number of baskets is usually large; too large to fit in main
memory

» Data usually is a sequence of baskets
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FREQUENT ITEMSETS: DEFINITION

DEFINITION [FREQUENT ITEMSET]:

» Lets > 0be asupport threshold
» Let I be a set of items

» supp(I), the support of I, is the number of baskets in which I
appears as a subset

An itemset [ is referred to as frequent if

supp(l) > s (6)

that is, if the support of I is at least the support threshold
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FREQUENT ITEMSETS: EXAMPLE

Baskets

1.

NSOk wN

®

vVvyvyyvyy

{and, dog, bites}

{news, claims, a, cat, mated, with, a, dog, and, produced, viable, offspring}
{cat, killer, likely, is, a, big, dog}

{professional, free, advice, on, dog, training, puppy, training}

{cat, and, kitten, training, behavior}

{dog, cat, provides, training, in, Oregon}

{dog, and, cat, is, a, slang, term, used, by, police, officers, for, a, male-female,
relationship}

{shop, for, your, show, dog, grooming, and, pet, supplies}

E.g. supp({dog}) = 7, supp({and}) = 5, supp({dog, and}) = 4

Let the support threshold s = 3

5 frequent singletons: {dog},{cat},{a},{and} {training}

5 frequent doubletons: {dog, a},{dog, and},{dog, cat},{cat, a},{cat, and}
1 frequent triple: {dog, cat, a}
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FREQUENT ITEMSETS: APPLICATIONS

» Retailers / Supermarkets / Chain stores

» [tems: Products offered

» Baskets: Sets of products purchased by one customer during one
shopping run

» Frequent Itemsets: Products purchased together unusually often
i Beer and diapers

» Related concepts

» [tems: Words, excluding stop words
» Baskets: News articles, documents
» Frequent Itemsets: Groups of words representing joint concept

» Plagiarism

» Jtems: Documents

» Baskets: Sentences

» Frequent Itemsets: Documents containing unusually many
sentences in common
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ASSOCIATION RULES

» Letjbe anitem and I be an itemset

» An association rule
I—j
expresses that if I is likely to appear in a basket, so is j
» In other words, if I shows in basket, one is confident to assume

that j does, too

DEFINITION [CONFIDENCE]:
The confidence of a rule I — j is defined as

supp(I U {j})

7
supp(l) @

that is the fraction of baskets containing I, that also contain j.
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ASSOCIATION RULES: CONFIDENCE

DEFINITION [CONFIDENCE]:
The confidence of a rule I — j is defined as

supp(l U {j})
supp(I)
that is the fraction of baskets containing I, that also contain j.
Example from above
» Confidence of {cat,dog} — and is 3/5
» Confidence of {cat} — kittenis 1/6
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ASSOCIATION RULES: INTEREST

» Let n be the number of baskets overall

» Confidence for I — j can be meaningless if fraction of baskets
containing j is large

» Confidence may just reflect that fraction
» So presence of I does not increase confidence to see j as well
» Interest is supposed to put this into context

DEFINITION [INTEREST]:
The interest of a rule I — j is defined as

supp(I U {j}) supp({j})
supp(I) n

(8)

that is the confidence of I — j minus the fraction of baskets that

contain j

UNIVERSITAT
BIELEFELD



ASSOCIATION RULES: INTEREST

DEFINITION [INTEREST]:
The interest of a rule I — j is defined as

supp(I U {j}) supp({j})

supp(I) n
that is the confidence of I — j minus the fraction of baskets that
contain j
Examples

» {diapers} — beer was found to have great interest
» {dog} — cat has interest 5/7 — 3/4 = —0.036
» {cat} — kitten has interest 1/6 — 1/8 = 0.042

UNIVERSITAT
BIELEFELD



FREQUENT ITEMSETS TO ASSOCIATION RULES
Situation

» Consider frequent itemsets of “reasonably high” support s

» Note that each frequent itemset suggests to be acted upon
1= keep their number reasonably low
» Reasonably low often means about 1% of baskets

» Confidence for a rule I — j should be at least (about) 50%
v Support for I U {j} also fairly high

Procedure
» Assume all I with supp(I) > s have been mined

» For ] of n items with supp(J) > s, there are n possible association rules
J\ {j} — J (where each j is one of the n items)

> supp(/) > s implies supp(J \ {j}) > s
» Confidence of ] \ {j} — ] is easily computed as

supp(/)
supp(J \ {j})
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Mining Frequent Itemsets
The A-Priori Algorithm
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MARKET-BASKET DATA: REPRESENTATION

» Market-basket data is stored in a file basket-by-basket
» If items refer to identifiers, for example {3, 36,99}{6,78,11}...

