Graph Neural Networks in Big Data Analytics: Introduction IV

Alexander Schönhuth

Bielefeld University November 10, 2022

CONTENTS TODAY

- ► Reminder: Message Passing
- Convolution on Graphs
- Polynomial Filters
- ► Modern GNN's

Reminder: Message Passing

MESSAGE PASSING: MOTIVATION

Simple GNN's presented earlier

- do not pool within the GNN layer
- have learned embeddings unaware of graph connectivity
- ► *Goal:* Neighboring nodes and edges
 - exchange information
 - influence each other's updated embeddings
- ► *Solution:* Message passing

Message Passing: Protocol

- 1. Each node: gather all embeddings (= messages) of neighboring nodes
- 2. Aggregate all messages using an aggregation function
- 3. Pooled messages passed through update function (e.g. learned NN)

Message passing: Aggregating information from neighboring nodes From https://distill.pub/2021/gnn-intro/

Message Passing and Convolution I

Message passing as convolution on graphs From https://distill.pub/2021/gnn-intro/

- Message passing and convolution are similar in spirit
- Commonality: Process element's neighbors to update element
 - ► Graphs: Elements are nodes
 - Images: Elements are pixels

Message Passing and Convolution II

Message passing as convolution on graphs From https://distill.pub/2021/gnn-intro/

- Message passing and convolution are similar in spirit
- ► Difference:
 - *Graphs:* Number of neighbors varies per node
 - Images: Number of neighbors constant per pixel

POOLING WITHIN LAYERS: REMINDER I

Weave layer: learning node information from edges and learning edge information from nodes

From https://distill.pub/2021/gnn-intro/

- f_{V_n} processes node information from edge information and node itself
- f_{E_n} processes edge information from node information and edge itself

POOLING WITHIN LAYERS: REMINDER II

Global information: aggregate from nodes and edges From https://distill.pub/2021/gnn-intro/

- ▶ *Issue:* After *k* layers, nodes can reach *k*-neighborhoods at most
- Solution: Consider master node or global context vector
- Update global context vector by pooling node and/or edge information

Message Passing and Random Walks

- Let n := |V| be the number of nodes of a graph (V, E)
- Let $A \in \{0,1\}^{n \times n}$ be its adjacency matrix
- Let *m* be the length of node information vectors
- Let $X \in \mathbb{R}^{n \times m}$ be the node feature matrix
 - Rows in X are *m*-dimensional information vectors of nodes

Consider

$$B = AX$$

We obtain

$$B_{ij} = A_{i1}X_{1j} + \dots + A_{in}X_{nj} = \sum_{\substack{k=1\\A_{ik}>0}}^{n} A_{ik}X_{kj}$$

$Message \ Passing \ and \ Random \ Walks$

Interpretation:

- Each row B_i reflects a new information vector for node v_i
- B_i again has dimension m
- Each B_{ij} is the aggregation of j-th entries of information vectors of neighbors of v_i

Note that $A_{ik} = 1$ if and only if v_i and v_k are neighbors

 Replacing A with A^K yields aggregation of information vectors of K-neighbors

■ $A_{ik}^{K} = 1$ iff (sic!) v_i and v_k can be connected by path of length *K*

- This relates to random walks on the graph
 - Recall the random walk mechanism for computing PageRank

GRAPH ATTENTION NETWORKS

Motivation:

When aggregating one would like to consider weighted sums

$$B_{ij} = w_{ij,1}A_{i1}X_{1j} + \dots + w_{ij,n}A_{in}X_{nj} = \sum_{k=1 \atop A_{ik} > 0}^{n} w_{ij,k}A_{ik}X_{kj}$$

