
Graph Neural Networks in Big Data
Analytics: Introduction IV

Alexander Schönhuth

Bielefeld University
November 10, 2022

CONTENTS TODAY

I Reminder: Message Passing

I Convolution on Graphs

I Polynomial Filters

I Modern GNN’s

Reminder: Message Passing

MESSAGE PASSING: MOTIVATION

I Simple GNN’s presented earlier
I do not pool within the GNN layer
I have learned embeddings unaware of graph connectivity

I Goal: Neighboring nodes and edges
I exchange information
I influence each other’s updated embeddings

I Solution: Message passing

MESSAGE PASSING: PROTOCOL

1. Each node: gather all embeddings (= messages) of neighboring nodes

2. Aggregate all messages using an aggregation function

3. Pooled messages passed through update function (e.g. learned NN)

Message passing: Aggregating information from neighboring nodes
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/

MESSAGE PASSING AND CONVOLUTION I

Message passing as convolution on graphs
From https://distill.pub/2021/gnn-intro/

I Message passing and convolution are similar in spirit

I Commonality: Process element’s neighbors to update element
I Graphs: Elements are nodes
I Images: Elements are pixels

https://distill.pub/2021/gnn-intro/

MESSAGE PASSING AND CONVOLUTION II

Message passing as convolution on graphs
From https://distill.pub/2021/gnn-intro/

I Message passing and convolution are similar in spirit

I Difference:
I Graphs: Number of neighbors varies per node
I Images: Number of neighbors constant per pixel

https://distill.pub/2021/gnn-intro/

POOLING WITHIN LAYERS: REMINDER I

Weave layer: learning node information from edges and learning edge
information from nodes

From https://distill.pub/2021/gnn-intro/

I fVn processes node information from edge information and node itself
I fEn processes edge information from node information and edge itself

https://distill.pub/2021/gnn-intro/

POOLING WITHIN LAYERS: REMINDER II

Global information: aggregate from nodes and edges
From https://distill.pub/2021/gnn-intro/

I Issue: After k layers, nodes can reach k-neighborhoods at most
I Solution: Consider master node or global context vector
I Update global context vector by pooling node and/or edge information

https://distill.pub/2021/gnn-intro/

MESSAGE PASSING AND RANDOM WALKS

I Let n := |V| be the number of nodes of a graph (V,E)

I Let A ∈ {0, 1}n×n be its adjacency matrix

I Let m be the length of node information vectors

I Let X ∈ Rn×m be the node feature matrix
I Rows in X are m-dimensional information vectors of nodes

Consider
B = AX

We obtain

Bij = Ai1X1j + ...+ AinXnj =

n∑
k=1

Aik>0

AikXkj

MESSAGE PASSING AND RANDOM WALKS

Interpretation:

I Each row Bi reflects a new information vector for node vi

I Bi again has dimension m

I Each Bij is the aggregation of j-th entries of information vectors
of neighbors of vi

+ Note that Aik = 1 if and only if vi and vk are neighbors

I Replacing A with AK yields aggregation of information vectors
of K-neighbors

+ AK
ik = 1 iff (sic!) vi and vk can be connected by path of length K

I This relates to random walks on the graph

+ Recall the random walk mechanism for computing PageRank

GRAPH ATTENTION NETWORKS

Motivation:

I When aggregating one would like to consider weighted sums

Bij = wij,1Ai1X1j + ...+ wij,nAinXnj =

n∑
k=1

Aik>0

wij,kAikXkj

+ Some neighbors are more important than others

I Challenge: Compute weights in permutation invariant way

I Solution: Base weights on pairs of nodes alone, so

wij,k = f (vi, vk)j

GRAPH ATTENTION NETWORKS

Graph attention network: mechanism
From https://distill.pub/2021/gnn-intro/

I Attention Networks: Compute value from comparing key and query

I Here: Compare information vectors of two nodes
I One node is query, other node is key, weight is value
I Example:

f (vi, vj) = 〈vi, vk〉

evaluates as scalar product of information vectors of vi and vk

https://distill.pub/2021/gnn-intro/

Convolution on Graphs

REMINDER: PROBLEMS ON GRAPHS

Non-exhaustive list of problems
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

