
Programming
Programming &
Python Basics

Harsha Manjunath

Faculty of Technology,

Bielefeld University

Programming (Programming & Python Basics): Recap 1

Recap

Programming (Programming & Python Basics): Recap 2

Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/
Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types

String

Programming (Programming & Python Basics): Recap 3

str()
instantiation: s = 'a new string' or s = "a new string"
length: len(s)
access:

first: s[0]
slice: s[1:3]
last: s[-1]

existence: 'n' in s or 'new'in s
frequency: s.count('new')

List

Programming (Programming & Python Basics): Recap 4

list()
instantiation: l = [1, 2, 3]
length: len(l)
add elements: l.append("content")
access:

first: l[0]
slice: l[1:3]
last: l[-1]

existence: 2 in l
location: l.index(3)

Complex data: Mappings

Programming (Programming & Python Basics): Recap 5

dict()
instantiation: d = dict(), d = {'x': 1, 'y': 2 }, ...
length: len(l)
add elements: d['a'] = 'ef'
access: d['a']
existence: 'a' in d

Programming (Programming & Python Basics): Conditions & Comparisons 6

Programming
Basics

Data Types &
Mutability

Evaluation Or-
der

Conditions &
Comparisons

Conditional statements: if/else clause

Programming (Programming & Python Basics): Conditions & Comparisons 7

if Boolean expression:
␣␣␣␣statement Mind the indention!

OR

if Boolean expression:
␣␣␣␣statement
else:
␣␣␣␣alternative statement

Conditional statements: if/else

Programming (Programming & Python Basics): Conditions & Comparisons 8

1 a = True
2 if a:
3 print('a is True')
4

5 if 'this is a text':
6 print('another true statement')

Conditional statements: if/else

Programming (Programming & Python Basics): Conditions & Comparisons 9

1 a = True
2 if a:
3 print('a is True')
4 else:
5 print('a is False')

Boolean operators and comparisons

Programming (Programming & Python Basics): Conditions & Comparisons 10

Elementary logic: and, or, not

Variables Boolean expression

a b not a a and b a or b

False False True False False
False True True False True
True False False False True
True True False True True

Comparisons: Operators

Programming (Programming & Python Basics): Conditions & Comparisons 11

== “is equal/equivalent to”
!= “is not equal/equivalent to”
> “is larger than”
< “is is smaller than”
>= “is larger or equal to”
<= “is smaller or equal to”
is “is identical instance of”
is not “is not identical instance of”
in “is contained in collection”
not in “is not contained in collection”

Conditional execution based on comparisons

Programming (Programming & Python Basics): Conditions & Comparisons 12

1 a = 4.0
2 b = 2.0
3 if not a > b:
4 print('true statement!')

Conditional execution based on comparisons

Programming (Programming & Python Basics): Conditions & Comparisons 13

1 a = 'this is a text'
2 b = 'this is a text'
3 if a >= b:
4 print('true statement!')

Conditional execution based on comparisons

Programming (Programming & Python Basics): Conditions & Comparisons 14

1 a = 'this is a text'
2 if a:
3 print('true statement!')

Conditional execution based on comparisons

Programming (Programming & Python Basics): Conditions & Comparisons 15

1 a = list()
2 b = list()
3 if a is b:
4 print('true statement!')

Conditional execution based on comparisons

Programming (Programming & Python Basics): Conditions & Comparisons 16

1 a = list()
2 b = list()
3 if a == b:
4 print('true statement!')

