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Reminder: Message Passing
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MESSAGE PASSING: MOTIVATION

» Simple GNN'’s presented earlier

» do not pool within the GNN layer
» have learned embeddings unaware of graph connectivity

» Goal: Neighboring nodes and edges
» exchange information
» influence each other’s updated embeddings

» Solution: Message passing
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MESSAGE PASSING: PROTOCOL

1. Each node: gather all embeddings (= messages) of neighboring nodes
2. Aggregate all messages using an aggregation function

3. Pooled messages passed through update function (e.g. learned NN)
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Message passing: Aggregating information from neighboring nodes
From https://distill.pub/2021/gnn-intro/
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MESSAGE PASSING AND CONVOLUTION I
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Message passing as convolution on graphs
From https://distill.pub/2021/gnn-intro/

» Message passing and convolution are similar in spirit

» Commonality: Process element’s neighbors to update element

» Graphs: Elements are nodes
» Images: Elements are pixels
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MESSAGE PASSING AND CONVOLUTION II

LayerN

N V, o ol >V,

Layer N+1

(=2
update function f: [

pooling function p

Message passing as convolution on graphs
From https://distill.pub/2021/gnn-intro/

» Message passing and convolution are similar in spirit
» Difference:
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» Graphs: Number of neighbors varies per node
» [mages: Number of neighbors constant per pixel
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POOLING WITHIN LAYERS: REMINDER I
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Weave layer: learning node information from edges and learning edge
information from nodes
From https://distill.pub/2021/gnn-intro/

» fv, processes node information from edge information and node itself

» fr, processes edge information from node information and edge itself
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POOLING WITHIN LAYERS: REMINDER 11
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Global information: aggregate from nodes and edges
From https://distill.pub/2021/gnn-intro/

» Issue: After k layers, nodes can reach k-neighborhoods at most
» Solution: Consider master node or global context vector

» Update global context vector by pooling node and/or edge information
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MESSAGE PASSING AND RANDOM WALKS

» Letn := |V|be the number of nodes of a graph (V,E)
» Let A € {0,1}"*" be its adjacency matrix
» Let m be the length of node information vectors

» Let X € R™™ ™ be the node feature matrix

» Rows in X are m-dimensional information vectors of nodes

Consider
B =AX

We obtain n
Bij = AnXyj + ... + AiunXyj = Z A Xy
Arso
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MESSAGE PASSING AND RANDOM WALKS

Interpretation:

» Each row B, reflects a new information vector for node v;
» B; again has dimension m

» Each Bj; is the aggregation of j-th entries of information vectors
of neighbors of v;

= Note that Ay = 1if and only if v; and v, are neighbors

» Replacing A with AX yields aggregation of information vectors
of K-neighbors

w AX = 1iff (sic!) v; and vy can be connected by path of length K
» This relates to random walks on the graph

1z Recall the random walk mechanism for computing PageRank
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GRAPH ATTENTION NETWORKS

Motivation:

» When aggregating one would like to consider weighted sums

n
Bj = w1 AnXaj + .. + Wi nAinXuj = Y Wi xAiXj

k=1
Ag>0

= Some neighbors are more important than others
» Challenge: Compute weights in permutation invariant way

» Solution: Base weights on pairs of nodes alone, so

wijx = f(vi, 0x);
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GRAPH ATTENTION NETWORKS
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Graph attention network: mechanism
From https://distill.pub/2021/gnn-intro/

» Attention Networks: Compute value from comparing key and query
» Here: Compare information vectors of two nodes
» One node is query, other node is key, weight is value
» Example:
f('()hv]') = <U1',"Uk>
evaluates as scalar product of information vectors of v; and vy
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Convolution on Graphs
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REMINDER: PROBLEMS ON GRAPHS
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Non-exhaustive list of problems
From https://distill.pub/2021/understanding-gnns/
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CONVOLUTION ON GRAPHS

als
736
elil7

Convolution in CNNs

Convolution in CNNs
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Convolution on graphs
From https://distill.pub/2021/understanding—-gnns/

Issue: Irregularity of graph
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Polynomial Filters on Graphs
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THE GRAPH LAPLACIAN: DEFINITION

