
Attention Networks and Diffusion Models
Introduction

Alexander Schönhuth

Bielefeld University
April 11, 2023

WHO ARE WE?

I Research group “Genome Data Science”
https://gds.techfak.uni-bielefeld.de

I Coordinates:
Prof. Dr. Alexander Schönhuth
email: aschoen@cebitec.uni-bielefeld.de
office: UHG U10-128

https://gds.techfak.uni-bielefeld.de
mailto:aschoen@cebitec.uni-bielefeld.de

Organization

MODULES

I Lecture part of modules
I 39-M-Inf-ABDA Advanced Big Data Analytics / Big Data

Machine Learning (graded, “benotete Prüfungsleistung”)
I See here https://ekvv.uni-bielefeld.de/sinfo/

publ/modul/308598306
I 24-M-P2 Profilierung 2 (ungraded, “Studienleistung”)

I See here https://ekvv.uni-bielefeld.de/sinfo/
publ/modul/27461022

https://ekvv.uni-bielefeld.de/sinfo/publ/modul/308598306
https://ekvv.uni-bielefeld.de/sinfo/publ/modul/308598306
https://ekvv.uni-bielefeld.de/sinfo/publ/modul/27461022
https://ekvv.uni-bielefeld.de/sinfo/publ/modul/27461022

PRESENTATION, REPORTS, PAPERS

I Presentations:
I Individual presentations
I To last for approx. 30 minutes, followed by discussion
I Present contents of scientific paper

I Reports:
I Reports summarize contents of paper
I Reports 8-10 pages

I Papers:
I Papers: some already available, list will be completed
I Papers available via Wiki:

https://gds.techfak.uni-bielefeld.de/
teaching/2023summer/attention

https://gds.techfak.uni-bielefeld.de/teaching/2023summer/attention
https://gds.techfak.uni-bielefeld.de/teaching/2023summer/attention

SCHEDULE

I Organization and introduction: today

I How to present (brief): Apr 18 (online)

I How to write (brief): Apr 25 (hybrid)

SCHEDULE II

I Presentations: from May 16 (earlier possible if desired)
I Up to two presentations per week, if that suits everyone’s

schedules
I If desired/necessary, block seminar day possible as well

I Technical Report: after presentation:
I Optimally, report profits from feedback provided after

presentation
I Drafts can be submitted for discussion
I Improving drafts based on feedback
I Submission deadline: July 31

Attention Networks: Tutorial

Neural Networks

NEURONS
LINEAR + ACTIVATION FUNCTION

output = a(wT · x + b)

Note: replace f in Figure by a!

Neuron: linear function followed
by activation function

Examples

I Linear regression:

a = Id

a is identity function
I Perceptron:

a(x) =

{
1 x ≥ 0
0 x < 0

a is step function

NEURAL NETWORKS
CONCATENATING NEURONS

NEURAL NETWORKS
ARCHITECTURES

FEEDFORWARD NEURAL NETWORKS

Width = Number of nodes in a hidden layer
Depth = Number of hidden layers

Deep = depth ≥ 8 (for historical reasons)

FEEDFORWARD NEURAL NETWORKS
FORMAL DEFINITION

I Let xl ∈ Rd(l) be all outputs from neurons in layer l, where d(l) is
the width of layer l.

I Let y ∈ V be the output.

I Let x =: x0 be the input.

I Then
xl = al(W(l)xl−1 + bl)

where al(.) = (al
1(.), ..., a

l
d(l)(.)), W(l) ∈ Rd(l)×d(l−1), bl ∈ Rd(l)

I The function f representing a neural network with L layers (with
depth L) can be written

y = f (x0) = f (L)(f (L−1)(...(f (1)(x(0)))...))

where xl = f (l)(xl−1) = al(W(l)xl−1 + bl)

TRAINING: BACKPROPAGATION

I E.g. let X be a set of images, labels 1 and 0: tree or not
I Let

f(w,b) : X→ {0, 1} and f̂ : X→ {0, 1}

network function (fw,b) and true function (̂f)

I L(f(w,b), f̂) loss function, differentiable in network parameters w,b

I Back Propagation: Minimize L(f , f̂) through gradient descent

+ Heavily parallelizable!
I Decisive: Ratio number of parameters and training data

Why Neural Networks?

WHY NEURAL NETWORKS?

Given an (unknown) functional relationship f : Rd → V, why
should we learn f by approximating it with a neural network?

