
Attention & Diffusion
Lecture 4

Alexander Schönhuth

Bielefeld University
May 9, 2023



CONTENTS

I Transformers
I Self Attention Reminder
I Decoder Structure

I Transformer Versions and Training
I Encoder Only
I Encoder-Decoder
I Decoder Only



Self Attention: Illustrated Reminder



TRANSFORMERS: SELF-ATTENTION REMINDER I

Self-attention: queries, keys and values
From https://jalammar.github.io

I Input vectors xi are transformed to
I queries qi, keys ki, values vi by
I applying matrices WQ,WK,WV to xi from the right

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION REMINDER II

Self-attention: from input to output
From https://jalammar.github.io

I Scores for x1 w.r.t. v1,v2

I v1: Compute q1 · k1,
divide by 8, yields 112

I v2: Compute q1 · k2,
divide by 8, yields 96

I Softmax’ing: Probabilities
0.88, 0.12 for v1,v2

I Final output for x1:

0.88 · v1 + 0.12 · v2

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION REMINDER III

Calculating queries, keys and values
From https://jalammar.github.io

I Pack embedded words
into matrix X

I Each row corresponds
to one word

I Multiply X with trained
matrices WQ,WK,WV

I Recall real dimensions:
I Words: 512 (here: 4);

Q,K,V: 64 (here: 3)

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION REMINDER IV

Computing values: compact matrix representation
From https://jalammar.github.io

1. Multiply queries with keys: Q ·KT

2. Normalize relative to query/key length dk (= 64 in reality)

3. Softmax across columns: S := softmax(QKT/
√

dk) (here: ∈ R2×2)

4. Compute weighted sum for each word: Z = S ·V

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION

REMINDER I

Multi-head attention with 2 heads
From https://jalammar.github.io

I Learn several “heads”, attending to different interactions

I Learn several different WQ
i ,WK

i ,WK
i (here: i = 2)

I Establish differences by randomized initialization

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION

REMINDER III

Multi-head attention: Overview / Summary
X: embedded words, input for first attention layer

R: output of earlier layer input for all but first layer

From https://jalammar.github.io

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION

REMINDER IV

Multi-head attention:
Considering two (of eight) heads

From https://jalammar.github.io

I Considering two attention
heads, orange and green

I Orange: “it” mostly attends
to “the animal”

I Green: “it” mostly attends
to “tired”

https://jalammar.github.io


TRANSFORMERS: ENCODER DETAILS

Transformer encoder block: details
From https://jalammar.github.io

1. Embedded words are equipped with
positional encodings

2. Self attention is applied
2.1 Original xi is added to zi

+ Residual skip connection
2.2 Layer norm is applied

+ Normalizes values across layer

3. Each resulting zi passed through
identical feedforward NN (FFNN)

3.1 Original zi added to FFNN output
+ Residual skip connection

3.2 Layer norm is applied
+ Normalizes values across layer

https://jalammar.github.io


TRANSFORMERS: ENCODER-DECODER INTERACTION

Transformer with two encoder and two decoder blocks
From https://jalammar.github.io

I Decoder blocks integrate encoder-decoder attention layers
I Between decoder self attention and FFNN layer
I Encoder output transformed into keys and values
I Decoder output transformed into queries

https://jalammar.github.io


TRANSFORMER: DECODER I

From https://jalammar.github.io

1. Encoder processes input sequence (here: with positional encoding)

2. Output of top encoder transformed into keys Kencdec and values Vencdec

3. Decoder uses Kencdec and Vencdec in encoder-decoder attention layer

https://jalammar.github.io


TRANSFORMER: DECODER II

From https://jalammar.github.io

1. Decoder takes in already generated tokens (words)

2. Self-attention: decoder only attends to already generated tokens
I Achieved by masking future positions

3. Encoder-decoder attention layer generates its own queries
I but uses keys and values from topmost encoder output

https://jalammar.github.io


TRANSFORMERS: DECODER FINAL LAYER

Transformer decoder: final layer consists of linear and softmax sublayer
From https://jalammar.github.io

I Linear layer takes decoder output, computes a value for each word
I See logits layer in figure; number of words equal to size of vocabulary

I Softmax layer turns values into probabilities
I Yields log probs layer; word with greatest probability is output

https://jalammar.github.io


Transformer Variants



TRANSFORMERS: ARCHITECTURE SUMMARY I

Transformer: Summary.
n encoder and n decoder layers
From https://jalammar.github.io