» Assumption: Average size of basket is rather small
» Usually, file does not fit in main memory

» Generating all subsets of size k for a basket of size n requires

n Nn7k
k)~ K

runtime
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MARKET-BASKET DATA: REPRESENTATION

>

vV v vy

Generating all subsets of size k for a basket of size n requires
A
k)~ K

This often is little time because:

runtime

n was assumed to be small
k is usually very small

When £ is large, one can virtually reduce n further by removing
infrequent items
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MARKET-BASKET DATA: RUNTIME CONSIDERATION

Insight

» Runtime dominated by taking data from disk to main memory
» Consequence: Processing all baskets is proportional to size of file
» Runtime proportional to number of passes through file

» For a fast frequent itemset mining algorithm:

Limit number of passes through basket file
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USE OF MAIN MEMORY

» Issue: One needs to store counts for itemsets of size k

» There could be many such itemsets
» How to store these counts?

» Consequence: There is a limit on the number of items an
algorithm can deal with

» Example:

» Let there be n items

» For counting pairs, we need to store (}) ~ n°/2 counts

> Integers of 4 bytes: need 2n” bytes to store counts

» Consider machine of 2 GB, or & 2*! bytes of main memory
» Then n < 2" ~ 33000 is required

» Note: Items can be hashed to integers, if they are not integers
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STORING ITEMSET COUNTS: THE
TRIANGULAR-MATRIX METHOD

» In the following, consider storing itemsets of size 2

» Remember that support threshold is quite large in real
applications

» So, many more pairs than triples, quadruples and so on in real
applications

» Insight: Storing counts a[i, j] in matrix A = (ali, j])1<i<j<n € N
wastes half of A
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STORING ITEMSET COUNTS: THE
TRIANGULAR-MATRIX METHOD

» Insight: Storing counts a[i, j] in matrix A = (a[i, ])1<i<j<n € N*"*"
wastes half of A

» Solution: Store count for pair of items {i,j},1 <i<j<mnin

i

alk] where k:(i—l)(nfz)Jrjfi 9)

This stores pairs in lexicographical order

{1,2},{1,3}, ..., {1,n},{2,3},....,{2,n}, ..., {n —2,n},{n — 1,n}
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STORING ITEMSET COUNTS: THE TRIPLES METHOD

» Store triples [i, , c] for all pairs {7, j} whose count ¢ > 0

» For example, do this with hash table, hashing i, j as search key
» Advantage: Does not require space for pairs {i,j} of count zero
» Disadavantage: Requires three times the space if ¢ > 0

» Rationale: Triangular matrix method better if at least 1/3 of the
(5) pairs appear in basket
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STORING ITEMSET COUNTS: EXAMPLE

Example

» Consider

» 100000 items
» 10000000 baskets of
» 10 items each

5
> Triangular-matrix method: (' ) a5 x 10° integer counts

> Triples method: 107() ~ 4.5 x 10° counts, making for
3 x 4.5 x 108 = 1.35 x 10’ integers to be stored

» Triples method proves to be more appropriate
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MONOTONICITY

THEOREM [MONOTONICITY]:
» Let s be the support threshold.
» Letl, ] besetssuchthat] C 1

Then if I is frequent, any subset | of I is, too:

supp(I) >s implies supp(]) >s (10)

PROOF.

Each basket that holds I also holds ], as | is contained in I. So, the
number of baskets that hold ] is at least as large as the number of
baskets that hold I. O
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MAXIMAL FREQUENT ITEMSET I

DEFINITION [MAXIMAL FREQUENT ITEMSET]:

» Let s be the support threshold.
» Let I be frequent, that is supp(I) > s.

I is said to be maximal if no superset of I is frequent:

forall] D 1:supp(]) <s (11)
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MAXIMAL FREQUENT ITEMSET II

DEFINITION [MAXIMAL FREQUENT ITEMSET]:
Iis said to be maximal if no superset of I is frequent:

forall] D 1:supp(J) <s (12)

Example (from above):

» At support threshold s = 3, we found frequent pairs
{dog,a},{dog,and}, {dog, cat},{cat,a}, {cat,and}

» {dog,cat,a} was found the only frequent triple

ww {dog,cat,a},{dog,and} and {cat,and} are maximal, while
{dog,a},{dog, cat},{cat,a} are not
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NOTE ON COUNTING PAIRS I

» The number of frequent pairs is larger than frequent triples,
quadruples, ... why?

» For making sense, number of (maximal) frequent itemsets is
supposed to be sufficiently small

» Human applicants need to work it out on all of them

» So, support threshold is set sufficiently high
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NOTE ON COUNTING PAIRS IT

» Any maximal frequent itemset holds many more smaller,
non-maximal frequent itemsets

» The resulting situation implies that there are many more
frequent pairs than triples, many more frequent triples than
quadruples, and so on

» Important:

» Still, the possible number of triples, quadruples is (much) greater
than pairs

» Any good frequent itemset algorithm needs to avoid running through
all possible triples, quadruples, and so on
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MONOTONICITY TO THE RESCUE

!

