Big Data Analytics: Introduction

Alexander Schönhuth

Bielefeld University April 6, 2023

LEARNING GOALS TODAY

- None of today's topics plays an explicit role in assignments/exercises or the exam
- ▶ But they may reappear in other topics, and then play an implicit role
- ► Goal today is to get ideas about the following things

Organizational matters

What is Data Mining?

Statistical Limits

Useful Things

BASIC INFORMATION

- ► *Organization*:
 - ► How do lectures, tutorials etc work
 - What tools will be used
- ▶ What does *Data Mining* mean? What is the meaning of
 - ► Statistical / Computational Modeling
 - ► Summarization
 - ► Feature Extraction
- ▶ What are *Statistical Limits* when mining data?
 - ► Bonferroni's Principle
- ► Which are *Useful Things to Know*
 - ► Word importance (example): the TF.IDF measure
 - ► Hash functions
 - Secondary storage and the effects on runtime
 - ► The natural logarithm and important identities based on it
 - Power laws

Organizational matters

What is Data Mining?

Statistical Limits

Useful Things

Prerequisites, Lectures, Exercises

- ► Course prerequisites: Databases I (Datenbanken I)
- ► Lectures: Wednesdays, 16-18 (every 2nd week); Thursdays, 10-12
 - ► Hybrid meetings
- ► Exercises: 6 assignments + 1 exam preparation session

ASSIGNMENTS, EXAM

► Tutorials/Assignments:

- New exercise sheets provided every second Thursday, starting April 6, after the lecture
- Exercises to be submitted by Tuesday, 23:59 twelve days thereafter, discussion on Wednesday, Thursday same week
- ► Submission of exercises in groups of 2-3 people possible
- Every one is supposed to present at least one exercise in the tutorials
- ► Upload to corresponding folder in the "Moodle"

Exam:

- Presence exam planned for Thursday, July 13, 2023 between 10:00 and 14:00 (may be subject to changes due to situation; we will communicate changes as timely as possible)
- ► Admitted: everyone exceeding 50% of total exercise points

TUTORIALS

- ► Every second **Wednesday**, **16-18** and **Thursday**, **16-18**
 - ► On Wednesdays alternating with lecture
 - ► First tutorials: April 19 + 20
- ► 4 tutorials, 3 tutors: Johannes Schlüter (organizer), Eren Akubulut, Hakan Yildirim
- ► Assignment of people to the 4 tutorials via Moodle (details will follow soon)
- ► Tutorials in English and in German (ideal scenario)
- Either presence or Zoom meetings (links will be provided in time)
- Presentation of individual solutions during tutorials, individually

COURSE MATERIAL

- ► ... available on course website: https://gds.techfak. uni-bielefeld.de/teaching/2023summer/bda
 - ► Slides and pointers to literature
 - ► Excercise sheets
- ► Moodle: https://moodle.uni-bielefeld.de/ course/view.php?id=845
 - Submission of exercise solutions
 - ► Self-managed forum

LITERATURE AND LINKS

- ► Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman (2019). *Mining of Massive Datasets*. 3rd Edition, Cambridge University Press.
- Download: http://infolab.stanford.edu/
 ~ullman/mmds/book0n.pdf
- ► *Materials:* http://www.mmds.org/
- Other Books: See eKVV. For maximum consistency other books less relevant.
- ► *Further Links:* To be provided during course.

Course Curriculum

Part 1

- ► Finding Similar Items I + II
- ► MapReduce / Workflow Systems I + II
- ► Mining Data Streams I + II
- ► Mining Frequent Itemsets

Part 2

- ► Link Analysis (PageRank) I + II
- ► Recommendation Systems
- ► Web Advertisements
- ► Networks / Graphs
- Clustering

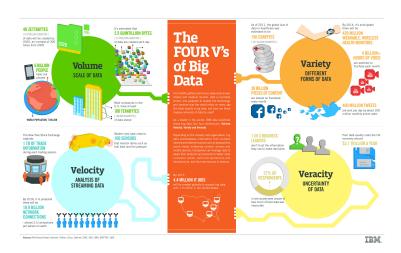
Organizational matters

What is Data Mining?

