
Attention Networks and Diffusion Models
Lecture 2

Alexander Schönhuth

Bielefeld University
April 18, 2023



Attention Networks: Tutorial II



Attention: Reminder



ATTENTION: NONVOLITIONAL CUES

Nonvolitional cue: eye directs attention non-voluntarily to red coffee cup
From https://d2l.ai

I Nonvolitional cues based on saliency / conspicuity of objects

I Example:
I Papers on desk black and white
I Coffee cup red
I Consequence: Eye “sees” coffee cup first

+ Person grabs and drinks coffee

https://d2l.ai


ATTENTION: VOLITIONAL CUES

Deliberately searching for entertainment, eye voluntarily directs attention to book
From https://d2l.ai

I Done with coffee, brain wants entertainment
I Consequence: Eye “sees” book in a deliberate attempt

I Task-oriented search:
I Brain pre-trained to recognize objects that promise entertainment
I Selection of book under full cognitive and volitional control

https://d2l.ai


Queries, Keys and Values



ATTENTION: QUERIES, KEYS AND VALUES I
MOTIVATION

Attention pooling: integrating queries with keys (weights) and values (input)

I There are no queries in feed forward neural networks
I Feedforward neural networks reflect non-volitional attention
I Goal: Model volitional attention cues and integrate them appropriately
I Model patterned after database searches



ATTENTION: QUERIES, KEYS AND VALUES II
SOLUTION

Attention pooling: integrating queries with keys (weights) and values (input)

I Ordinary neurons linearly combine weights wi with input values xi

I Weights wi reflect non-volitional cues. The larger wi

I the more non-volitional attention directed to it
I the higher xi is rated for computing output



ATTENTION: QUERIES, KEYS AND VALUES III
ATTENTION POOLING

Attention pooling: integrating queries with keys (weights) and values (input)

I Volitional cue modeled by query
I Non-volitional cues correspond to the keys (↔weights in ordinary NN)
I Matching queries with keys yields attention weights



ATTENTION: QUERIES, KEYS AND VALUES IV
ATTENTION POOLING

Attention pooling: integrating queries with keys (weights) and values (input)

I Attention weight reflects relevance of input relative to volitional cue
I Attention pooling: Compute “attention weighted” sum of values
I Output dominated by values whose keys match query well



Attention Pooling



ATTENTION POOLING: FORMAL SUMMARY

I Let q ∈ Rq be a query and (k1, v1), ..., (km, vm),ki ∈ Rk, vi ∈ Rv be m
key-value pairs

I The attention pooling f computes as

f (q, (k1, v1), ..., (km, vm)) =

m∑
i=1

α(q,ki)vi ∈ Rv (1)

I The attention weight α(q,ki) ∈ R computes as

α(q,ki) = softmax(a(q,ki)) =
exp(a(q,ki))∑m
j=1 exp(a(q,kj))

(2)

I The attention scoring function a(q,k) maps two vectors to a scalar

a : Rq × Rk −→ R (3)



ADDITIVE ATTENTION SCORING

I Let q ∈ Rq be a query and k ∈ Rk be a key

I Let Wq ∈ Rh×q,Wk ∈ Rh×k,wv ∈ Rh collect learnable parameters

I The additive attention scoring function computes as

a(q,k) = wT
v tanh(Wqq + Wkk) ∈ R (4)

I Interpretation: (4) reflects running q,k through MLP
I Input: Concatenation of q and k
I One hidden layer of width h
I Parameters from input to hidden layer are Wq,Wk
I The activation function is tanh
I Parameters from hidden to output layer captured by wv



SCALED DOT-PRODUCT ATTENTION SCORING I

I Let q,k ∈ Rd be equal-sized query and key

I The scaled dot-product attention scoring function computes as

a(q,k) = qTk/
√

d (5)

I Note: Dot product qTk has mean 0 and variance d
+ Dividing by

√
d implies standard deviation of 1



SCALED DOT-PRODUCT ATTENTION SCORING II

Minibatches:

I Computing attention for n queries and m keys at once
I Reminder: m keys come paired with m values

I For queries Q ∈ Rn×d, keys K ∈ Rm×d, values V ∈ Rm×v compute

softmax(
QKT
√

d
)V ∈ Rn×v (6)

I Each row in (6) reflects weighted sum of values
I n different queries yield n different weighted sums



Multi-Head Attention



MULTI-HEAD ATTENTION I

I Motivation: Capture different attention mechanisms for same
queries, keys, values

I Biology: The same idea can trigger several, different things

I Practical Example: Attend to both short- and long-range
dependencies in sequential data

I Question: How to vary attention mechanisms in informed way?



MULTI-HEAD ATTENTION II

I Question: How to vary attention mechanisms in informed way?