DEFINITION [GRAPH LAPLACIAN]: Let
» G = (V,E) be a graph where |V| =n
» A =A(G) € {0,1}"*" be the adjacency matrix of G
» D = D(G) € N"*" be the diagonal matrix defined by
D; = {E:HEVAW“ i=]j

otherwise

v

Dj; is the degree of v;, i.e. the number of edges connected with v;
The Laplacian L = L(G) is defined by

v

L(G) := D(G) — A(G)
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THE GRAPH LAPLACIAN: EXAMPLE
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Zeros are not displayed. The Laplacian depends only on the graph structure.
From https://distill.pub/2021/understanding-gnns/
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THE GRAPH LAPLACIAN: REMARKS

» The graph Laplacian is the discrete analog of the Laplacian from
calculus

» It virtually stores exactly the same information as A, but has
interesting properties in its own right

» See https://csustan.csustan.edu/~tom/Clustering/
GraphLaplacian-tutorial.pdf for further information, if
interested
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POLYNOMIALS OF THE LAPLACIAN

One can build polynomials of the Laplacian of the form
d .
pu(L) = wol, + il + wol? + ... + wyl? = wil’ (1)
i=0

where I, is the n-dimensional identity matrix.

Alternatively, each such polynomial can be represented by its vector of
coefficients
w = [wo, ..., Wy] (2

Remark:
» pu(L) is an n x n-Matrix for each w, just like L
» The p,(L) represent the equivalent of filters in CNN's
» We will see why that is...
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POLYNOMIALS OF THE LAPLACIAN II

» In the following, each node v € V stores information x, € R

» For ease of presentation only
» Everything applies also for multi-dimensional vectors

» Stack real-valued features into vector x € R”
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Collecting node information into vector.
From https://distill.pub/2021/understanding—gnns/
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POLYNOMIAL FILTERS: DEFINITION

» In the following, each node v € V stores information x, € R

» For ease of presentation only
» Everything applies also for multi-dimensional vectors

» Stack real-valued features into vector x € R"

» Convolution with a polynomial filter p,, is then defined as
x' = pu(L)x (3)

that is, by applying the matrix p,(L) € R"*" to the vector x € R"
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POLYNOMIAL FILTERS: EXAMPLES

Examples:
» w = [wy,0,...,0]:
X' = puw(L) = wolux + 0 4 ... + 0 = wox
» w=1[0,1,0,...,0]:
¥ =pu(l) = Lx

Let NV (v) is the neighborhood of v, that is all nodes attached to v via an
edge, so

X; = (Lx)v = ZLvuxu = Z(Dvu - Avu)xu = Dyoxyp — Z Xu

ueG ueG ueN (v)

» Interpretation: Features of v are combined with features of immediate
neighbors = message passing
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POLYNOMIAL FILTERS: POLYNOMIAL DEGREE

» Let dist(u, v) be the length of the shortest path between nodes u,v € V
» For example, (u,v) € E corresponds to dist(u,v) =1

» Basic calculations imply

dist 5 >‘ i li Liuv:Lx-uXLuv:O 4
ist(u,v) >i implies (L) ( ) )

i times
» Letpu(L) have polynomial degree d. One obtains

Pw v = Z w; Z vuxu Z w; Z (Li)vuxu (5)

i=0 ueV uev
distg (v,u) <i

» (5): convolution at node v only with nodes at most d hops away

Summary: Degree of localization governed by degree of polynomial filter
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POLYNOMIAL FILTERS: PERMUTATION INVARIANCE

» LetP € {0,1}"*" be a permutation matrix

» Applying P to any vector permutes the order of its entries
» P has exactly one 1 in each row and each column

» All other entries are zero

> Pis orthogonal, implying PPT = PTP = I, (*)

» A function on R" is node-order invariant iff f(Px) = Pf(x) for all P

» Permuting order of nodes using P translates into

> x+— Px
» L+ PLPT

> Liws (PLPT) = PLPT x ... x PLPT & pLipT
—

i times
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POLYNOMIAL FILTERS: PERMUTATION INVARIANCE

