
Lecture 10
Link Analysis III / Frequent Itemsets I

Alexander Schönhuth

Bielefeld University
May 25, 2023



TODAY

Overview
I Link Analysis III

I Hubs and Authorities: Alternative, Non-PageRank Approach

I Frequent Itemsets I
I The Market-Basket Model
I Frequent Itemsets: Definition and Applications
I Association Rules
I The A-Priori Algorithm

Learning Goals: Understand these topics and get familiarized



Hubs and Authorities



HUBS AND AUTHORITIES: INTRODUCTION

I The hubs-and-authorities algorithm, also called HITS
(hyperlink-induced topic search), is an alternative to PageRank

I Similarities:
I Quantifies importance of pages
I Involves fixedpoint computation by iterative matrix-vector

multiplication

I Differences:
I Divides pages into hubs and authorities
I Not a preprocessing step: ranks importance of responses to query



HITS: INTUITION

I Importance is twofold

I Authorities are pages deemed to be valuable because they provide
information on a topic

I E.g. course website at university

I Hubs are pages deemed to be valuable because of providing directions
about topics

I E.g. department directory providing links to all course websites

I Mutually recursive definition:
I Good hub links to good authorities
I Good authority is linked to by good hubs



HUBBINESS AND AUTHORITY: DEFINITION

DEFINITION [HUBBINESS, AUTHORITY]

I Let the number of webpages be n

I Let h ∈ Rn, a ∈ Rn be two vectors where
I hi quantifies the goodness of page i as a hub
I ai quantifies the goodness of page i as an authority

I hi is also referred to as hubbiness of page i

REMARK

I Values of h, a are generally scaled such that
I either the largest component is 1
I or the sum of components is 1
I In the following, first option will be used here



LINK MATRIX: DEFINITION

DEFINITION [LINK MATRIX]

I Let the number of webpages be n

I The link matrix L ∈ {0, 1}n×n of the Web is defined by

Lij =

{
1 there is a link from page i to page j
0 otherwise

(1)

I Its transpose LT is defined by LT
ij = Lji, that is LT

ij = 1 if there is a
link from the j-th to the i-th page, and zero otherwise

REMARK

I LT is similar to the PageRank web transition matrix M insofar as

LT
ij 6= 0 if and only if Mij 6= 0



LINK MATRIX: EXAMPLE

Example web graph
Adopted from mmds.org

Corresponding link matrix and its transpose
Adopted from mmds.org

mmds.org
mmds.org


HUBS AND AUTHORITIES: FORMAL RELATIONSHIP

I Good hub links to good authorities:

hi = λ

n∑
j=1

Lijaj or, equivalently h = λLa (2)

where λ represents the necessary scaling of h

I Good authority is linked to by good hubs:

ai = µ

n∑
j=1

LT
ijhj or, equivalently a = µLTh (3)

where µ represents the necessary scaling of a.



HUBS AND AUTHORITIES: FORMAL RELATIONSHIP

I Substituting (3) into (2) yields:

h = λµLLTh (4)

I Substituting (2) into (3) yields:

a = µλLTLa (5)

I h, a can be determined by solving linear equations

I However: LLT,LTL are not sufficiently sparse for their size to
allow for solving corresponding linear equations

I Solution: HITS algorithm



THE HITS ALGORITHM

Initialization: Set hi = 1 for all i, that is h = (1, ..., 1)

Iteration:

1. Compute
a = LTh

2. Scale such that largest component of a is 1

3. Compute
h = La

4. Scale such that largest component of h is 1

5. Repeat until convergence



HITS ALGORITHM: EXAMPLE

First two iterations of HITS algorithm
Adopted from mmds.org

mmds.org


HITS ALGORITHM: EXAMPLE

A and D are good hubs, B and C are good authorities
Adopted from mmds.org

Limits of h, a on graph
Adopted from mmds.org

mmds.org
mmds.org


Frequent Itemsets
Introduction



FREQUENT ITEMSETS: OVERVIEW

Foundations

I There are items available in the market

I There are baskets, sets of items having been purchased together

I A frequent itemset is a set of items that is found to commonly
appear in many baskets

I The frequent-itemset problem is to identify frequent itemsets



MARKET-BASKET MODEL

Market-basket model

I The market-basket model is a many-many-relationship
I One basket holds many items
I One item appears in several baskets

I Each basket is an itemset, i.e. a set of (one or several) items

I Usually, the number of items in a basket is small compared to
number of items overall

I Number of baskets is usually large; too large to fit in main
memory

I Data usually is a sequence of baskets



FREQUENT ITEMSETS: DEFINITION

DEFINITION [FREQUENT ITEMSET]:

I Let s > 0 be a support threshold

I Let I be a set of items

I supp(I), the support of I, is the number of baskets in which I
appears as a subset

An itemset I is referred to as frequent if

supp(I) ≥ s (6)

that is, if the support of I is at least the support threshold



FREQUENT ITEMSETS: EXAMPLE

Baskets
1. {and, dog, bites}
2. {news, claims, a, cat, mated, with, a, dog, and, produced, viable, offspring}
3. {cat, killer, likely, is, a, big, dog}
4. {professional, free, advice, on, dog, training, puppy, training}
5. {cat, and, kitten, training, behavior}
6. {dog, cat, provides, training, in, Oregon}
7. {dog, and, cat, is, a, slang, term, used, by, police, officers, for, a, male-female,

relationship}
8. {shop, for, your, show, dog, grooming, and, pet, supplies}

I E.g. supp({dog}) = 7, supp({and}) = 5, supp({dog, and}) = 4
I Let the support threshold s = 3
I 5 frequent singletons: {dog},{cat},{a},{and},{training}
I 5 frequent doubletons: {dog, a},{dog, and},{dog, cat},{cat, a},{cat, and}
I 1 frequent triple: {dog, cat, a}



FREQUENT ITEMSETS: APPLICATIONS

I Retailers / Supermarkets / Chain stores
I Items: Products offered
I Baskets: Sets of products purchased by one customer during one

shopping run
I Frequent Itemsets: Products purchased together unusually often

+ Beer and diapers

I Related concepts
I Items: Words, excluding stop words
I Baskets: News articles, documents
I Frequent Itemsets: Groups of words representing joint concept

I Plagiarism
I Items: Documents
I Baskets: Sentences
I Frequent Itemsets: Documents containing unusually many

sentences in common



ASSOCIATION RULES

I Let j be an item and I be an itemset

I An association rule
I→ j

expresses that if I is likely to appear in a basket, so is j

I In other words, if I shows in basket, one is confident to assume
that j does, too

DEFINITION [CONFIDENCE]:
The confidence of a rule I→ j is defined as

supp(I ∪ {j})
supp(I)

(7)

that is the fraction of baskets containing I, that also contain j.



ASSOCIATION RULES: CONFIDENCE

DEFINITION [CONFIDENCE]:
The confidence of a rule I→ j is defined as

supp(I ∪ {j})
supp(I)

that is the fraction of baskets containing I, that also contain j.

Example from above

I Confidence of {cat, dog} → and is 3/5

I Confidence of {cat} → kitten is 1/6



ASSOCIATION RULES: INTEREST

I Let n be the number of baskets overall

I Confidence for I→ j can be meaningless if fraction of baskets
containing j is large

I Confidence may just reflect that fraction

I So presence of I does not increase confidence to see j as well

I Interest is supposed to put this into context

DEFINITION [INTEREST]:
The interest of a rule I→ j is defined as

supp(I ∪ {j})
supp(I)

− supp({j})
n

(8)

that is the confidence of I→ j minus the fraction of baskets that
contain j



ASSOCIATION RULES: INTEREST

DEFINITION [INTEREST]:
The interest of a rule I→ j is defined as

supp(I ∪ {j})
supp(I)

− supp({j})
n

that is the confidence of I→ j minus the fraction of baskets that
contain j

Examples

I {diapers} → beer was found to have great interest

I {dog} → cat has interest 5/7− 3/4 = −0.036

I {cat} → kitten has interest 1/6− 1/8 = 0.042



FREQUENT ITEMSETS TO ASSOCIATION RULES
Situation

I Consider frequent itemsets of “reasonably high” support s
I Note that each frequent itemset suggests to be acted upon

+ keep their number reasonably low
I Reasonably low often means about 1% of baskets

I Confidence for a rule I→ j should be at least (about) 50%
+ Support for I ∪ {j} also fairly high

Procedure
I Assume all I with supp(I) ≥ s have been mined
I For J of n items with supp(J) ≥ s, there are n possible association rules

J \ {j} → J (where each j is one of the n items)
I supp(J) ≥ s implies supp(J \ {j}) ≥ s
I Confidence of J \ {j} → J is easily computed as

supp(J)
supp(J \ {j})



Mining Frequent Itemsets
The A-Priori Algorithm



MARKET-BASKET DATA: REPRESENTATION

I Market-basket data is stored in a file basket-by-basket
I If items refer to identifiers, for example {3, 36, 99}{6, 78, 11}...

