Attention & Diffusion Lecture 4

Alexander Schönhuth

Bielefeld University May 9, 2023

CONTENTS

► Transformers

- Self Attention Reminder
- Decoder Structure
- Transformer Versions and Training
 - Encoder Only
 - Encoder-Decoder
 - Decoder Only

Self Attention: Illustrated Reminder

TRANSFORMERS: SELF-ATTENTION REMINDER I

Self-attention: queries, keys and values

From https://jalammar.github.io

Input vectors x_i are transformed to

- queries q_i, keys k_i, values v_i by
 applying matrices W^Q, W^K, W^V to x_i from the right

TRANSFORMERS: SELF-ATTENTION REMINDER II

Self-attention: from input to output

From https://jalammar.github.io

- Scores for \mathbf{x}_1 w.r.t. $\mathbf{v}_1, \mathbf{v}_2$
 - v₁: Compute q₁ · k₁, divide by 8, yields 112
 - \mathbf{v}_2 : Compute $\mathbf{q}_1 \cdot \mathbf{k}_2$, divide by 8, yields 96
- Softmax'ing: Probabilities 0.88, 0.12 for v₁, v₂
- ► Final output for **x**₁:

 $0.88\cdot \mathbf{v}_1 + 0.12\cdot \mathbf{v}_2$

TRANSFORMERS: SELF-ATTENTION REMINDER III

Calculating queries, keys and values

From https://jalammar.github.io

- Pack embedded words into matrix X
 - Each row corresponds to one word
- Multiply X with trained matrices W^Q, W^K, W^V
- Recall real dimensions:
 - Words: 512 (here: 4);
 Q, K, V: 64 (here: 3)

TRANSFORMERS: SELF-ATTENTION REMINDER IV

Computing values: compact matrix representation

From https://jalammar.github.io

- 1. Multiply queries with keys: $\mathbf{Q} \cdot \mathbf{K}^{T}$
- 2. Normalize relative to query/key length d_k (= 64 in reality)
- 3. Softmax across columns: $\mathbf{S} := \operatorname{softmax}(\mathbf{Q}\mathbf{K}^T/\sqrt{d_k})$ (here: $\in \mathbb{R}^{2 \times 2}$)

4. Compute weighted sum for each word: $\mathbf{Z} = \mathbf{S} \cdot \mathbf{V}$

TRANSFORMERS: MULTI-HEAD ATTENTION REMINDER I

Multi-head attention with 2 heads

From https://jalammar.github.io

► Learn several "heads", attending to different interactions

- Learn several different $\mathbf{W}_{i}^{Q}, \mathbf{W}_{i}^{K}, \mathbf{W}_{i}^{K}$ (here: i = 2)
- Establish differences by randomized initialization

UNIVERSITÄT

TRANSFORMERS: MULTI-HEAD ATTENTION REMINDER III

Multi-head attention: Overview / Summary X: embedded words, input for first attention layer R: output of earlier layer input for all but first layer

From https://jalammar.github.io

TRANSFORMERS: MULTI-HEAD ATTENTION REMINDER IV

Multi-head attention: Considering two (of eight) heads From https://jalammar.github.io

- Considering two attention heads, orange and green
- Orange: "it" mostly attends to "the animal"
- Green: "it" mostly attends to "tired"

TRANSFORMERS: ENCODER DETAILS

Transformer encoder block: details

From https://jalammar.github.io

- 1. Embedded words are equipped with positional encodings
- 2. Self attention is applied
 - 2.1 Original \mathbf{x}_i is added to \mathbf{z}_i Residual skip connection
 - 2.2 Layer norm is applied Normalizes values across layer
- 3. Each resulting \mathbf{z}_i passed through identical feedforward NN (FFNN)
 - 3.1 Original \mathbf{z}_i added to FFNN output \mathbb{R} Residual skip connection
 - 3.2 Layer norm is applied I™ Normalizes values across layer

TRANSFORMERS: ENCODER-DECODER INTERACTION

Transformer with two encoder and two decoder blocks

From https://jalammar.github.io

- Decoder blocks integrate encoder-decoder attention layers
 - Between decoder self attention and FFNN layer
 - Encoder output transformed into keys and values
 - Decoder output transformed into queries

TRANSFORMER: DECODER I

From https://jalammar.github.io

- 1. Encoder processes input sequence (here: with positional encoding)
- 2. Output of top encoder transformed into keys K_{encdec} and values V_{encdec}

3. Decoder uses K_{encdec} and V_{encdec} in encoder-decoder attention layer UNIVERSITÄT BIELEFELD

TRANSFORMER: DECODER II

From https://jalammar.github.io

- 1. Decoder takes in already generated tokens (words)
- 2. Self-attention: decoder only attends to already generated tokens
 - Achieved by masking future positions
- 3. Encoder-decoder attention layer generates its own queries
 - but uses keys and values from topmost encoder output

TRANSFORMERS: DECODER FINAL LAYER

Transformer decoder: final layer consists of linear and softmax sublayer

```
From https://jalammar.github.io
```

- ► Linear layer takes decoder output, computes a value for each word
 - See *logits* layer in figure; number of words equal to size of vocabulary
- Softmax layer turns values into probabilities
 - Yields *log_probs* layer; word with greatest probability is output