Statistical Limits

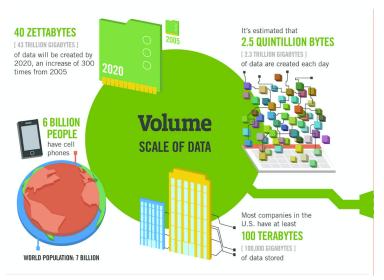
Useful Things

THE 4 V'S OF BIG DATA



Provided by IBM Big Data & Analytics Hub

THE 4 V'S OF BIG DATA: VOLUME



THE 4 V'S OF BIG DATA: VELOCITY

The New York Stock Exchange captures

1 TB OF TRADE INFORMATION

during each trading session

By 2016, it is projected there will be

18.9 BILLION NETWORK CONNECTIONS

 almost 2.5 connections per person on earth

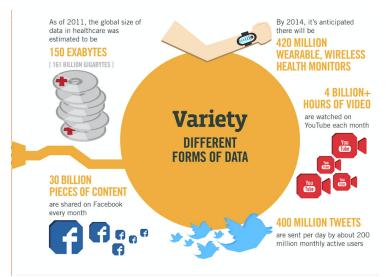
Modern cars have close to 100 SENSORS

that monitor items such as fuel level and tire pressure

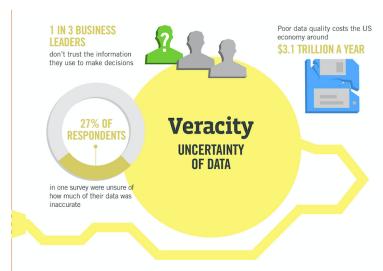
Velocity

ANALYSIS OF STREAMING DATA

THE 4 V'S OF BIG DATA: VARIETY



THE 4 V'S OF BIG DATA: VERACITY



DATA MINING - MEANING

- ▶ Data Mining (from 1990) is used interchangeably with
 - ▶ Big Data (from 2010)
 - ► Data Science (today)
- ▶ Data mining / Data Science / Big Data is about how to
 - store big data
 - manage big data
 - ▶ analyze big data ➡ THIS COURSE!

Data Mining - Modeling

► Often, data mining means to construct a map

$$f: \mathsf{Data} \to \mathcal{S}$$

where S is a set of useful labels, values, or similar, and analyze this map.

- ► Such a map is a *model*.
- ► *Example:* Detection of phishing emails

MODELING: EXAMPLE

- Consider a weighting scheme that assigns a real number w(x) to words or phrases x
- ▶ The larger w(x) the more x is indicative of phishing emails
- ▶ For example, w(x) is large for x equal to "verify account"
- ► Consider the map *f* that maps emails *E* to real numbers where

$$f(E) = \sum_{x \in E} w(x)$$

that is, *f* sums up weights of all words/phrases in the email *E*

DATA MINING - STATISTICAL MODELING

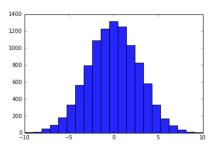
- ► A *statistical model* of the data is a *probability distribution* that describes the data.
- ► A *generative model* describes how the data is generated.
- ► *Example*:
 - Data is a set of integers
 - A statistical model may be a Gaussian distribution that fits the empirical distribution

DATA MINING - STATISTICAL MODELING

- ► A *statistical model* of the data is a *probability distribution* that describes the data.
- ► A *generative model* describes how the data is generated.
- ► *Example*:
 - ► Data is a set of integers
 - ► A statistical model may be a Gaussian distribution that fits the empirical distribution

STATISTICAL MODELING - BASIC EXAMPLE

SET OF NUMBERS



From stackoverflow.com:

- ► First fit a Gaussian to the empirical distribution of integers
- Mean and standard deviation sufficient for generating more numbers
 generative model

MACHINE LEARNING

- ► *Supervised Learning:* Computationally infer model f from data points x for which f(x) is known
- ► *Unsupervised Learning:* Computationally infer generative statistical model P(x)
- ▶ Or: computationally infer combinations of the two
- ► *Possible advantage*: model highly accurate
- ► *Possible disadvantage*: model too complex to be explainable

 ** deep learning

MODELING: COMPUTATIONAL APPROACHES

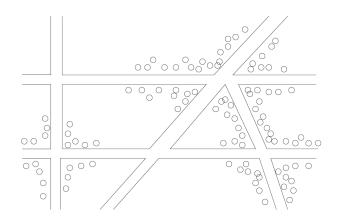
- ► Provide probability distribution that reflects to have generated the data (see above)
- ► Summarize all data succinctly and approximately
 - Example: Compute the mean and standard deviation of numerical data
- Extract only the most prominent features of the data, and ignore the rest
 - Consider patient data: keep only height, age, gender, and blood pressure, and discard the rest