Some neighbors are more important than others

- ► Challenge: Compute weights in permutation invariant way
- ► *Solution:* Base weights on pairs of nodes alone, so

$$w_{ij,k} = f(v_i, v_k)_j$$

GRAPH ATTENTION NETWORKS

Graph attention network: mechanism From https://distill.pub/2021/gnn-intro/

- ► Attention Networks: Compute value from comparing key and query
- ► Here: Compare information vectors of two nodes
 - One node is query, other node is key, weight is value
 - ► Example:

$$f(v_i, v_j) = \langle v_i, v_k \rangle$$

evaluates as scalar product of information vectors of v_i and v_k

Convolution on Graphs

Reminder: Problems on Graphs

Non-exhaustive list of problems

CONVOLUTION ON GRAPHS

Convolution in CNNs

Convolution in CNNs

Convolution on graphs

From https://distill.pub/2021/understanding-gnns/

Issue: Irregularity of graph

Polynomial Filters on Graphs

THE GRAPH LAPLACIAN: DEFINITION

DEFINITION [GRAPH LAPLACIAN]: Let

- G = (V, E) be a graph where |V| = n
- $A = A(G) \in \{0, 1\}^{n \times n}$ be the adjacency matrix of *G*
- $D = D(G) \in \mathbb{N}^{n \times n}$ be the diagonal matrix defined by

$$D_{ij} = \begin{cases} \sum_{u \in V} A_{v_i u} & i = j \\ 0 & \text{otherwise} \end{cases}$$

- D_{ii} is the *degree* of v_i , i.e. the number of edges connected with v_i
- The Laplacian L = L(G) is defined by

$$L(G) := D(G) - A(G)$$

THE GRAPH LAPLACIAN: EXAMPLE

Input Graph G

Laplacian L of G

Zeros are not displayed. The Laplacian depends only on the graph structure. From https://distill.pub/2021/understanding-gnns/

THE GRAPH LAPLACIAN: REMARKS

- The graph Laplacian is the discrete analog of the Laplacian from calculus
- It virtually stores exactly the same information as *A*, but has interesting properties in its own right
- See https://csustan.csustan.edu/~tom/Clustering/ GraphLaplacian-tutorial.pdf for further information, if interested

POLYNOMIALS OF THE LAPLACIAN

One can build polynomials of the Laplacian of the form

$$p_w(L) = w_0 I_n + w_1 L + w_2 L^2 + \dots + w_d L^d = \sum_{i=0}^d w_i L^i$$
(1)

where I_n is the *n*-dimensional identity matrix.

Alternatively, each such polynomial can be represented by its *vector of coefficients*

$$w = [w_0, ..., w_d]$$
 (2)

Remark:

- ▶ $p_w(L)$ is an $n \times n$ -Matrix for each w, just like L
- The $p_w(L)$ represent the equivalent of filters in CNN's
- ► We will see why that is...

POLYNOMIALS OF THE LAPLACIAN II

• In the following, each node $v \in V$ stores information $x_v \in \mathbb{R}$

- For ease of presentation only
- Everything applies also for multi-dimensional vectors
- Stack real-valued features into vector $x \in \mathbb{R}^n$

Collecting node information into vector.

POLYNOMIAL FILTERS: DEFINITION

- In the following, each node $v \in V$ stores information $x_v \in \mathbb{R}$
 - ► For ease of presentation only
 - Everything applies also for multi-dimensional vectors
- Stack real-valued features into vector $x \in \mathbb{R}^n$
- ► *Convolution with a polynomial filter p*^{*w*} is then defined as

$$x' = p_w(L)x \tag{3}$$

that is, by applying the matrix $p_w(L) \in \mathbb{R}^{n \times n}$ to the vector $x \in \mathbb{R}^n$

POLYNOMIAL FILTERS: EXAMPLES

Examples:

• $w = [w_0, 0, ..., 0]$: $x' = p_w(L) = w_0 I_n x + 0 + ... + 0 = w_0 x$ • w = [0, 1, 0, ..., 0]: $x' = p_w(L) = Lx$

Let $\mathcal{N}(v)$ is the *neighborhood* of v, that is all nodes attached to v via an edge, so

$$x'_{v} = (Lx)_{v} = \sum_{u \in G} L_{vu} x_{u} = \sum_{u \in G} (D_{vu} - A_{vu}) x_{u} = D_{vv} x_{v} - \sum_{u \in \mathcal{N}(v)} x_{u}$$

 Interpretation: Features of v are combined with features of immediate neighbors regimes message passing

