Attention & Diffusion Lecture 3

Alexander Schönhuth

Bielefeld University April 25, 2023

CONTENTS

► Transformers

- Encoder Structure (today)
- Self Attention (today)
- Decoder Structure (next lecture)
- Transformer Versions and Training
 - Encoder Only (next lecture)
 - Encoder-Decoder (next lecture)
 - Decoder Only (next lecture)

Transformers I

TRANSFORMERS: MOTIVATION

- ► Inspiration for transformers: translating languages
- ► Transformers lend themselves to (maximum) parallelization
- ► Google: reference model for cloud TPU based computations

TRANSFORMERS: MOTIVATION II

From https://jalammar.github.io

- Transformers employ encoder-decoder architecture
- However, neither encoder nor decoder RNN based
- Seminal paper: "Attention is all you need"

🖙 https://arxiv.org/abs/1706.03762

TRANSFORMERS: STRUCTURE I

Transformers: encoders and decoders layer structured

From https://jalammar.github.io

Transformers make use of stacks of encoders and decoders

- Seminal paper: stacks are 6 layers each
- Other numbers very well conceivable
- Architectural design may vary by application

TRANSFORMERS: STRUCTURE II

Transformers: encoders and decoders layer structured

From https://jalammar.github.io

Encoders and decoders interact in different ways

- All but last encoder provide input to next encoder
- Last encoder provides input to all decoders
- All but last decoder provide input to next decoder
- Last decoder outputs translated sentence

TRANSFORMERS: ENCODER STRUCTURE I

Transformers: encoders follow particular structure

- Encoders are identical in structure
 - But they do not share weights
- Encoders have two sublayers
 - A self-attention layer
 - A feedforward neural network layer

TRANSFORMERS: ENCODER STRUCTURE II

Transformers: encoders follow particular structure

From https://jalammar.github.io

► Self-attention layer:

Encoder can look at other words when encoding words

► Feedforward neural network (FFNN) layer:

• Exact same FFNN applied for each position in sentence

TRANSFORMERS: DECODER STRUCTURE I

Transformers: encoder and decoder interact in particular way

- Decoder shares structure with encoder, but ...
- ... has an additional encoder-decoder attention sublayer
- Helps decoder to pay attention as guided by input

Self-Attention: Reminder

SELF-ATTENTION: DEFINITION

- Consider a sequence of tokens $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$
- Each token has its own query, key, and value
- Hence, each token can attend to each other token:
 - Pair the query vector with the key of the other token
 - This yields a weight for its own value
- Compute weighted sum of values as representation in next layer

SELF-ATTENTION: FORMAL SUMMARY

- Consider a sequence of tokens $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$
- Replace **q** with **x** and both \mathbf{k}_i , \mathbf{v}_i with \mathbf{x}_i in (1) from Lecture 2
- One obtains a new sequence $\mathbf{z}_1, ..., \mathbf{z}_n \in \mathbb{R}^d$ by

$$\mathbf{z}_i := f(\mathbf{x}_i, ((\mathbf{x}_1, \mathbf{x}_1), \dots, (\mathbf{x}_n, \mathbf{x}_n)) = \sum_{j=1}^n \alpha(\mathbf{x}_i, \mathbf{x}_j) \mathbf{x}_j \in \mathbb{R}^d$$
(1)

Transformers continued

TRANSFORMERS: ENCODER STRUCTURE III

Transformers: encoders sublayer by sublayer

- 1. Words are embedded \square yields vectors \mathbf{x}_i
- 2. Vectors \mathbf{x}_i run through self-attention sublayer \mathbf{x}_i yields vectors \mathbf{z}_i
- 3. Each \mathbf{z}_i runs through exact same FFNN \mathbf{s} yields vectors \mathbf{r}_i

TRANSFORMERS: SELF-ATTENTION I

Words pay more/less attention to others

From https://jalammar.github.io

 5th sublayer, 2nd out of 8 attention heads

- Word "it" pays most attention to "the animal"
- Word "it" pays less attention to "the street"
- Word "it" pays no attention to "because"

TRANSFORMERS: SELF-ATTENTION II

Self-attention: queries, keys and values

From https://jalammar.github.io

Input vectors x_i are transformed to

- queries q_i, keys k_i, values v_i by
 applying matrices W^Q, W^K, W^V to x_i from the right

TRANSFORMERS: SELF-ATTENTION III

Self-attention: queries, keys and values

From https://jalammar.github.io

• Seminal paper: dimension of $\mathbf{x}_i = 512$, of $\mathbf{q}_i, \mathbf{k}_i, \mathbf{v}_i = 64$

• So,
$$\mathbf{W}^Q$$
, \mathbf{W}^K , $\mathbf{W}^V \in \mathbb{R}^{512 \times 64}$

