Attention & Diffusion
Lecture 3

Alexander Schonhuth

UNIVERSITAT
BIELEFELD

s Faculty of Technology

Bielefeld University
April 25,2023

CONTENTS

» Transformers

» Encoder Structure (today)
> Self Attention (today)
» Decoder Structure (next lecture)

» Transformer Versions and Training

» Encoder Only (next lecture)
» Encoder-Decoder (next lecture)
» Decoder Only (next lecture)

UNIVERSITAT
BIELEFELD

Transformers 1

UNIVERSITAT
BIELEFELD

TRANSFORMERS: MOTIVATION

THE
—’% TRANSFORMER | N .

Transformers translate “languages”

From https://jalammar.github.io

» Inspiration for transformers: translating languages
» Transformers lend themselves to (maximum) parallelization

» Google: reference model for cloud TPU based computations

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: MOTIVATION II

$
ENCODERS = DECODERS
I

From https://jalammar.github.io

» Transformers employ encoder-decoder architecture
» However, neither encoder nor decoder RNN based

» Seminal paper: “Attention is all you need”

¥ https://arxiv.org/abs/1706.03762
UNIVERSITAT
BIELEFELD

https://jalammar.github.io
https://arxiv.org/abs/1706.03762

TRANSFORMERS: STRUCTURE I

Transformers: encoders and decoders layer structured

From https://jalammar.github.io

» Transformers make use of stacks of encoders and decoders

» Seminal paper: stacks are 6 layers each
» Other numbers very well conceivable
» Architectural design may vary by application

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: STRUCTURE II

Transformers: encoders and decoders layer structured

Fromhttps://jalammar.github.io

» Encoders and decoders interact in different ways

» All but last encoder provide input to next encoder
» Last encoder provides input to all decoders

» All but last decoder provide input to next decoder
>

Last decoder outputs translated sentence

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: ENCODER STRUCTURE I

' Feed Forward Neural Network
[Self-Attention)

t

Transformers: encoders follow particular structure

From https://jalammar.github.io

» Encoders are identical in structure

» But they do not share weights

» Encoders have two sublayers

» A self-attention layer

» A feedforward neural network layer

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: ENCODER STRUCTURE II

[Feed Forward Neural Network]
[Self-Attention)

t

Transformers: encoders follow particular structure

From https://jalammar.github.io

> Self-attention layer:
» Encoder can look at other words when encoding words
» Feedforward neural network (FFNN) layer:

» Exact same FFNN applied for each position in sentence

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: DECODER STRUCTURE I

t
(Feed Forward
t ry
(Feed Forward) (Encoder-Decoder Attention
4 — 3
(Self-Attention) (Self-Attention
t t

Transformers: encoder and decoder interact in particular way

Fromhttps://jalammar.github.io

» Decoder shares structure with encoder, but ...
» ... has an additional encoder-decoder attention sublayer

» Helps decoder to pay attention as guided by input

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

Self-Attention: Reminder

UNIVERSITAT
BIELEFELD

SELF-ATTENTION: DEFINITION

» Consider a sequence of tokens xq, ..., X, € R?
» Each token has its own query, key, and value

» Hence, each token can attend to each other token:

» Pair the query vector with the key of the other token
» This yields a weight for its own value

» Compute weighted sum of values as representation in next layer

UNIVERSITAT
BIELEFELD

SELF-ATTENTION: FORMAL SUMMARY

» Consider a sequence of tokens xq, ..., X, € R?
» Replace q with x and both k;, v; with x; in (1) from Lecture 2
» One obtains a new sequence z1, ..., z, € RY by

n

z; o= f(xi, (%1, %1), ooy (X, X)) = D a(xi, %)% €RT (1)

=1

UNIVERSITAT
BIELEFELD

Transformers continued

UNIVERSITAT
BIELEFELD

TRANSFORMERS: ENCODER STRUCTURE III

[Self-Attention j

Transformers: encoders sublayer by sublayer

From https://jalammar.github.io

1. Words are embedded = yields vectors x;
2. Vectors x; run through self-attention sublayer & yields vectors z;
3. Each z; runs through exact same FFNN & yields vectors r;

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: SELF-ATTENTION I

Layer:| 5 § Attention:| Input - Input $

The_
animal_
didn_

t

cross_
the_
street_
because_

The_
animal_
didn_
t
cross_
the_
street_

because_

was_

Words pay more/less attention to others

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

» 5th sublayer, 2nd out of 8
attention heads

» Word “it” pays most
attention to “the
animal”

» Word “it” pays less
attention to “the street”

» Word “it” pays no
attention to “because”

https://jalammar.github.io

TRANSFORMERS: SELF-ATTENTION II

Input

Embedding

Queries q «[IH we
Keys

Values [T

Self-attention: queries, keys and values

From https://jalammar.github.io

» Input vectors x; are transformed to

» queries q;, keys k;, values v; by
> applying matrices W<, WX W" to x; from the right

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: SELF-ATTENTION III

Input

Embedding [T

Queries oI o[wea
Keys 11 [

Values 1 [T

Self-attention: queries, keys and values

From https://jalammar.github.io

» Seminal paper: dimension of x; = 512, of q;, k;, v; = 64

» SO, wQ7 WK7 wV c R512><64
» Recall: q; = xiW, ki = x;WK, v; = x;W"