Practical, Intuitive Consideration

DEEP LEARNING
INTUITIVE EXPLANATION

I Face recognition: decompose classification task into subtasks

DEEP LEARNING IS INTUITIVE

I Face recognition: decompose subtask (eye recognition) into
sub-subtasks

I Subtasks are composed into overall task “layer by layer”

RUNNING EXAMPLE: MNIST CLASSIFICATION
DATA, FUNCTION

f : R28×28=784 −→ {0, 1, ..., 9} (1)

RUNNING EXAMPLE
MODEL CLASS: NN WITH 1 HIDDEN LAYER

RUNNING EXAMPLE

together makes

Neurons of hidden layer recognize characterizing parts of digit

Theoretical Consideration

THE UNIVERSAL APPROXIMATION THEOREM

Theorem
A feedforward network with a single hidden layer containing a finite number
of neurons can approximate any nonconstant, bounded and continuous
function with arbitrary closeness, as long as there are enough hidden nodes.
Step function with n steps as neural network

I requires n hidden nodes

I hence O(n) training data

Attention

Biological Motivation

ATTENTION: MOTIVATION I

I Optic nerve receives 108 bits per second

I Challenge: Distinguish between important and irrelevant
information

I Solution: Attention
I Brain focuses on only a fraction of information
I Smart usage of resources
I Brain needs to know where to direct attention

I Idea: William James, “father of American psychology”, 1890’s

I Distinguish between non-volitional and volitional cues
I They trigger subconscious and conscious actions

ATTENTION: NONVOLITIONAL CUES

Nonvolitional cue: eye directs attention non-voluntarily to red coffee cup
From https://d2l.ai

I Nonvolitional cues based on saliency / conspicuity of objects

I Example:
I Papers on desk black and white
I Coffee cup red
I Consequence: Eye “sees” coffee cup first

+ Person grabs and drinks coffee

https://d2l.ai

ATTENTION: VOLITIONAL CUES

Deliberately searching for entertainment, eye voluntarily directs attention to book
From https://d2l.ai

I Done with coffee, brain wants entertainment
I Consequence: Eye “sees” book in a deliberate attempt

I Task-oriented search:
I Brain pre-trained to recognize objects that promise entertainment
I Selection of book under full cognitive and volitional control

https://d2l.ai

Queries, Keys and Values

ATTENTION: QUERIES, KEYS AND VALUES I
MOTIVATION

Attention pooling: integrating queries with keys (input) and values (output)

I There are no queries in feed forward neural networks
I Feedforward neural networks reflect non-volitional attention
I Goal: Model volitional attention cues and integrate them appropriately

ATTENTION: QUERIES, KEYS AND VALUES II
SOLUTION

Attention pooling: integrating queries with keys (input) and values (output)

I Input / output ordinary neurons: keys and values
I Keys and values come in pairs

I Volitional cues = queries
I Model patterned after database searches

ATTENTION: QUERIES, KEYS AND VALUES III
ATTENTION POOLING

Attention pooling: integrating queries with keys (input) and values (output)

I Attention weights for keys reflect compatibility with query
I Attention pooling: Compute “attention weighted” sum of values
I Output dominated by values whose keys match query well

Attention Pooling

ATTENTION AVERAGE POOLING

From https://d2l.ai

I Truth: y = f (x) := 2 sin(x) + x0.8 (blue)
I Data points (xi, yi) sampled from yi = f (xi) + ε where ε follows normal

distribution with µ = 0, σ = 0.5 (orange dots)

I Prediction: f̂ (x) :=
∑n

i=1 yi where n = # training data (dashed pink)
I Reflects unweighted average pooling

I Conclusion: Unweighted average pooling not necessarily good idea

https://d2l.ai

NADARAYA-WATSON KERNEL REGRESSION I

I Let K(.) be a kernel

I Kernel properties:
I K(x)→ 0 for |x| → ∞
I K(0) is maximum

I Example: Gaussian kernel

K(u) =
1√
2π

exp(−u2

2
) (2)

I Nadaraya-Watson kernel regression: For unseen x, determine

f̂ (x) =
n∑

i=1

K(x− xi)∑n
j=1 K(x− xj)

yi (3)

where (xi, yi), i = 1, ..., n are the training data points

NADARAYA-WATSON KERNEL REGRESSION II

I Nadaraya-Watson kernel regression: For unseen x, determine

f̂ (x) =
n∑

i=1

K(x− xi)∑n
j=1 K(x− xj)

yi (4)

where (xi, yi), i = 1, ..., n are the training data points
I This agrees with general concept of attention pooling

f̂ (x) =
n∑

i=1

α(x, xi)yi (5)

where x is query, and (xi, yi) are key-value pairs
I Value yi receives more weight the closer its key xi to x

NADARAYA-WATSON KERNEL REGRESSION III

From https://d2l.ai

I Plugging the Gaussian kernel (2) into (4),(5) yields (dashed pink curve)

f̂ (x) =
n∑

i=1

α(x, xi)yi =

n∑
i=1

exp(− 1
2 (x− xi)

2)∑n
j=1 exp(−

1
2 (x− xj)2)

yi

=
n∑

i=1

softmax(−1
2
(x− xi)