I Solution:
I Let h be intended number of attention mechanisms
I Linearly transform queries, keys, values using h different sets of

matrices W(q)
i ,W(k)

i ,W(v)
i , i = 1, ..., h

I Run the h differently transformed queries, keys, values through
attention pooling

I Transformations W(q)
i ,W(k)

i ,W(v)
i , i = 1, ..., h are learnt

I The h attention pooling outputs are concatenated, and linearly
transformed by another learned matrix Wo

I Design is called multi-head attention

I Each of the h attention pooling outputs is referred to as a head



MULTI-HEAD ATTENTION III

I Let q ∈ Rdq ,k ∈ Rdk ,v ∈ Rdv be query, key, value

I Let W(q)
i ∈ Rpq×dq ,W(k)

i ∈ Rpk×dk ,W(v)
i ∈ Rpv×dv collect learnable

parameters

I f is attention pooling (1), using additive (4) or dot-product (5)
scoring

I Each attention head is computed as

hi = f (W(q)
i q,W(k)

i k,W(v)
i v) ∈ Rpv (7)



MULTI-HEAD ATTENTION IV

From https://d2l.ai

I Attention heads:

hi = f (W(q)
i q,W(k)

i k,W(v)
i v) ∈ Rpv (8)

I Initial ’FC’ layers reflect operations W(q)
i q,W(k)

i k,W(v)
i v

I ’Attention’ layers reflect application of f to W(q)
i q,W(k)

i k,W(v)
i v

https://d2l.ai


MULTI-HEAD ATTENTION V

I Attention heads:

hi = f (W(q)
i q,W(k)

i k,W(v)
i v) ∈ Rpv (9)

I Let Wo ∈ Rpo×hpv collect further learnable parameters

I The multi-head attention output computes as

Wo

h1
...

hh

 ∈ Rpo (10)



MULTI-HEAD ATTENTION VI

From https://d2l.ai

I Multi-head attention output computes as

Wo[hT
1 , ...,h

T
h ]

T ∈ Rpo (11)

I ’Concat’ layer reflects forming [hT
1 , ...,h

T
h ]

I Final ’FC’ layer reflects application of Wo

https://d2l.ai


Encoder-Decoder Architectures



Motivation: Sequence-2-Sequence Models



SEQUENCE-2-SEQUENCE MODELS I

I Motivation: Translate series of tokens into another series of
tokens

I Specific Example: Translate sentences from one language to
another

I Challenges:
I Input and output differ in length
I Sentences are unaligned (e.g. different grammar rules apply)

I Sequence-2-sequence models: neural networks accounting for
this



SEQUENCE-2-SEQUENCE MODELS II

From https://jalammar.github.io

https://jalammar.github.io


SEQUENCE-2-SEQUENCE MODELS III

From https://jalammar.github.io

https://jalammar.github.io


Encoder-Decoder Architecture



ENCODER-DECODER ARCHITECTURE I

From https://d2l.ai

I Encoder:
I Takes input sentence
I Transforms it into context state

I Decoder:
I Takes context state as input
I Generates output sequence, token by token

https://d2l.ai


ENCODER-DECODER ARCHTITECTURE II

From https://jalammar.github.io

https://jalammar.github.io


ENCODER-DECODER ARCHITECTURE III

From https://jalammar.github.io

https://jalammar.github.io


Encoder-Decoder using RNN’s



ENCODER-DECODER: RNN REMINDER

From https://jalammar.github.io

Time step #1 shown; for time step #i, i ≥ 1 in general:
I RNN takes in hidden state #(i− 1), input vector #i
I RNN generates hidden state #i, output vector #i

https://jalammar.github.io


ENCODER-DECODER RNN I

From https://jalammar.github.io

I RNN Encoder:
I Uses sentence to translate as input
I Generates new hidden state each time step; no output

I RNN Decoder:
I Uses last hidden state of encoder as input
I Output is translated sentence

https://jalammar.github.io


ENCODER-DECODER RNN II

From https://jalammar.github.io

I Unrolled view: Inputs and outputs per time step

I Not shown:
I Encoder stops when receiving “end-of-sequence” < eos > token
I Decoder stops when generating “end-of-sequence”< eos > token

https://jalammar.github.io


ENCODER-DECODER: CONTEXT

From https://jalammar.github.io

I Context vector is a real-valued vector

I Dimension of context = # hidden units in encoder RNN

https://jalammar.github.io


ENCODER-DECODER: WORD EMBEDDING

From https://jalammar.github.io

I Tokens are embedded using word embedding techniques

I Popular choice: Word2Vec (e.g. 15.1 in https://d2l.ai)

I Typical sizes of embedding vectors: 200 to 300

I Excellent pre-trained embeddings available

https://jalammar.github.io
https://d2l.ai


RNN ENCODER: FORMAL DESCRIPTION

I Let x1, ..., xT be the input sequence, where xt is t-th token
I Let xt be feature vector of xt, i.e. the embedding of xt

I To generate hidden state t, the encoder computes at time step t:

f (xt,ht−1) (12)

where f expresses the transformation of the encoder’s recurrent layer
I In general, the context variable c is computed as

c = q(h1, ...,hT) (13)

where q is a customized function
I For example, often (e.g. in movies) c = q(h1, ...,hT) = hT

I Remark: This refers to a unidirectional RNN
+ bidirectional RNN’s can be used as well



RNN DECODER: FORMAL DESCRIPTION

I Let y1, ..., yT′ be a target output sequence
I Training: y1, ..., yT′ reflects true sequence
I Prediction: yt′+1 predicted based on y1, ..., yt′

I Let c be the context variable generated by encoder
I At time step t′ + 1, decoder computes

P(yt′+1 | y1, ..., yt′ , c) (14)

for all possible yt′+1

I Given yt′ , the hidden state st′−1 and c, the RNN decoder computes

st′ = g(yt′ , c, st′−1) (15)

I Given st′ , one uses output layer and softmax operation to compute (14)



TRAINING: TEACHER FORCING

From https://jalammar.github.io

I Training uses correctly translated sequence as output target sequence

I Teacher forcing: Input and output shifted by one position relative to each
other

I < bos > and < eos > mean beginning and end of sentence, resp.