CONVOLUTION ON GRAPHS

Convolution in CNNs

Convolution on graphs
From https://distill.pub/2021/understanding-gnns/

Issue: Irregularity of graph

https://distill.pub/2021/understanding-gnns/

Polynomial Filters on Graphs

THE GRAPH LAPLACIAN: DEFINITION

DEFINITION [GRAPH LAPLACIAN]: Let

I G = (V,E) be a graph where |V| = n
I A = A(G) ∈ {0, 1}n×n be the adjacency matrix of G
I D = D(G) ∈ Nn×n be the diagonal matrix defined by

Dij =

{∑
u∈V Aviu i = j

0 otherwise

I Dii is the degree of vi, i.e. the number of edges connected with vi

I The Laplacian L = L(G) is defined by

L(G) := D(G)− A(G)

THE GRAPH LAPLACIAN: EXAMPLE

Zeros are not displayed. The Laplacian depends only on the graph structure.
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

THE GRAPH LAPLACIAN: REMARKS

I The graph Laplacian is the discrete analog of the Laplacian from
calculus

I It virtually stores exactly the same information as A, but has
interesting properties in its own right

I See https://csustan.csustan.edu/˜tom/Clustering/
GraphLaplacian-tutorial.pdf for further information, if
interested

https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf
https://csustan.csustan.edu/~tom/Clustering/GraphLaplacian-tutorial.pdf

POLYNOMIALS OF THE LAPLACIAN

One can build polynomials of the Laplacian of the form

pw(L) = w0In + w1L + w2L2 + ...+ wdLd =

d∑
i=0

wiLi (1)

where In is the n-dimensional identity matrix.
Alternatively, each such polynomial can be represented by its vector of
coefficients

w = [w0, ...,wd] (2)

Remark:

I pw(L) is an n× n-Matrix for each w, just like L

I The pw(L) represent the equivalent of filters in CNN’s

I We will see why that is...

POLYNOMIALS OF THE LAPLACIAN II

I In the following, each node v ∈ V stores information xv ∈ R
I For ease of presentation only
I Everything applies also for multi-dimensional vectors

I Stack real-valued features into vector x ∈ Rn

Collecting node information into vector.
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

POLYNOMIAL FILTERS: DEFINITION

I In the following, each node v ∈ V stores information xv ∈ R
I For ease of presentation only
I Everything applies also for multi-dimensional vectors

I Stack real-valued features into vector x ∈ Rn

I Convolution with a polynomial filter pw is then defined as

x′ = pw(L)x (3)

that is, by applying the matrix pw(L) ∈ Rn×n to the vector x ∈ Rn

POLYNOMIAL FILTERS: EXAMPLES

Examples:

I w = [w0, 0, ..., 0]:

x′ = pw(L) = w0Inx + 0 + ...+ 0 = w0x

I w = [0, 1, 0, ..., 0]:
x′ = pw(L) = Lx

LetN (v) is the neighborhood of v, that is all nodes attached to v via an
edge, so

x′v = (Lx)v =
∑
u∈G

Lvuxu =
∑
u∈G

(Dvu − Avu)xu = Dvvxv −
∑

u∈N (v)

xu

I Interpretation: Features of v are combined with features of immediate
neighbors + message passing

POLYNOMIAL FILTERS: POLYNOMIAL DEGREE

I Let dist(u, v) be the length of the shortest path between nodes u, v ∈ V
I For example, (u, v) ∈ E corresponds to dist(u, v) = 1

I Basic calculations imply

dist(u, v) > i implies (Li)uv = (L× ...× L︸ ︷︷ ︸)uv

i times

= 0 (4)

I Let pw(L) have polynomial degree d. One obtains

x′v = (pw(L)x)v =

d∑
i=0

wi

∑
u∈V

(Li)vuxu =

d∑
i=0

wi

∑
u∈V

distG(v,u)≤i

(Li)vuxu (5)