2)yi

(6)

https://d2l.ai

NADARAYA-WATSON KERNEL REGRESSION IV

From https://d2l.ai

I 50 training data points (xi, yi)

I 50 validation data points x
I Sort training and validation data by xi and x resp.
I Plot α(x, xi) =

∑n
i=1 softmax(− 1

2 (x− xi)
2) for each pair (xi, x)

https://d2l.ai

NADARAYA-WATSON KERNEL REGRESSION V

I Nadaraya-Watson kernel regression

f̂ (x) =
n∑

i=1

α(x, xi)yi =

n∑
i=1

K(x− xi)∑n
j=1 K(x− xj)

yi (7)

is an example of nonparametric attention pooling

I Benefit: Converges to true function on increasing training data
I Reminder: Training data reflect key-value pairs

I Disadvantage: There are no learnable parameters

PARAMETRIC ATTENTION POOLING I

I Integration of a learnable parameter w into (6) yields

f̂ (x) =
n∑

i=1

α(x, xi)yi =

n∑
i=1

exp(− 1
2 ((x− xi)w)2)∑n

j=1 exp(−
1
2 ((x− xj)w)2)

yi

=

n∑
i=1

softmax(−1
2
((x− xi)w)2)yi

(8)

I The parameter w can be learnt via (stochastic) gradient descent

I w reflects influence span of keys on queries
I Number of influential keys decreases on increasing w

PARAMETRIC ATTENTION POOLING II

From https://d2l.ai

I Predicted curve is less smooth than nonparametric counterpart

https://d2l.ai

PARAMETRIC ATTENTION POOLING III

From https://d2l.ai

I Training / validation procedure analogous to nonparametric setting
I However, training includes learning parameter w
I Region with larger attention weights sharper in parametric setting

https://d2l.ai

Attention Scoring Functions

ATTENTION POOLING: DIGEST I

I Re-consider (6):

f̂ (x) =
n∑

i=1

α(x, xi)yi =

n∑
i=1

softmax(−1
2
(x− xi)

2)yi

I One can view α(x, xi) as

I an attention scoring function

a(x, xi) := −
1
2
(x− xi)

2 (9)

I that is further fed into a softmax operation, yielding

α(x, xi) = softmax(a(x, xi)) (10)

ATTENTION POOLING: DIGEST II

I One can view α(x, xi) as

I an attention scoring function

a(x, xi) := −
1
2
(x− xi)

2 (11)

I that is further fed into a softmax operation, yielding

α(x, xi) = softmax(a(x, xi)) (12)

I Result: Probability distribution

I over values yi paired with keys xi where
I probabilities are attention weights α(x, xi)

ATTENTION SCORING FUNCTIONS: MOTIVATION

Output of attention pooling is weighted average of values

I Let x be query, and xi keys. Attention weights generally compute as

α(x, xi) = softmax(a(x, xi)) (13)

I Advantage: Freedom in choosing attention scoring functions a(x, xi)

ATTENTION POOLING: FORMAL SUMMARY

I Let q ∈ Rq be a query and (k1, v1), ..., (km, vm),ki ∈ Rk, vi ∈ Rv be m
key-value pairs

I The attention pooling f computes as

f (q, (k1, v1), ..., (km, vm)) =

m∑
i=1

α(q,ki)vi ∈ Rv (14)

I The attention weight α(q,ki) ∈ R computes as

α(q,ki) = softmax(a(q,ki)) =
exp(a(q,ki))∑m
j=1 exp(a(q,kj))

(15)

I The attention scoring function a(q,k) maps two vectors to a scalar

a : Rq × Rk −→ R (16)

ADDITIVE ATTENTION SCORING

I Let q ∈ Rq be a query and k ∈ Rk be a key

I Let Wq ∈ Rh×q,Wk ∈ Rh×k,wv ∈ Rh collect learnable parameters

I The additive attention scoring function computes as

a(q,k) = wT
v tanh(Wqq + Wkk) ∈ R (17)

I Interpretation: (17) reflects running q,k through MLP
I Input: Concatenation of q and k
I One hidden layer of width h
I Parameters from input to hidden layer are Wq,Wk
I The activation function is tanh
I Parameters from hidden to output layer captured by wv

SCALED DOT-PRODUCT ATTENTION SCORING

I Let q,k ∈ Rd be equal-sized query and key

I The scaled dot-product attention scoring function computes as

a(q,k) = qTk/
√

d (18)

I Note: Dot product qTk has mean 0 and variance d
+ Dividing by

√
d implies standard deviation of 1

Minibatches:

I Computing attention for n queries and m keys at once

I For queries Q ∈ Rn×d, keys K ∈ Rm×d, values V ∈ Rm×v compute

softmax(
QKT
√

d
)V ∈ Rn×v (19)

Thanks for your attention!