Found to be
infrequent

Pruned supersets

Itemsets for items A,B,C,D,E
Neglecting supersets of infrequent pair {A,B}

Adopted from mmds . org
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A-PRIORI ALGORITHM: MOTIVATION

In the following, we focus on determining frequent pairs.
Naive Approach
Consider the algorithm
» For each basket, use double loop to generate all pairs contained in it
» For each pair generated, add 1 to its count
» Store counts using triangular or triples method
»

At the end, run through all pairs and determine those whose counts
exceed support threshold s

v

Benefit: Only one pass through all baskets

v

Issue: Number of pairs considered usually does not fit in main memory
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A-PRIORI ALGORITHM: MOTIVATION

In the following, we focus on determining frequent pairs.
Naive Approach
» Possible Benefit: Only pass through all baskets

» Issue: Number of pairs considered usually does not fit in main memory

Solution: A-Priori-Algorithm

» Have two passes through baskets instead of one

» In first run, determine candidate pairs, for which counts are stored
» In second run, determine counts for candidate pairs
>

Finally filter for frequent pairs
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A-PRIORI ALGORITHM: FIRST PASS

Create and Maintain Two Tables

» First table A: Let x be an item name, then A[x] reflects that x is the A[x]-th
item in the order of their appearance in the basket file

» Second table B: Let k be an item number, then B[k] is the number of
baskets in which item number k appears

Read Baskets: Fill Table B
» For each basket, for each item x in the basket, do
B[A[x]] = B[A[x]] + 1 (13)

» That is, iteratively increase item counts while running through all items
in all baskets
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A-PRIORI ALGORITHM: SECOND PASS |

» Let n be the number of items
» Let m be the number of items found to be frequent

» By user constraints, usually m << n

Create Third Table
» Third table C: Let 1 < k < n be an item number. Then

Cl = {O if item number k is not frequent (14)

I if item number k was found the /-th frequent item

So, C € {0,1,...,m}", where

» Clk] = 0n — m times

» Clk] =i,1 <i < m exactly one time

» 0 < Clki] < Clkp] implies k; < ky, expressing that C preserves the order of
appearance of items
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A-PRIORI ALGORITHM: SECOND PASs 11

Count Pairs Data Structure
» Use either triangular or triples method data structure to hold counts
» For using triangular method, renumbering necessary
» By monotonicity, a pair can only be frequent, if both items are frequent

> So, space required is O(m?) rather than O(n?)
= m << nimplies m*> << n? so fits in main memory!

Examine Baskets

1. For each basket, for each item x, see whether

C[A[x]] > 0 thatis, whether x is frequent (15)

2. Using double loop, generate all pairs of frequent items in the basket

3. For each such pair, increase count by one in pair count data structure

Eventually: examine which pairs are frequent in pair count data structure
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A-PRIORI ALGORITHM: MAIN MEMORY USAGE

Item 1 Item 1 F
names | |2 | Item names | |2 e
quent
to counts to .
. . items
integers | |5, integers | |,
Unused Data structure
for counts
of pairs
Pass 1 Pass 2

Use of main memory during A-Priori passes

Adopted from mmds . org
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A-PRIORI ALGORITHM: ALL FREQUENT ITEMSETS

» One extra pass for each k > 2 to mine frequent itemsets of size k

» The A-Priori algorithm proceeds iteratively

» Mining frequent itemsets of size k + 1 is based on knowing
frequent itemsets of size k

» Each iteration consists of two steps for each k:

» Generate a candidate set Cy
» Filter C; to produce Ly, the truly frequent itemsets of size k

» The algorithm terminates at first k where Ly is empty

» Monotonicity says we are done mining frequent itemsets
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A-PRIORI ALGORITHM: CANDIDATE GENERATION
AND FILTERING

Ci L, G Ly C3 Ls
Construct Construct Construct

Pairs of Frequent
frequent pairs
items

All Frequent
items items

A-Priori algorithm: Alternating between candidate generation and filtering
Adopted from mmds . org

» Construct: Let Cy be all itemsets of size k, every k — 1 of which belong to
Li—q
» Filter: Make a pass through baskets to count members of Cy; those with

count exceeding s will be part of L

» For storing counts for itemsets of size k, extend triples method
» E.g. storing quadruples for frequent triples, and so on...
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MATERIALS / OUTLOOK

» See Mining of Massive Datasets, sections 5.5, 6.1, 6.2

» Asusual, see http://www.mmds.org/ in general for further
resources

» Next lecture: ‘Frequent Itemsets II / Recommendation Systems”
» See Mining of Massive Datasets, 6.3, 6.4.5,9.1,9.2
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