SUMMARIZATION

Interesting Examples

- ► PageRank: Summarize each web page into one number
 - ► PageRank computes the number of times a random "web walker" hits a page; the more often, the more "important"
 - PageRank indicates relevance of web page (relative to a search)
- ► Clustering:
 - Group data points, and choose a summarizing representative for each group

CLUSTERING - EXAMPLE



From http://www.mmds.org. Cholera cases on a map of London:

Clusters forming around contaminated wells

FEATURE EXTRACTION: FREQUENT ITEMSETS

- ► Model: "baskets" containing (relatively small) sets of items
- Example: super market. Baskets = shoppers, items = items chosen for purchase.
- ► *Frequent itemsets*: Small groups of items re-appearing in many baskets.
- ► Example: burgers and ketchup form a frequent itemset consisting of two items.
- ► The set of frequent itemsets describes the "behaviour" (characterizes) the data.

FEATURE EXTRACTION: SIMILAR ITEMS

- ► Model: Data = collection of sets
- ► *Similar items:* Pairs of sets that are sufficiently similar.
- ► Example: Amazon buyers, mining similar items refers to identifying shoppers that have purchased similar goods
- Used for recommending items to buyers; process is called collaborative filtering

Organizational matters

What is Data Mining?

Statistical Limits

Useful Things

DISCOVERING UNUSUAL EVENTS IN BIG DATA

- ▶ The more one searches, the more likely "unusual" events are discovered
- ► Are they still unusual?
- ► *Issue*: When looking at too many things at a time, one discovers things that are interesting, just because they are statistical artifacts
- ► *Example*: Total Awareness Information
 - ► American response to 9-11.
 - ▶ Attempt to spot "unusual" (terrorist like) behaviour in credit-card receipts, flight schedule records, hotel information, and so on.
 - Vast majority of "terrorist like" behaviour spotted harmless
- ▶ *Bonferroni's principle* deals with the corresponding limits

BONFERRONI'S PRINCIPLE

- ► The number of unlikely events to occur randomly will grow when data grows.
- ► So, when data is big, many "interesting" things may be bogus, because they are statistical artifacts.
- ► *Bonferroni's principle* computes the probability of unlikely events to occur by chance.

BONFERRONI'S PRINCIPLE – EXAMPLE

Spot group of "evil-doers" who regularly meet in a hotel.

- ightharpoonup There are one billion (10 9) people to be watched
- ▶ On average: random people stay in a hotel 1 out of 100 days
- ► On average: a hotel holds 100 people
- ► So we can deal with 100 000 hotels, because

$$100\,000 \times 100 = \frac{10^9}{100}$$

► Data: hotel records for 1000 days.

BONFERRONI'S PRINCIPLE – EXAMPLE

- ► *Definition of evil-doers:* Pairs meet in two different hotels on two different days
- ► *Let us assume that* there aren't any evil-doers
- ► *Question:* What is the probability to spot a pair of "evil-doers" although there aren't any, just by random effects?

RANDOM EVIL-DOERS: CALCULATION

► Probability that two randomly picked people visit a hotel on one particular day:

$$0.01 \times 0.01 = 10^{-4}$$

► Probability that they choose the same hotel:

$$1 \times 10^{-5} = 10^{-5}$$

Probability that two random people meet in the same hotel on one day is:

$$10^{-4} \times 10^{-5} = 10^{-9}$$

► Probability that two random people meet in the same hotel on two particular, different days is:

$$10^{-9} \times 10^{-9} = 10^{-18}$$

BONFERRONI'S PRINCIPLE – EXAMPLE

 Probability that two random people meet in the same hotel on two different days is

$$10^{-9} \times 10^{-9} = 10^{-18}$$

- Clearly the more people and the more days, the greater the chance that two random people meet in the same hotel on the same day.
- ► Number of pairs of people and pairs of days is:

$$\binom{10^9}{2} = 5 \times 10^{17}$$
 and $\binom{1000}{2} = 5 \times 10^5$

So, number of random(!) events that meet the definition of "evil-doing" is

$$10^{-18} \times (5 \times 10^{17}) \times (5 \times 10^5) = 250\,000$$

► **Summary:** A quarter million pairs of people look like "doing evil" just by chance

Organizational matters

What is Data Mining?

