
Attention & Diffusion
Lecture 3

Alexander Schönhuth

Bielefeld University
April 25, 2023



CONTENTS

I Transformers
I Encoder Structure (today)
I Self Attention (today)
I Decoder Structure (next lecture)

I Transformer Versions and Training
I Encoder Only (next lecture)
I Encoder-Decoder (next lecture)
I Decoder Only (next lecture)



Transformers I



TRANSFORMERS: MOTIVATION

Transformers translate “languages”
From https://jalammar.github.io

I Inspiration for transformers: translating languages

I Transformers lend themselves to (maximum) parallelization

I Google: reference model for cloud TPU based computations

https://jalammar.github.io


TRANSFORMERS: MOTIVATION II

From https://jalammar.github.io

I Transformers employ encoder-decoder architecture
I However, neither encoder nor decoder RNN based
I Seminal paper: “Attention is all you need”

+ https://arxiv.org/abs/1706.03762

https://jalammar.github.io
https://arxiv.org/abs/1706.03762


TRANSFORMERS: STRUCTURE I

Transformers: encoders and decoders layer structured
From https://jalammar.github.io

I Transformers make use of stacks of encoders and decoders
I Seminal paper: stacks are 6 layers each
I Other numbers very well conceivable
I Architectural design may vary by application

https://jalammar.github.io


TRANSFORMERS: STRUCTURE II

Transformers: encoders and decoders layer structured
From https://jalammar.github.io

I Encoders and decoders interact in different ways
I All but last encoder provide input to next encoder
I Last encoder provides input to all decoders
I All but last decoder provide input to next decoder
I Last decoder outputs translated sentence

https://jalammar.github.io


TRANSFORMERS: ENCODER STRUCTURE I

Transformers: encoders follow particular structure
From https://jalammar.github.io

I Encoders are identical in structure
I But they do not share weights

I Encoders have two sublayers
I A self-attention layer
I A feedforward neural network layer

https://jalammar.github.io


TRANSFORMERS: ENCODER STRUCTURE II

Transformers: encoders follow particular structure
From https://jalammar.github.io

I Self-attention layer:
I Encoder can look at other words when encoding words

I Feedforward neural network (FFNN) layer:
I Exact same FFNN applied for each position in sentence

https://jalammar.github.io


TRANSFORMERS: DECODER STRUCTURE I

Transformers: encoder and decoder interact in particular way
From https://jalammar.github.io

I Decoder shares structure with encoder, but ...

I ... has an additional encoder-decoder attention sublayer

I Helps decoder to pay attention as guided by input

https://jalammar.github.io


Self-Attention: Reminder



SELF-ATTENTION: DEFINITION

I Consider a sequence of tokens x1, ..., xn ∈ Rd

I Each token has its own query, key, and value

I Hence, each token can attend to each other token:
I Pair the query vector with the key of the other token
I This yields a weight for its own value

I Compute weighted sum of values as representation in next layer



SELF-ATTENTION: FORMAL SUMMARY

I Consider a sequence of tokens x1, ..., xn ∈ Rd

I Replace q with x and both ki,vi with xi in (1) from Lecture 2

I One obtains a new sequence z1, ..., zn ∈ Rd by

zi := f (xi, ((x1, x1), ..., (xn, xn)) =

n∑
j=1

α(xi, xj)xj ∈ Rd (1)



Transformers continued



TRANSFORMERS: ENCODER STRUCTURE III

Transformers: encoders sublayer by sublayer
From https://jalammar.github.io

1. Words are embedded + yields vectors xi

2. Vectors xi run through self-attention sublayer + yields vectors zi

3. Each zi runs through exact same FFNN + yields vectors ri

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION I

Words pay more/less attention to others
From https://jalammar.github.io

I 5th sublayer, 2nd out of 8
attention heads

I Word “it” pays most
attention to “the
animal”

I Word “it” pays less
attention to “the street”

I Word “it” pays no
attention to “because”