» A function on R" is node-order invariant iff f(Px) = Pf(x) for all P

» Permuting order of nodes using P translates into

> x+— Px
» [+ PLPT

> Liws (PLPT) = PLPT x ... x PLPT 2 pLipT
RO A —
i times

» For f(x) = pw(L)x one obtains

d

f(Px) = po(L)(Px) = > wi(PL'P")(Px) PszL‘x = Pf(x)

i=0 i=0

Summary: Polynomial filters are node-order invariant

UNIVERSITAT
BIELEFELD



POLYNOMIAL FILTERS IN PRACTICE: CHEBNET

> Let L be the normalized Laplacian defined by

= 2L
L:= 7Amax(L) — I 6)

where Amax(L) is the largest eigenvalue of L

» ChebNet refined the idea of polynomial filters by re-defining

d
pw(L) = Zwsz(i) (7)
i=0

where T; is the degree-i Chebyshev polynomial of the first kind
> Combining T; with L established the breakthrough

»  Motivation:

» L is positive semi-definite: all eigenvalues are non-negative
» If Amax(L) > 1, entries of powers of L rapidly increase

» [ rescaled version of L with eigenvalues in [—1, 1]
>

The T; behave in a numerically stable manner
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POLYNOMIAL FILTERS: STACKING LAYERS

Start with the original features. Color Codes:

B Computed node embeddings.
O =g

M Learnable parameters.

Then iterate, fork = 1,2,... upto K:

p(k) =p,n (L) Compute the matrix p("') as the polynomial
“ defined by the filter weights w*) evaluated at L.

g(k) — p(k) x pE=1) Multiply p®) with h(*~1): a standard matrix-
vector multiply operation.

k) k .
h< =0 (g( )) Apply a non-linearity o to g*) to get A%,

Note: weights re-used at every node, as in CNN’s.
From https://distill.pub/2021/understanding-gnns/
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MODERN GNN'’s

» Re-consider p,(L) = L, yielding

(LX o = Dyxy — Z Xy (8)
ueN (v)
» (8) decomposes into

> Aggregating over immediate neighbor features x,, u € N'(v)
» Combining with node v’s own feature x,

» Idea: Generalize by considering different kinds of aggregation
and combination steps

» Caveat: Aggregation needs to be node-order invariant

» Iteratively repeating 1-hop localized convolutions K times:
receptive field including all nodes up to K hops away
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GRAPH CONVOLUTIONAL NETWORKS (GCN'’S)

Fork=1,...,K
k-1
> A
. 0 | ) #EN®) Y Lk
h&,") = f(“ |44 b, = +B(U hil\ 2 forallv € V.
W ()|
Node v's Mean of v's Node v's
embedding at neighbour's embedding at
step k. embeddings at stepk — 1.
step k — 1.

Color Codes:
M Embedding of node v.
M Embedding of a neighbour of node v.

M (Potentially) Learnable parameters.

From https://distill.pub/2021/understanding-gnns/
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GRAPH CONVOLUTIONAL NETWORKS (GCN’s) I

> hslk 2
) (& eN Y 0 (k—1)
hE,M = f(/” w k). L + B ’71,/\ ! forallv € V.

N ()|

From https://distill.pub/2021/understanding-gnns/

» Derive predictions from Ko
» Function f ®) matrices W% B®) shared across nodes

» Dividing by |V (v)| implements normalization; alternative
normalization schemes conceivable
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GRAPH ATTENTION NETWORKS (GAN'’S)

(* k) | 1r7(k) k—1)7 (k—1) k—1) 7 (k—1)
by ) =/ w : Z a1(m )h’u + afw )h,- forallv € V.
ueN (v)
Node v's Weighted mean of Node v's
embedding at v's neighbour's embedding at
step k. embeddings at step k — 1.
stepk — 1.

for k = 1, ..., K, where normalized attention weights a¥) are generated by A®)

(8 71 (k) ()
afff) = M—Jlu) forall (v,u) € E.
AW GD BE)
weN (v)
Color Codes:

M Embedding of node v.
M Embedding of a neighbour of node v.

M (Potentially) Learnable parameters.

N From https://distill.pub/2021/understanding-gnns/
g
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GRAPH ATTENTION NETWORKS (GAN’S) II

}l}_"“ = f“"w (”'v/l' . l Z aLiﬁl)h,(f 1) - al()}zil)}l‘,l I"| ) forallv € V.

ueN (v)
From https://distill.pub/2021/understanding—gnns/

» Derive predictions from K

» Function f*), matrices W) and attention mechanism A®*)
(generally another neural network) shared across nodes

» Here: single-headed attention; multi-headed attention similar
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Thanks for your attention!
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