Statistical Limits

Useful Things

USEFUL THINGS TO KNOW

- ► The TF.IDF measure of word importance
- ► Hash functions
- Secondary storage (disk) and running time of algorithms
- ► The natural logarithm
- ► Power laws

TF.IDF: INTRODUCTION

- ► *Goal:* Find words in documents (such as emails, news articles) that are characteristic of the contents
- ► Example: in texts on the corona virus, you may see "corona", "virus", "infection", "cough", "fever" more often than usual
- ► However: the most frequent words are likely to be "the" and "and" (or the likes)
- ► So, words indicative of topics are rather rare.

TF.IDF: INTRODUCTION

- ► However: the most frequent words are likely to be "the" and "and" (or the likes)
- ► So, words indicative of topics are rather rare.
- ► While, of course, there are also many rare words (such as "albeit", "notwithstanding" or similar) that are not indicative of the topic, because rather generic.
- ► How to find words indicative of topics of interest?
- ► Compute the TF.IDF = Term Frequency times Inverse Document Frequency!

COMPUTING THE TF.IDF

ightharpoonup Compute the *Term Frequency TF*_{ij}

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}} \tag{1}$$

where f_{ij} is the number of occurrences of word i in document j.

- ▶ Note: the most frequent term in document *j* gets a TF of 1.
- ▶ Compute the *Inverse Document Frequency IDF* $_i$ of i as

$$IDF_i = \log_2(\frac{N}{n_i}) \tag{2}$$

where N is the number of documents overall, and n_i is the number of documents in which word i appears.

- ► So, $n_i \le N$ and $IDF_i \ge 0$
- ► TF.IDF for term *i* in document *j* is defined to be

$$TF_{ij} \times IDF_i$$
 (3)

TF.IDF: EXPLANATIONS

- ► Terms with highest TF.IDF are often the terms that explain the document best. Why?
- ▶ If a word *i* appears in all documents:

$$IDF_i = \log_2(\frac{N}{n_i}) \stackrel{n_i = N}{=} \log_2(1) = 0$$

so that word cannot be characteristic of any document

TF.IDF: EXPLANATIONS

- ► Terms with highest TF.IDF are often the terms that explain the document best. Why?
- ► Suppose we have 2²⁰ documents
 - Suppose word w appears in 2^{10} documents:

$$IDF_w = \log_2(2^{20}/2^{10}) = \log_2(2^{10}) = 10$$

Consider document j in which w appears 20 times, which is the maximum of appearances in one document:

$$TF_{wj} = \frac{20}{20} = 1$$
, so $TF.IDF_{wj} = 10$

▶ Consider document *k*, in which *w* appears once, where the maximum appearance of a word is again 20:

$$TF_{wk} = \frac{1}{20}$$
, so $TF.IDF_{wk} = \frac{1}{2}$

HASH FUNCTIONS

- ► A hash function takes a *hash-key x* as input and maps it to a bucket number.
- ▶ The bucket number is a an integer in the range from 0 to B-1, where B is the number of buckets.
- ► *Example*: Hash-keys are positive integers.

$$h(x) = x \mod B$$

which is the remainder of *x* when dividing it by *B*. Often, *B* is a prime.

HASH FUNCTIONS

- ► If hash-keys are not integers, they are often converted to integers.
- Example: if hash-keys are strings, one can map each character to its ASCII code, and sum them up, before dividing them by B.
- If hash-keys have several components (such as arrays), convert each component to integer, and sum them up.
- ▶ Let $h(x) := x \mod 5$. Example:

$$h("AB") = h(ord('A') + ord('B')) = h(65 + 66) = h(131) = 1$$

NUMBER OF KEYS VS NUMBER OF BUCKETS

- ▶ Usually, there are more than *B* hash-keys conceivable; but usually not all of them are in use.
- ► If only less than *B* hash-keys are in use, with only little probability, hash collisions

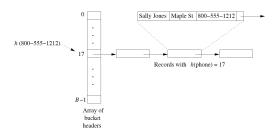
$$x_1 \neq x_2$$
 but $h(x_1) = h(x_2)$

happen to occur.