I (5): convolution at node v only with nodes at most d hops away

Summary: Degree of localization governed by degree of polynomial filter

POLYNOMIAL FILTERS: PERMUTATION INVARIANCE

I Let P ∈ {0, 1}n×n be a permutation matrix
I Applying P to any vector permutes the order of its entries
I P has exactly one 1 in each row and each column
I All other entries are zero
I P is orthogonal, implying PPT = PTP = In (*)

I A function on Rn is node-order invariant iff f (Px) = Pf (x) for all P

I Permuting order of nodes using P translates into
I x 7→ Px
I L 7→ PLPT

I Li 7→ (PLPT)i = PLPT × ...× PLPT︸ ︷︷ ︸
i times

(∗)
= PLiPT

POLYNOMIAL FILTERS: PERMUTATION INVARIANCE

I A function on Rn is node-order invariant iff f (Px) = Pf (x) for all P

I Permuting order of nodes using P translates into
I x 7→ Px
I L 7→ PLPT

I Li 7→ (PLPT)i = PLPT × ...× PLPT︸ ︷︷ ︸
i times

(∗)
= PLiPT

I For f (x) = pw(L)x one obtains

f (Px) = pw(L)(Px) =
d∑

i=0

wi(PLiPT)(Px) = P
d∑

i=0

wiLix = Pf (x)

Summary: Polynomial filters are node-order invariant

POLYNOMIAL FILTERS IN PRACTICE: CHEBNET

I Let L̃ be the normalized Laplacian defined by

L̃ :=
2L

λmax(L)
− In (6)

where λmax(L) is the largest eigenvalue of L
I ChebNet refined the idea of polynomial filters by re-defining

pw(L) =
d∑

i=0

wiTi(L̃) (7)

where Ti is the degree-i Chebyshev polynomial of the first kind
I Combining Ti with L̃ established the breakthrough

I Motivation:
I L is positive semi-definite: all eigenvalues are non-negative
I If λmax(L) > 1, entries of powers of L rapidly increase
I L̃ rescaled version of L with eigenvalues in [−1, 1]
I The Ti behave in a numerically stable manner

POLYNOMIAL FILTERS: STACKING LAYERS

Note: weights re-used at every node, as in CNN’s.
From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

MODERN GNN’S

I Re-consider pw(L) = L, yielding

(Lx)v = Dvxv −
∑

u∈N (v)

xu (8)

I (8) decomposes into
I Aggregating over immediate neighbor features xu, u ∈ N (v)
I Combining with node v’s own feature xv

I Idea: Generalize by considering different kinds of aggregation
and combination steps

I Caveat: Aggregation needs to be node-order invariant

I Iteratively repeating 1-hop localized convolutions K times:
receptive field including all nodes up to K hops away

GRAPH CONVOLUTIONAL NETWORKS (GCN’S)

For k = 1, ...,K

From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

GRAPH CONVOLUTIONAL NETWORKS (GCN’S) I

From https://distill.pub/2021/understanding-gnns/

I Derive predictions from h(K)
v

I Function f (k), matrices W(k),B(k) shared across nodes

I Dividing by |N (v)| implements normalization; alternative
normalization schemes conceivable

https://distill.pub/2021/understanding-gnns/

GRAPH ATTENTION NETWORKS (GAN’S)

for k = 1, ...,K, where normalized attention weights α(k) are generated by A(k)

From https://distill.pub/2021/understanding-gnns/

https://distill.pub/2021/understanding-gnns/

GRAPH ATTENTION NETWORKS (GAN’S) II

From https://distill.pub/2021/understanding-gnns/

I Derive predictions from h(K)
v

I Function f (k), matrices W(k) and attention mechanism A(k)

(generally another neural network) shared across nodes

I Here: single-headed attention; multi-headed attention similar

https://distill.pub/2021/understanding-gnns/

REFERENCES

I ChebNet: https://proceedings.neurips.cc/paper/2016/
file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf

I Graph Convolutional Networks (GCN’s):
https://openreview.net/forum?id=SJU4ayYgl

I Graph Attention Networks (GAN’s):
https://openreview.net/forum?id=rJXMpikCZ

https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rJXMpikCZ

Thanks for your attention!