Encoder
I Both encoder and decoder

consist of n layers
+ original paper: n = 6

I Stacks identical layers

I Each layer has two sublayers
I Multi-head attention layer
I Positionwise feedforward

neural network

I Contains skip connections
+ inspired by ResNet

https://jalammar.github.io


TRANSFORMERS: ARCHITECTURE SUMMARY II

Transformer: Summary.
n encoder and n decoder layers

From https://d2l.ai

Decoder
I Also stacks identical layers

I Each layer: three sublayers
I Multi-head self attention
I Encoder-decoder attention
I Positionwise feedforward

neural network

I Encoder-decoder attention
does not exist in encoder

I Contains skip connections
+ inspired by ResNet

I Each position only attends to
earlier positions

I Masked attention preserves
autoregressive property

https://d2l.ai


Transformer Variants: Encoder Only



TRANSFORMER VARIANTS: ENCODER ONLY I

Transformer encoder only: pretraining
From https://d2l.ai

I Attention input↔ embedded words xi

I Attention output↔ new “words” zi

I Meaning right panel: each xi contributes to each zi

https://d2l.ai


TRANSFORMER VARIANTS: ENCODER ONLY II

Transformer encoder only: pretraining
From https://d2l.ai

I Prominent example: Bidirectional Encoder Representations from
Transformers (BERT), see https://arxiv.org/abs/1810.04805

I Pretraining supposed to pick up basic language structure
I Principle: Learn masked words in sentences

https://d2l.ai
https://arxiv.org/abs/1810.04805


TRANSFORMER VARIANTS: ENCODER ONLY III

Transformer encoder only: finetuning for sentiment analysis
From https://d2l.ai

I After pretraining, encoder-only transformer is finetuned
I Involves different kind of training

I Example: Sentiment analysis
I Predicting sentiments inherent to sentences

I Principle: Use final representation of special token < cls >

https://d2l.ai


Transformer Variants: Encoder-Decoder



TRANSFORMER VARIANTS: ENCODER-DECODER I

Transformer encoder-decoder: pretraining
From https://d2l.ai

I Advantage: Output can vary in length
I Prominent example: T5, see https://arxiv.org/abs/1910.10683

https://d2l.ai
https://arxiv.org/abs/1910.10683


TRANSFORMER VARIANTS: ENCODER-DECODER II

Transformer encoder-decoder: pretraining
From https://d2l.ai

I Pretraining Example: Predict consecutive spans
I Here: Replace “〈X〉” with “〈X〉 love” and “〈Y〉” with “〈Y〉 red car”

https://d2l.ai


TRANSFORMER VARIANTS: ENCODER-DECODER III

Transformer encoder-decoder: pretraining
From https://d2l.ai

I Encoder: Each input token attends to each other

I Decoder: Target tokens attend to
I all input tokens (encoder-decoder attention)
I only past and present target tokens (causal attention)

https://d2l.ai


TRANSFORMER VARIANTS: ENCODER-DECODER IV

Transformer encoder-decoder: Finetuning for generating text summaries
From https://d2l.ai

I After pretraining, encoder-decoder transformer is finetuned
I Involves different training principle

I Example: Summarization of large texts
I Input: Task description and large text
I Output: Brief summary of large text

https://d2l.ai


TRANSFORMER VARIANTS: ENCODER-DECODER V

Imagen, based on T5 encoder: Turning texts into images
From https://d2l.ai

I Generate image that reflects text contents
I Text-to-image model “Imagen”, see

https://arxiv.org/abs/2205.11487

I Imagen based on “frozen” T5 encoder

https://d2l.ai
https://arxiv.org/abs/2205.11487


Transformer Variants: Decoder Only



TRANSFORMER VARIANTS: DECODER ONLY I

Transformer decoder only: pretraining
From https://d2l.ai

I De facto architecture in large-scale language modeling
I Encoder-decoder attention sublayers removed

I Pretraining: Teacher forcing
I Target sequence is input sequence shifted by one token

https://d2l.ai


TRANSFORMER VARIANTS: DECODER ONLY II

Transformer decoder only: pretraining
From https://d2l.ai

I Self-supervised learning: Learns structures in unlabeled data
I Leverages abundantly existing, unlabeled text corpora

I Prominent example: GPT-3, see https://arxiv.org/abs/2005.14165
I Basis of ChatGPT, for example

https://d2l.ai
https://arxiv.org/abs/2005.14165


TRANSFORMER VARIANTS: DECODER ONLY III

Transformer decoder only: finetuning
From https://d2l.ai

I GPT-2 demonstrated that model can be re-used for other tasks
I without parameter re-training / updating (!), so no finetuning

I GPT-3 exploits the in-context learning principle further

https://d2l.ai


TRANSFORMER VARIANTS: DECODER ONLY IV

Transformer decoder only: finetuning
From https://d2l.ai

I In-context learning requires task description and prompt, as task input
I In addition, in-context learning may involve no examples (zero-shot),

one example (one-shot) or few examples: few-shot

https://d2l.ai


REFERENCES

I Jay Alammar’s ML blog:
I “Visualizing A Neural Machine Translation Model”, see

https://jalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

I “The Illustrated Transformer”, see
https://jalammar.github.io/illustrated-transformer/

I http://d2l.ai, 11.4–11.7, 11.9

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/illustrated-transformer/
http://d2l.ai


Thanks for your attention!!