• Recall: $\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q$, $\mathbf{k}_i = \mathbf{x}_i \mathbf{W}^K$, $\mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V$

TRANSFORMERS: SELF-ATTENTION IV

Self-attention: from input to output

From https://jalammar.github.io

- Scores for \mathbf{x}_1 w.r.t. $\mathbf{v}_1, \mathbf{v}_2$
 - v₁: Compute q₁ · k₁, divide by 8, yields 112
 - \mathbf{v}_2 : Compute $\mathbf{q}_1 \cdot \mathbf{k}_2$, divide by 8, yields 96
- ► Softmax'ing: Probabilities 0.88, 0.12 for v₁, v₂
- ► Final output for **x**₁:

 $0.88\cdot \mathbf{v}_1 + 0.12\cdot \mathbf{v}_2$

TRANSFORMERS: SELF-ATTENTION V

Calculating queries, keys and values

- Pack embedded words into matrix X
 - Each row corresponds to one word
- Multiply X with trained matrices W^Q, W^K, W^V
- Recall real dimensions:
 - Words: 512 (here: 4);
 Q, S, V: 64 (here: 3)

TRANSFORMERS: SELF-ATTENTION VI

Computing values: compact matrix representation

From https://jalammar.github.io

- 1. Multiply queries with keys: $\mathbf{Q} \cdot \mathbf{S}^T$
- 2. Normalize relative to query/key length d_k (= 64 in reality)
- 3. Softmax across columns: $\mathbf{S} := \operatorname{softmax}(\mathbf{QS}^T/\sqrt{d_k})$ (here: $\in \mathbb{R}^{2 \times 2}$)

4. Compute weighted sum for each word: $\mathbf{Z} = \mathbf{S} \cdot \mathbf{V}$

TRANSFORMERS: MULTI-HEAD ATTENTION I

Multi-head attention with 2 heads

From https://jalammar.github.io

► Learn several "heads", attending to different interactions

- Learn several different $\mathbf{W}_{i}^{Q}, \mathbf{W}_{i}^{K}, \mathbf{W}_{i}^{K}$ (here: i = 2)
- Establish differences by randomized initialization

TRANSFORMERS: MULTI-HEAD ATTENTION II

Original paper: multi-head attention with 8 heads

- Seminal paper uses 8 different attention heads
- ► How to summarize / combine the 8 resulting outputs?

TRANSFORMERS: MULTI-HEAD ATTENTION III

Combining outputs of different attention heads

From https://jalammar.github.io

• Combining attention head outputs:

- 1. Concatenate all outputs
- 2. Multiply resulting matrix with learned matrix **W**^O
- 3. Yields output being equal to input in dimension \mathbb{R}^{2} and \mathbb{R}^{2} and \mathbb{R}^{2} and \mathbb{R}^{2}
 - \mathbb{R} Remark: Need to learn \mathbf{W}^{O} also for single head

TRANSFORMERS: MULTI-HEAD ATTENTION IV

Multi-head attention: Overview / Summary X: embedded words, input for first attention layer R: output of earlier layer input for all but first layer

TRANSFORMERS: MULTI-HEAD ATTENTION V

Multi-head attention: Considering two (of eight) heads

- Considering two attention heads, orange and green
- Orange: "it" mostly attends to "the animal"
- Green: "it" mostly attends to "tired"

TRANSFORMERS: MULTI-HEAD ATTENTION VI

Multi-head attention: Considering all (eight) heads From https://jalammar.github.io

- Considering all eight attention heads
- Things are more difficult to interpret
- Each head reflects different relationships

TRANSFORMERS: POSITIONAL ENCODING

Integrating positional encodings

- Problem: Self attention unaware of order
- ► *Solution:* Consider vectors **t**_{*i*} that code order of word **x**_{*i*}
 - Add \mathbf{t}_i to $\mathbf{x}_i \bowtie$ position *i* of \mathbf{x}_i can be determined
 - Details of generation of t_i not discussed here

TRANSFORMERS: ENCODER DETAILS

Transformer encoder block: details

- 1. Embedded words are equipped with positional encodings
- 2. Self attention is applied
 - 2.1 Original \mathbf{x}_i is added to \mathbf{z}_i Residual skip connection
 - 2.2 Layer norm is applied Normalizes values across layer
- 3. Each resulting \mathbf{z}_i passed through identical feedforward NN (FFNN)
 - 3.1 Original \mathbf{z}_i added to FFNN output \mathbb{R} Residual skip connection
 - 3.2 Layer norm is applied Normalizes values across layer

REFERENCES

"Visualizing A Neural Machine Translation Model", see

https://jalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attentic

https://jalammar.github.io/illustrated-transformer/

http://d2l.ai, 11.4-11.7, 11.9

Thanks for your attention!!