Transformer Variants

TRANSFORMERS: ARCHITECTURE SUMMARY I

Transformer: Summary. *n* encoder and *n* decoder layers

From https://jalammar.github.io

Encoder

- Both encoder and decoder consist of *n* layers
 original paper: n = 6
- Stacks identical layers
- Each layer has two sublayers
 - Multi-head attention layer
 - Positionwise feedforward neural network
- Contains skip connections
 inspired by ResNet

TRANSFORMERS: ARCHITECTURE SUMMARY II

Transformer: Summary. *n* encoder and *n* decoder layers

From https://d2l.ai

Decoder

- Also stacks identical layers
- ► Each layer: three sublayers
 - Multi-head self attention
 - Encoder-decoder attention
 - Positionwise feedforward neural network
- Encoder-decoder attention does not exist in encoder
- Contains skip connections
 inspired by ResNet
- Each position only attends to earlier positions
 - Masked attention preserves autoregressive property

Transformer Variants: Encoder Only

TRANSFORMER VARIANTS: ENCODER ONLY I

Transformer encoder only: pretraining

- Attention input \leftrightarrow embedded words \mathbf{x}_i
- Attention output \leftrightarrow new "words" \mathbf{z}_i
- ► Meaning right panel: each **x**_i contributes to each **z**_i

TRANSFORMER VARIANTS: ENCODER ONLY II

Transformer encoder only: pretraining

- Prominent example: Bidirectional Encoder Representations from Transformers (BERT), see https://arxiv.org/abs/1810.04805
- Pretraining supposed to pick up basic language structure
- Principle: Learn masked words in sentences

TRANSFORMER VARIANTS: ENCODER ONLY III

Transformer encoder only: finetuning for sentiment analysis

From https://d2l.ai

- After pretraining, encoder-only transformer is *finetuned*
 - Involves different kind of training
- ► *Example:* Sentiment analysis
 - Predicting sentiments inherent to sentences

Principle: Use final representation of special token < cls > UNIVERSITÄT BIELEFELD

Transformer Variants: Encoder-Decoder

TRANSFORMER VARIANTS: ENCODER-DECODER I

Transformer encoder-decoder: pretraining

- Advantage: Output can vary in length
- Prominent example: T5, see https://arxiv.org/abs/1910.10683

TRANSFORMER VARIANTS: ENCODER-DECODER II

Transformer encoder-decoder: pretraining

- Pretraining Example: Predict consecutive spans
- *Here:* Replace " $\langle X \rangle$ " with " $\langle X \rangle$ love" and " $\langle Y \rangle$ " with " $\langle Y \rangle$ red car"

TRANSFORMER VARIANTS: ENCODER-DECODER III

Transformer encoder-decoder: pretraining

- Encoder: Each input token attends to each other
- Decoder: Target tokens attend to
 - all input tokens (encoder-decoder attention)
 - only past and present target tokens (causal attention)

TRANSFORMER VARIANTS: ENCODER-DECODER IV

Transformer encoder-decoder: Finetuning for generating text summaries

- After pretraining, encoder-decoder transformer is *finetuned*
 - Involves different training principle
- *Example:* Summarization of large texts
 - Input: Task description and large text
 - Output: Brief summary of large text

TRANSFORMER VARIANTS: ENCODER-DECODER V

fly event.

A cute sloth holding a small treasure chest. A brigh golden glow is coming from the chest.

Imagen, based on T5 encoder: Turning texts into images

- Generate image that reflects text contents ►
- Text-to-image model "Imagen", see https://arxiv.org/abs/2205.11487
- Imagen based on "frozen" T5 encoder

Transformer Variants: Decoder Only

TRANSFORMER VARIANTS: DECODER ONLY I

Transformer decoder only: pretraining From https://dll.ai

► De facto architecture in large-scale language modeling

- Encoder-decoder attention sublayers removed
- ► *Pretraining:* Teacher forcing
 - Target sequence is input sequence shifted by one token

TRANSFORMER VARIANTS: DECODER ONLY II

Transformer decoder only: pretraining

From https://d2l.ai

Self-supervised learning: Learns structures in unlabeled data

Leverages abundantly existing, unlabeled text corpora

- Prominent example: GPT-3, see https://arxiv.org/abs/2005.14165
 - ► Basis of *ChatGPT*, for example
- UNIVERSITÄ BIELEFELD

TRANSFORMER VARIANTS: DECODER ONLY III

Transformer decoder only: finetuning

- GPT-2 demonstrated that model can be re-used for other tasks
 - without parameter re-training / updating (!), so no finetuning
- ► GPT-3 exploits the *in-context learning* principle further
- UNIVERSITÄT BIELEFELD

TRANSFORMER VARIANTS: DECODER ONLY IV

From https://d2l.ai

- ► In-context learning requires task description and prompt, as task input
- ► In addition, in-context learning may involve no examples (zero-shot), one example (one-shot) or few examples: few-shot

UNIVERSITÄT

REFERENCES

"Visualizing A Neural Machine Translation Model", see

https://jalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attentic

https://jalammar.github.io/illustrated-transformer/

http://d2l.ai, 11.4-11.7, 11.9

Thanks for your attention!!