- ► If number of hash-keys is much larger than *B*, then hash functions "randomize" keys, by distributing them (optimally) uniformly across the whole range [0,B-1]
- ► That is more likely to happen when *B* is a prime

INDEXES

- Data structure that enables to retrieve all records specified by a particular feature.
- Example: Consider an address book with entries (name, address, phone number). We would like to retrieve all entries with a particular phone number.
- ► One solution is to use a hash table:



Hash table used as index for retrieving address records based on their phone number

SECONDARY STORAGE

- ▶ Important to keep in mind when dealing with big data: accessing data from disks (hard drives) costs time (and energy).
- ▶ Disks are organized into blocks; e.g. blocks of 64K bytes.
- ► Takes approx. 10 milliseconds to *access* and read a disk block.
- ► About 10⁵ times slower than accessing data in main memory.
- And taking a block to main memory costs more time than executing the computations on the data when being in main memory.

SECONDARY STORAGE

- One can alleviate problem by putting related data on a single cylinder, where accessing all blocks on a cylinder costs considerably less time per block.
- This establishes a limit of 100MB per second to transfer blocks to main memory.
- ► If data is in the hundreds of gigabytes, let alone terabytes, this is an issue.
- Integrate this knowledge into runtime considerations when dealing with big data!

THE NATURAL LOGARITHM I

► Euler constant:

$$e = \lim_{x \to \infty} (1 + \frac{1}{x})^x \approx 2.71828$$
 (4)

► Consider computing $(1 + a)^b$ where a is small:

$$(1+a)^b = (1+a)^{(1/a)(ab)} \stackrel{a=1/x}{=} (1+\frac{1}{x})^{x(ab)} = ((1+\frac{1}{x})^x)^{ab} \stackrel{x \text{ large}}{\approx} e^{ab}$$

► Consider computing $(1 - a)^b$ where a is small:

$$(1-a)^b = ((1-\frac{1}{x})^x)^{ab} \stackrel{x \text{ large}}{\approx} e^{-ab}$$

EULER CONSTANT: TAYLOR EXPANSION OF e^x

▶ The Taylor expansion of e^x is

$$e^{x} = \sum_{i=0}^{\infty} \frac{x^{i}}{i!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \dots$$
 (5)

- ► Convergence slow on large *x*, so not helpful.
- ightharpoonup Convergence fast on small (positive and negative) x.
- ightharpoonup Example: x = 1/2

$$e^{1/2} = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{48} + \frac{1}{384} + \dots \approx 1.64844$$

ightharpoonup Example: x = -1

$$e^{-1} = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} - \frac{1}{5040} \dots \approx 0.36786$$

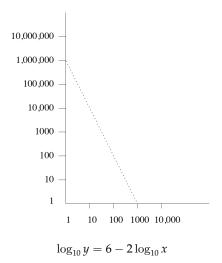
POWER LAWS

- ► Consider two variables *y* and *x* and their functional relationship.
- ► General form of a power law is

$$\log y = b + a \log x \tag{6}$$

so a linear relationship between the logarithms of x and y.

POWER LAW: EXAMPLE



POWER LAWS

► Power law:

$$\log y = b + a \log x \tag{7}$$

► Transforming yields:

$$y = e^b \cdot e^{a \log x} = e^b \cdot e^{\log x^a} = e^b \cdot x^a$$

so power law expresses polynomial relationship $y = cx^a$

REAL WORLD SCENARIOS

- ► Node degrees in web graph
 - Nodes are web pages
 - ► Nodes are linked when there are links between pages
 - Order pages by numbers of links: number of pages as a function of the order number is power law
- ► *Sales of products: y* is the number of sales of the *x*-th most popular item (books at amazon.com, say)
- ► *Sizes of web sites: y* is number of pages at the *x*-th largest web site
- ► *Zipf's Law*: Order words in document by frequency, and let *y* be the number of times the *x*-th word appears in the document.
 - ▶ Zipf found the relationship to approximately reflect $y = cx^{-1/2}$.
 - ► Other relationships follow that law, too. For example, *y* is population of *x*-th most populous (American) state.
- ► Summary: *The Matthew Effect* = "The rich get ever richer"

MATERIALS / OUTLOOK

- ► See Mining of Massive Datasets, chapter 1
- ► See further http://www.mmds.org/in general for further resources
- ► Next lecture: "Finding Similar Items"
 - ► See Mining of Massive Datasets 3.1–3.6

EXAMPLE / ILLUSTRATION