Conditional execution based on comparisons

Programming (Programming & Python Basics): Conditions & Comparisons 17

1 a = list()
2 b = 1
3 if b not in a:
4 print('b is contained in collection a')
5 else:
6 print('b is not contained in collection a')

Programming (Programming & Python Basics): Loops 18

Loops Functions

Classes,
Modules &
Packages

Programming
Errors &
Debugging

for-Loop

Programming (Programming & Python Basics): Loops 19

for control variable name in iterable:
␣␣␣␣statement Mind the indention!

for-Loop: Iteration over ordered collections

Programming (Programming & Python Basics): Loops 20

Loop over elements
1 # tuple filled with arbitrary elements
2 my_tuple = (1, 2.0, 'text', list(), dict())
3

4 # for-loop over my_tuple with control
variable 'el'

5 for el in my_tuple:
6 msg = 'element: {}'.format(el)
7 print(msg)

for-Loop: Iteration over ordered collections

Programming (Programming & Python Basics): Loops 21

Loop over indices with range
1 # tuple filled with arbitrary elements
2 my_tuple = (1, 2.0, 'text', list(), dict())
3

4 # for-loop over my_tuple with control
variable 'i'

5 for i in range(len(my_tuple)):
6 el = my_tuple[i]
7 msg = 'element {}: {}'.format(i, el)
8 print(msg)

for-Loop: Iteration over ordered collections

Programming (Programming & Python Basics): Loops 22

Update list in for-loop
1 # list filled with arbitrary elements
2 my_list = [1, 2.0, 'text', list(), dict()]
3

4 # for-loop over my_list with control
variable 'i'

5 for i in range(len(my_list)):
6 # update element with index i
7 my_list[i] = 'element {}: {}'.format(i,

my_list[i])
8 print(my_list[i])

for-Loop: Iteration over ordered collections

Programming (Programming & Python Basics): Loops 23

Loop over indices and elements with enumerate
1 # list filled with arbitrary elements
2 my_list = [1, 2.0, 'text', list(), dict()]
3

4 # for-loop over my_list with control
variables 'i' and 'el'

5 for i, el in enumerate(my_list):
6 # update element with index i
7 my_list[i] = 'element {}: {}'.format(i,

el)
8 print('old: {}, new: {}'.format(el,

my_list[i]))

for-Loop: Iteration over unordered collections

Programming (Programming & Python Basics): Loops 24

Loop over elements of a set
1 # set filled with arbitrary elements
2 my_set = {1, 1, 1, 2.0, 'text'}
3

4 # for-loop over my_set with control variable
'el'

5 for el in my_set:
6 msg = 'element: {}'.format(el)
7 print(msg)

for-Loop: Iteration over unordered collections

Programming (Programming & Python Basics): Loops 25

Loop over keys of a dict
1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # for-loop over keys of my_dict with control
variable 'key'

5 for key in my_dict:
6 val = my_dict[key]
7 msg = 'key: {}, value: {}'.format(key,

val)
8 print(msg)

for-Loop: Iteration over unordered collections

Programming (Programming & Python Basics): Loops 26

Loop over items of a dict
1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # for-loop over items of my_dict with
control variables 'key', 'val'

5 for key, val in my_dict.items():
6 msg = 'key: {}, value: {}'.format(key,

val)
7 print(msg)

Conditional iteration

Programming (Programming & Python Basics): Loops 27

Another type of loop in Python: while
Loops until condition becomes True

1 x = 5
2 while x > 0:
3 print(x)
4 x -= 1 # shorthand for x = x - 1

Special keywords in loops:
continue: aborts current iteration and continues with the next
break: aborts loop completely

Quiz

Programming (Programming & Python Basics): Loops 28

What does the instruction tuple(range(3)) return?
[1, 2, 3] (1, 2, 3) (0, 1, 2)

(0, 1, 2, 3)

Let x be any integer, how many times is the print statement in
the follwing for-loop executed?

1 for i in range(x):
2 for j in range(i):
3 print((i, j))

(x
2

)
times

Quiz

Programming (Programming & Python Basics): Loops 29

What does the instruction tuple(range(3)) return?
[1, 2, 3] (1, 2, 3) (0, 1, 2) (0, 1, 2, 3)

Let x be any integer, how many times is the print statement in
the follwing for-loop executed?

1 for i in range(x):
2 for j in range(i):
3 print((i, j))

(x
2

)
times

	Recap
	Loops
	Conditonals_if.pdf
	Recap
	Programming Basics
	Data Types & Mutability
	Evaluation Order
	Conditions & Comparisons
	Recap