I Given all prior words, decoder RNN trained to translate next word

https://jalammar.github.io


PREDICTION: TOKEN BY TOKEN

From https://d2l.ai

I Predicted token yt′ from previous step fed into decoder as input
I At the beginning, feed < bos > as input

I Simple strategy: Predict yt′+1 that maximizes P(yt′+1 | y1, ..., yt′ , c)
I Beware: Resulting y1, ..., yT′ may not maximize P(y1, ..., yT′ )
I More complex strategies available (e.g. https://d2l.ai, 10.8)

I When < eos > is predicted, output is complete

https://d2l.ai
https://d2l.ai


Attention II



Bahdanau Attention



BAHDANAU ATTENTION: MOTIVATION

I Encoder-decoder architectures work well for short sentences

I Long, complex sentences:
I Final encoder state too small to capture long sentence
I But, final state complete and only source of information

I In 2014, Bahdanau suggested a model that
I was inspired by the idea to align sequences / sentences
I is differentiable
I does not have the unidirectional alignment limitation

I When predicting a token, the model
I only aligns (attends) to parts of input sequence deemed relevant
I uses attention pattern to update current state before prediction

I Arguably, one of the most influential ideas in the last decade



BAHDANAU ATTENTION: FORMAL DEFINITION

I Let ht be the hidden state of the encoder at time t

I Let st′−1 be the hidden state of the decoder at time t′ − 1

I Let ct′ be the context variable (i.e. state) after time t′

I Taking st′−1 as query, and ht as both key and value

ct′ =

T∑
t=1

α(st′−1,ht)ht (16)

determines ct′ where T is the length of the input sequence

I α reflects the additive attention scoring function (4)

I One further proceeds using formulas (14),(15)



BAHDANAU ATTENTION: SCHEMATIC

Schematic of Bahdanau Attention
From https://d2l.ai

I One can integrate already generated tokens into attention (16): see
https://arxiv.org/pdf/1508.01211.pdf

https://d2l.ai
https://arxiv.org/pdf/1508.01211.pdf


Self-Attention



SELF-ATTENTION: DEFINITION

I Consider a sequence of tokens x1, ..., xn ∈ Rd

I Each token has its own query, key, and value

I Hence, each token can attend to each other token:
I Pair the query vector with the key of the other token
I This yields a weight for its own value

I Compute weighted sum of values as representation in next layer



SELF-ATTENTION: FORMAL SUMMARY

I Consider a sequence of tokens x1, ..., xn ∈ Rd

I Replace q with x and both ki,vi with xi in (1)

I One obtains a new sequence y1, ...,yn ∈ Rd by

yi := f (xi, ((x1, x1), ..., (xn, xn)) =

n∑
j=1

α(xi, xj)xj ∈ Rd (17)



COMPUTATIONAL COMPLEXITY: COMPARISON I

From https://d2l.ai

I Let n be the length of the sequence

I Let input/output tokens be represented by d-dimensional vectors
I For CNN’s, this agrees with the number of channels

https://d2l.ai


COMPUTATIONAL COMPLEXITY: COMPARISON II

From https://d2l.ai

I Computational complexity: Number of arithmetic operations

I Sequential operations: Number of operations to be carried out
consecutively

I Sequential operations prevent parallelization

https://d2l.ai


COMPUTATIONAL COMPLEXITY: COMPARISON III

From https://d2l.ai

I Maximum path length: Maximum distance between two tokens
I Distance measured in terms of edges in schematic
I Long path length prevents mapping long-range dependencies

https://d2l.ai


COMPUTATIONAL COMPLEXITY: CNN’S

From https://d2l.ai

I Let k be the filter size and d number of both input and output channels
I Computational complexity: O(knd2)

I Sequential operations: O(1)
I Maximum path length: O(n/k)

https://d2l.ai


COMPUTATIONAL COMPLEXITY: RNN’S

From https://d2l.ai

I Computational complexity: O(nd2); multiplying d× d weight matrix with
d-dimensional hidden state

I Sequential operations: O(n)
I Maximum path length: O(n)

https://d2l.ai


COMPUTATIONAL COMPLEXITY: SELF-ATTENTION

From https://d2l.ai

I Queries, keys, values: n× d-matrices

I Computational complexity: O(n2d)
I Scaled dot-product attention: multiply n × d with d × n with n × d matrix
I Formula in compact form was softmax(QKT

√
d
)V

I Sequential operations and maximum path length: O(1)

https://d2l.ai


Thanks for your attention!