I Assumption: Average size of basket is rather small

I Usually, file does not fit in main memory

I Generating all subsets of size k for a basket of size n requires(
n
k

)
≈ nk

k!

runtime



MARKET-BASKET DATA: REPRESENTATION

I Generating all subsets of size k for a basket of size n requires(
n
k

)
≈ nk

k!

runtime

I This often is little time because:

I n was assumed to be small

I k is usually very small

I When k is large, one can virtually reduce n further by removing
infrequent items



MARKET-BASKET DATA: RUNTIME CONSIDERATION

Insight

I Runtime dominated by taking data from disk to main memory

I Consequence: Processing all baskets is proportional to size of file

I Runtime proportional to number of passes through file

I For a fast frequent itemset mining algorithm:

Limit number of passes through basket file



USE OF MAIN MEMORY

I Issue: One needs to store counts for itemsets of size k
I There could be many such itemsets
I How to store these counts?

I Consequence: There is a limit on the number of items an
algorithm can deal with

I Example:
I Let there be n items
I For counting pairs, we need to store

(n
2

)
≈ n2/2 counts

I Integers of 4 bytes: need 2n2 bytes to store counts
I Consider machine of 2 GB, or ≈ 231 bytes of main memory
I Then n < 215 ≈ 33 000 is required

I Note: Items can be hashed to integers, if they are not integers



STORING ITEMSET COUNTS: THE

TRIANGULAR-MATRIX METHOD

I In the following, consider storing itemsets of size 2
I Remember that support threshold is quite large in real

applications
I So, many more pairs than triples, quadruples and so on in real

applications

I Insight: Storing counts a[i, j] in matrix A = (a[i, j])1≤i<j≤n ∈ Nn×n

wastes half of A



STORING ITEMSET COUNTS: THE

TRIANGULAR-MATRIX METHOD

I Insight: Storing counts a[i, j] in matrix A = (a[i, j])1≤i<j≤n ∈ Nn×n

wastes half of A

I Solution: Store count for pair of items {i, j}, 1 ≤ i < j ≤ n in

a[k] where k = (i− 1)(n− i
2
) + j− i (9)

This stores pairs in lexicographical order

{1, 2}, {1, 3}, ..., {1,n}, {2, 3}, ..., {2,n}, ..., {n− 2,n}, {n− 1,n}



STORING ITEMSET COUNTS: THE TRIPLES METHOD

I Store triples [i, j, c] for all pairs {i, j}whose count c > 0

I For example, do this with hash table, hashing i, j as search key

I Advantage: Does not require space for pairs {i, j} of count zero

I Disadavantage: Requires three times the space if c > 0

I Rationale: Triangular matrix method better if at least 1/3 of the(n
2

)
pairs appear in basket



STORING ITEMSET COUNTS: EXAMPLE

Example

I Consider
I 100 000 items
I 10 000 000 baskets of
I 10 items each

I Triangular-matrix method:
(105

2

)
≈ 5× 109 integer counts

I Triples method: 107
(10

2

)
≈ 4.5× 108 counts, making for

3× 4.5× 108 = 1.35× 109 integers to be stored

I Triples method proves to be more appropriate



MONOTONICITY

THEOREM [MONOTONICITY]:

I Let s be the support threshold.

I Let I, J be sets such that J ⊆ I

Then if I is frequent, any subset J of I is, too:

supp(I) ≥ s implies supp(J) ≥ s (10)

PROOF.
Each basket that holds I also holds J, as J is contained in I. So, the
number of baskets that hold J is at least as large as the number of
baskets that hold I.



MAXIMAL FREQUENT ITEMSET I

DEFINITION [MAXIMAL FREQUENT ITEMSET]:

I Let s be the support threshold.

I Let I be frequent, that is supp(I) ≥ s.

I is said to be maximal if no superset of I is frequent:

for all J ) I : supp(J) < s (11)



MAXIMAL FREQUENT ITEMSET II

DEFINITION [MAXIMAL FREQUENT ITEMSET]:
I is said to be maximal if no superset of I is frequent:

for all J ) I : supp(J) < s (12)

Example (from above):

I At support threshold s = 3, we found frequent pairs
{dog, a}, {dog, and}, {dog, cat}, {cat, a}, {cat, and}

I {dog, cat, a}was found the only frequent triple

+ {dog, cat, a}, {dog, and} and {cat, and} are maximal, while
{dog, a}, {dog, cat}, {cat, a} are not



NOTE ON COUNTING PAIRS I

I The number of frequent pairs is larger than frequent triples,
quadruples, ... why?