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION II

Self-attention: queries, keys and values
From https://jalammar.github.io

I Input vectors xi are transformed to
I queries qi, keys ki, values vi by
I applying matrices WQ,WK,WV to xi from the right

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION III

Self-attention: queries, keys and values
From https://jalammar.github.io

I Seminal paper: dimension of xi = 512, of qi,ki,vi = 64
I So, WQ,WK,WV ∈ R512×64

I Recall: qi = xiWQ, ki = xiWK, vi = xiWV

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION IV

Self-attention: from input to output
From https://jalammar.github.io

I Scores for x1 w.r.t. v1,v2

I v1: Compute q1 · k1,
divide by 8, yields 112

I v2: Compute q1 · k2,
divide by 8, yields 96

I Softmax’ing: Probabilities
0.88, 0.12 for v1,v2

I Final output for x1:

0.88 · v1 + 0.12 · v2

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION V

Calculating queries, keys and values
From https://jalammar.github.io

I Pack embedded words
into matrix X

I Each row corresponds
to one word

I Multiply X with trained
matrices WQ,WK,WV

I Recall real dimensions:
I Words: 512 (here: 4);

Q,S,V: 64 (here: 3)

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION VI

Computing values: compact matrix representation
From https://jalammar.github.io

1. Multiply queries with keys: Q · ST

2. Normalize relative to query/key length dk (= 64 in reality)

3. Softmax across columns: S := softmax(QST/
√

dk) (here: ∈ R2×2)

4. Compute weighted sum for each word: Z = S ·V

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION I

Multi-head attention with 2 heads
From https://jalammar.github.io

I Learn several “heads”, attending to different interactions

I Learn several different WQ
i ,WK

i ,WK
i (here: i = 2)

I Establish differences by randomized initialization

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION II

Original paper: multi-head attention with 8 heads
From https://jalammar.github.io

I Seminal paper uses 8 different attention heads

I How to summarize / combine the 8 resulting outputs?

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION III

Combining outputs of different attention heads
From https://jalammar.github.io

I Combining attention head outputs:

1. Concatenate all outputs
2. Multiply resulting matrix with learned matrix WO

3. Yields output being equal to input in dimension
+ Remark: Need to learn WO also for single head

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION IV

Multi-head attention: Overview / Summary
X: embedded words, input for first attention layer

R: output of earlier layer input for all but first layer

From https://jalammar.github.io

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION V

Multi-head attention:
Considering two (of eight) heads

From https://jalammar.github.io

I Considering two attention
heads, orange and green

I Orange: “it” mostly attends
to “the animal”

I Green: “it” mostly attends
to “tired”

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION VI

Multi-head attention:
Considering all (eight) heads

From https://jalammar.github.io

I Considering all eight
attention heads

I Things are more difficult to
interpret

I Each head reflects different
relationships

https://jalammar.github.io


TRANSFORMERS: POSITIONAL ENCODING

Integrating positional encodings
From https://jalammar.github.io

I Problem: Self attention unaware of order

I Solution: Consider vectors ti that code order of word xi

I Add ti to xi + position i of xi can be determined
I Details of generation of ti not discussed here

https://jalammar.github.io


TRANSFORMERS: ENCODER DETAILS

Transformer encoder block: details
From https://jalammar.github.io

1. Embedded words are equipped with
positional encodings

2. Self attention is applied
2.1 Original xi is added to zi

+ Residual skip connection
2.2 Layer norm is applied

+ Normalizes values across layer

3. Each resulting zi passed through
identical feedforward NN (FFNN)

3.1 Original zi added to FFNN output
+ Residual skip connection

3.2 Layer norm is applied
+ Normalizes values across layer

https://jalammar.github.io


REFERENCES

I Jay Alammar’s ML blog:
I “Visualizing A Neural Machine Translation Model”, see

https://jalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

I “The Illustrated Transformer”, see
https://jalammar.github.io/illustrated-transformer/

I http://d2l.ai, 11.4–11.7, 11.9

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/illustrated-transformer/
http://d2l.ai


Thanks for your attention!!


