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Python Data Types

Numeric

int float complex

Boolean

bool

String

str

Collection

Ordered

tuple list · · ·

Unordered/
Hash-based

dict set · · ·

Null

NoneType
None

... and user-defined types



String
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str()
instantiation: s = 'a new string' or s = "a new string"
length: len(s)
access:

first: s[0]
slice: s[1:3]
last: s[-1]

existence: 'n' in s or 'new'in s
frequency: s.count('new')



List
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list()
instantiation: l = [1, 2, 3]
length: len(l)
add elements: l.append("content")
access:

first: l[0]
slice: l[1:3]
last: l[-1]

existence: 2 in l
location: l.index(3)



Complex data: Mappings
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dict()
instantiation: d = dict(), d = {'x': 1, 'y': 2 }, ...
length: len(l)
add elements: d['a'] = 'ef'
access: d['a']
existence: 'a' in d
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Programming
Basics

Data Types &
Mutability

Evaluation Or-
der

Conditions &
Comparisons



Conditional statements: if/else clause
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if Boolean expression:
␣␣␣␣statement  Mind the indention!

OR

if Boolean expression:
␣␣␣␣statement
else:
␣␣␣␣alternative statement



Conditional statements: if/else
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1 a = True
2 if a:
3 print('a is True')
4

5 if 'this is a text':
6 print('another true statement')



Conditional statements: if/else
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1 a = True
2 if a:
3 print('a is True')
4 else:
5 print('a is False')



Boolean operators and comparisons
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Elementary logic: and, or, not

Variables Boolean expression

a b not a a and b a or b

False False True False False
False True True False True
True False False False True
True True False True True



Comparisons: Operators
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== “is equal/equivalent to”
!= “is not equal/equivalent to”
> “is larger than”
< “is is smaller than”
>= “is larger or equal to”
<= “is smaller or equal to”
is “is identical instance of”
is not “is not identical instance of”
in “is contained in collection”
not in “is not contained in collection”



Conditional execution based on comparisons
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1 a = 4.0
2 b = 2.0
3 if not a > b:
4 print('true statement!')



Conditional execution based on comparisons
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1 a = 'this is a text'
2 b = 'this is a text'
3 if a >= b:
4 print('true statement!')



Conditional execution based on comparisons
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1 a = 'this is a text'
2 if a:
3 print('true statement!')



Conditional execution based on comparisons
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1 a = list()
2 b = list()
3 if a is b:
4 print('true statement!')



Conditional execution based on comparisons
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1 a = list()
2 b = list()
3 if a == b:
4 print('true statement!')



Conditional execution based on comparisons
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1 a = list()
2 b = 1
3 if b not in a:
4 print('b is contained in collection a')
5 else:
6 print('b is not contained in collection a')
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Loops Functions

Classes,
Modules &
Packages

Programming
Errors &
Debugging



for-Loop
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for control variable name in iterable:
␣␣␣␣statement  Mind the indention!



for-Loop: Iteration over ordered collections
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Loop over elements
1 # tuple filled with arbitrary elements
2 my_tuple = (1, 2.0, 'text', list(), dict())
3

4 # for-loop over my_tuple with control
variable 'el'

5 for el in my_tuple:
6 msg = 'element: {}'.format(el)
7 print(msg)



for-Loop: Iteration over ordered collections
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Loop over indices with range
1 # tuple filled with arbitrary elements
2 my_tuple = (1, 2.0, 'text', list(), dict())
3

4 # for-loop over my_tuple with control
variable 'i'

5 for i in range(len(my_tuple)):
6 el = my_tuple[i]
7 msg = 'element {}: {}'.format(i, el)
8 print(msg)



for-Loop: Iteration over ordered collections
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Update list in for-loop
1 # list filled with arbitrary elements
2 my_list = [1, 2.0, 'text', list(), dict()]
3

4 # for-loop over my_list with control
variable 'i'

5 for i in range(len(my_list)):
6 # update element with index i
7 my_list[i] = 'element {}: {}'.format(i,

my_list[i])
8 print(my_list[i])



for-Loop: Iteration over ordered collections
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Loop over indices and elements with enumerate
1 # list filled with arbitrary elements
2 my_list = [1, 2.0, 'text', list(), dict()]
3

4 # for-loop over my_list with control
variables 'i' and 'el'

5 for i, el in enumerate(my_list):
6 # update element with index i
7 my_list[i] = 'element {}: {}'.format(i,

el)
8 print('old: {}, new: {}'.format(el,

my_list[i]))



for-Loop: Iteration over unordered collections
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Loop over elements of a set
1 # set filled with arbitrary elements
2 my_set = {1, 1, 1, 2.0, 'text'}
3

4 # for-loop over my_set with control variable
'el'

5 for el in my_set:
6 msg = 'element: {}'.format(el)
7 print(msg)



for-Loop: Iteration over unordered collections
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Loop over keys of a dict
1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # for-loop over keys of my_dict with control
variable 'key'

5 for key in my_dict:
6 val = my_dict[key]
7 msg = 'key: {}, value: {}'.format(key,

val)
8 print(msg)



for-Loop: Iteration over unordered collections
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Loop over items of a dict
1 # dictionary filled with arbitrary elements
2 my_dict = {'key': 'value', 1: 'text', (1, 2)

: 'text'}
3

4 # for-loop over items of my_dict with
control variables 'key', 'val'

5 for key, val in my_dict.items():
6 msg = 'key: {}, value: {}'.format(key,

val)
7 print(msg)



Conditional iteration
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Another type of loop in Python: while
Loops until condition becomes True

1 x = 5
2 while x > 0:
3 print(x)
4 x -= 1 # shorthand for x = x - 1

Special keywords in loops:
continue: aborts current iteration and continues with the next
break: aborts loop completely



Quiz
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What does the instruction tuple(range(3)) return?
[1, 2, 3] (1, 2, 3) (0, 1, 2)



(0, 1, 2, 3)

Let x be any integer, how many times is the print statement in
the follwing for-loop executed?

1 for i in range(x):
2 for j in range(i):
3 print((i, j))

(x
2

)
times



Quiz
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What does the instruction tuple(range(3)) return?
[1, 2, 3] (1, 2, 3) (0, 1, 2) (0, 1, 2, 3)

Let x be any integer, how many times is the print statement in
the follwing for-loop executed?

1 for i in range(x):
2 for j in range(i):
3 print((i, j))

(x
2

)
times
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