I For making sense, number of (maximal) frequent itemsets is
supposed to be sufficiently small

I Human applicants need to work it out on all of them

I So, support threshold is set sufficiently high



NOTE ON COUNTING PAIRS II

I Any maximal frequent itemset holds many more smaller,
non-maximal frequent itemsets

I The resulting situation implies that there are many more
frequent pairs than triples, many more frequent triples than
quadruples, and so on

I Important:
I Still, the possible number of triples, quadruples is (much) greater

than pairs
I Any good frequent itemset algorithm needs to avoid running through

all possible triples, quadruples, and so on



MONOTONICITY TO THE RESCUE

Found to be 
infrequent

Pruned supersets

Itemsets for items A,B,C,D,E
Neglecting supersets of infrequent pair {A,B}

Adopted from mmds.org

mmds.org


A-PRIORI ALGORITHM: MOTIVATION

In the following, we focus on determining frequent pairs.

Naive Approach
Consider the algorithm

I For each basket, use double loop to generate all pairs contained in it
I For each pair generated, add 1 to its count
I Store counts using triangular or triples method
I At the end, run through all pairs and determine those whose counts

exceed support threshold s
I Benefit: Only one pass through all baskets
I Issue: Number of pairs considered usually does not fit in main memory



A-PRIORI ALGORITHM: MOTIVATION

In the following, we focus on determining frequent pairs.

Naive Approach

I Possible Benefit: Only pass through all baskets
I Issue: Number of pairs considered usually does not fit in main memory

Solution: A-Priori-Algorithm

I Have two passes through baskets instead of one
I In first run, determine candidate pairs, for which counts are stored
I In second run, determine counts for candidate pairs
I Finally filter for frequent pairs



A-PRIORI ALGORITHM: FIRST PASS

Create and Maintain Two Tables
I First table A: Let x be an item name, then A[x] reflects that x is the A[x]-th

item in the order of their appearance in the basket file
I Second table B: Let k be an item number, then B[k] is the number of

baskets in which item number k appears

Read Baskets: Fill Table B
I For each basket, for each item x in the basket, do

B[A[x]] = B[A[x]] + 1 (13)

I That is, iteratively increase item counts while running through all items
in all baskets



A-PRIORI ALGORITHM: SECOND PASS I

I Let n be the number of items
I Let m be the number of items found to be frequent
I By user constraints, usually m << n

Create Third Table
I Third table C: Let 1 ≤ k ≤ n be an item number. Then

C[k] =

{
0 if item number k is not frequent
l if item number k was found the l-th frequent item

(14)

So, C ∈ {0, 1, ...,m}n, where
I C[k] = 0 n− m times
I C[k] = i, 1 ≤ i ≤ m exactly one time
I 0 < C[k1] < C[k2] implies k1 < k2, expressing that C preserves the order of

appearance of items



A-PRIORI ALGORITHM: SECOND PASS II

Count Pairs Data Structure
I Use either triangular or triples method data structure to hold counts

I For using triangular method, renumbering necessary

I By monotonicity, a pair can only be frequent, if both items are frequent
I So, space required is O(m2) rather than O(n2)

+ m << n implies m2 << n2, so fits in main memory!

Examine Baskets
1. For each basket, for each item x, see whether

C[A[x]] > 0 that is, whether x is frequent (15)

2. Using double loop, generate all pairs of frequent items in the basket

3. For each such pair, increase count by one in pair count data structure

Eventually: examine which pairs are frequent in pair count data structure



A-PRIORI ALGORITHM: MAIN MEMORY USAGE

Use of main memory during A-Priori passes
Adopted from mmds.org

mmds.org


A-PRIORI ALGORITHM: ALL FREQUENT ITEMSETS

I One extra pass for each k > 2 to mine frequent itemsets of size k

I The A-Priori algorithm proceeds iteratively
I Mining frequent itemsets of size k + 1 is based on knowing

frequent itemsets of size k

I Each iteration consists of two steps for each k:
I Generate a candidate set Ck
I Filter Ck to produce Lk, the truly frequent itemsets of size k

I The algorithm terminates at first k where Lk is empty
I Monotonicity says we are done mining frequent itemsets



A-PRIORI ALGORITHM: CANDIDATE GENERATION

AND FILTERING

A-Priori algorithm: Alternating between candidate generation and filtering
Adopted from mmds.org

I Construct: Let Ck be all itemsets of size k, every k− 1 of which belong to
Lk−1

I Filter: Make a pass through baskets to count members of Ck; those with
count exceeding s will be part of Lk

I For storing counts for itemsets of size k, extend triples method
I E.g. storing quadruples for frequent triples, and so on...

mmds.org


MATERIALS / OUTLOOK

I See Mining of Massive Datasets, sections 5.5, 6.1, 6.2

I As usual, see http://www.mmds.org/ in general for further
resources

I Next lecture: ‘Frequent Itemsets II / Recommendation Systems”

I See Mining of Massive Datasets, 6.3, 6.4.5, 9.1, 9.2

http://www.mmds.org/