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: SELF-ATTENTION IV

Input
1 o
queries e L1 . T » Scores for x; w.r.t. vi, Vv
Keys o o » v;: Compute q; - ki,
Values O EEn divide by 8, yields 112
ceore . s » vy: Compute q: - ko,
. divide by 8, yields 96
Divide by 8 (Vi)
Softmax » Softmax’ing: Probabilities
softmax 0.88,0.12 for vy, v
x [T _
» Final output for x;:
sum I i

0.88-vi +0.12- v
Self-attention: from input to output

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: SELF-ATTENTION V

woa Q
, x = » Pack embedded words

into matrix X

» Each row corresponds
to one word

:

» Multiply X with trained
matrices W2, WK, WV
» Recall real dimensions:
) B WH% » Words: 512 (here: 4);
Q, S, V: 64 (here: 3)
Calculating queries, keys and values

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: SELF-ATTENTION VI

Q T

softmax HEBX@
e =)

- HE

Computing values: compact matrix representation
From https://jalammar.github.io
1. Multiply queries with keys: Q - ST
2. Normalize relative to query/key length d; (= 64 in reality)
3. Softmax across columns: S := softmax(QS”/\/d;) (here: € R>*?)

4. Compute weighted sum for each word: Z=S -V

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: MULTI-HEAD ATTENTION I

ATTENTION HEAD #0

Qo

WS

ATTENTION HEAD #1

Q1

Multi-head attention with 2 heads

From https://jalammar.github.io

» Learn several “heads”, attending to different interactions

» Learn several different WIQ, WK WK (here: i = 2)

UNIVERSITAT
BIELEFELD

» Establish differences by randomized initialization

https://jalammar.github.io

TRANSFORMERS: MULTI-HEAD ATTENTION II

=

Calculating attention separately in
eight different attention heads

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

4 HH HH

Original paper: multi-head attention with 8 heads

Fromhttps://jalammar.github.io

» Seminal paper uses 8 different attention heads

» How to summarize / combine the 8 resulting outputs?

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: MULTI-HEAD ATTENTION III

1) Concatenate all the attention heads 2) Multiply with a weight
matrix ° that was trained
jointly with the model

X

3) The result would be the matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Combining outputs of different attention heads

From https://jalammar.github.io

» Combining attention head outputs:

1. Concatenate all outputs
2. Multiply resulting matrix with learned matrix W°
3. Yields output being equal to input in dimension

v Remark: Need to learn WO also for single head

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: MULTI-HEAD ATTENTION IV

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
Q
X Wo
A oy
| FRw- =6
W@
Qi

*1n all encoders other than #0,

we don't need embedding. —

of the encoder right below this one

T B

Multi-head attention: Overview / Summary
X: embedded words, input for first attention layer
R: output of earlier layer input for all but first layer

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: MULTI-HEAD ATTENTION V

Layer:| 5 $| Attention:| Input - Input %

The_ The_
animal_ animal_
didn_ didn_
t t
cross_ cross_
the_ the_
street_ street_
because_ because_
it_ o it
was_ was_
too_ too,
tire tire
d d_

Multi-head attention:

Considering two (of eight) heads

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

» Considering two attention
heads, orange and green

» Orange: “it” mostly attends
to “the animal”

» Green: “it” mostly attends
to “tired”

https://jalammar.github.io

TRANSFORMERS: MULTI-HEAD ATTENTION VI

Layer:| 5§/ Attention: | Input - Input s

The_
s
d » Considering all eight
“ma attention heads
street_
because » Things are more difficult to
- interpret
too_
1:& ~ gre » Each head reflects different
1) relationships

Multi-head attention:
Considering all (eight) heads

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: POSITIONAL ENCODING

(ENCODER #0

| i {

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL I
ENCODING !

EMBEDDINGS

INPUT

Integrating positional encodings

From https://jalammar.github.io

» Problem: Self attention unaware of order

» Solution: Consider vectors t; that code order of word x;

» Add t; to x; = position 7 of x; can be determined

» Details of generation of t; not discussed here

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

TRANSFORMERS: ENCODER DETAILS

4 4
’(Add & Normalize)
[}
(Feed Forward) (Feed Forward)

4 Y
> LayerNorm(} } ‘ + ’ { ’)
4 4
I ‘ I I i I
(Self-Attention)
Y [

POSITIONAL
ENCODING

Transformer encoder block: details

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

. Embedded words are equipped with

positional encodings

. Self attention is applied

2.1 Original x; is added to z;
1= Residual skip connection
2.2 Layer norm is applied
w= Normalizes values across layer

. Each resulting z; passed through

identical feedforward NN (FFNN)

3.1 Original z; added to FENN output
s Residual skip connection

3.2 Layer norm is applied
ww Normalizes values across layer

https://jalammar.github.io

REFERENCES

» Jay Alammar’s ML blog:

» “Visualizing A Neural Machine Translation Model”, see
https://jalammar.github.io/
visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attentic

» “The Illustrated Transformer”, see

https://jalammar.github.io/illustrated-transformer/

» http://d21.ai,11.4-11.7,11.9

UNIVERSITAT
BIELEFELD

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/illustrated-transformer/
http://d2l.ai

Thanks for your attention!!

UNIVERSITAT
BIELEFELD