POLYNOMIAL FILTERS: POLYNOMIAL DEGREE

• Let dist(u, v) be the length of the shortest path between nodes $u, v \in V$

For example, $(u, v) \in E$ corresponds to dist(u, v) = 1

Basic calculations imply

dist
$$(u, v) > i$$
 implies $(L^i)_{uv} = (\underbrace{L \times ... \times L}_{i \text{ times}})_{uv} = 0$ (4)

• Let $p_w(L)$ have polynomial degree *d*. One obtains

$$x'_{v} = (p_{w}(L)x)_{v} = \sum_{i=0}^{d} w_{i} \sum_{u \in V} (L^{i})_{vu} x_{u} = \sum_{i=0}^{d} w_{i} \sum_{\substack{u \in V \\ \operatorname{dist}_{G}(v,u) \leq i}} (L^{i})_{vu} x_{u}$$
(5)

▶ (5): convolution at node *v* only with nodes at most *d* hops away

Summary: Degree of localization governed by degree of polynomial filter

POLYNOMIAL FILTERS: PERMUTATION INVARIANCE

• Let $P \in \{0,1\}^{n \times n}$ be a permutation matrix

- Applying *P* to any vector permutes the order of its entries
- P has exactly one 1 in each row and each column
- All other entries are zero
- *P* is orthogonal, implying $PP^T = P^T P = I_n$ (*)
- A function on \mathbb{R}^n is *node-order invariant* iff f(Px) = Pf(x) for all P
- Permuting order of nodes using P translates into

$$x \mapsto Px L \mapsto PLP^T L^i \mapsto (PLP^T)^i = \underbrace{PLP^T \times \dots \times PLP^T}_{i \text{ times}} \stackrel{(*)}{=} PL^i P^T$$

POLYNOMIAL FILTERS: PERMUTATION INVARIANCE

- A function on \mathbb{R}^n is *node-order invariant* iff f(Px) = Pf(x) for all P
- Permuting order of nodes using P translates into

•
$$x \mapsto Px$$

• $L \mapsto PLP^T$
• $L^i \mapsto (PLP^T)^i = \underbrace{PLP^T \times \dots \times PLP^T}_{i \text{ times}} \stackrel{(*)}{=} PL^iP^T$

• For
$$f(x) = p_w(L)x$$
 one obtains

$$f(Px) = p_w(L)(Px) = \sum_{i=0}^d w_i (PL^i P^T)(Px) = P \sum_{i=0}^d w_i L^i x = Pf(x)$$

Summary: Polynomial filters are node-order invariant

POLYNOMIAL FILTERS IN PRACTICE: CHEBNET

• Let \tilde{L} be the *normalized Laplacian* defined by

$$\tilde{L} := \frac{2L}{\lambda_{\max}(L)} - I_n \tag{6}$$

where $\lambda_{\max}(L)$ is the largest eigenvalue of *L*

ChebNet refined the idea of polynomial filters by re-defining

$$p_w(L) = \sum_{i=0}^d w_i T_i(\tilde{L})$$
(7)

where T_i is the degree-*i* Chebyshev polynomial of the first kind

- Combining T_i with \tilde{L} established the breakthrough
- ► *Motivation*:
 - ► *L* is positive semi-definite: all eigenvalues are non-negative
 - If $\lambda_{\max}(L) > 1$, entries of powers of *L* rapidly increase
 - \tilde{L} rescaled version of L with eigenvalues in [-1, 1]
 - ▶ The *T_i* behave in a numerically stable manner

POLYNOMIAL FILTERS: STACKING LAYERS

Start with the original features.

 $h^{(0)} = x$

Then iterate, for $k=1,2,\ldots$ upto K:

 $p^{(k)}=p_{w^{(k)}}(L)$

 $h^{(k)} = \sigma\left(g^{(k)}
ight)$

$$g^{(k)}=p^{(k)} imes oldsymbol{h}^{(k-1)}$$

Color Codes:

- Computed node embeddings.
- Learnable parameters.

Compute the matrix $p^{(k)}$ as the polynomial defined by the filter weights $w^{(k)}$ evaluated at L.

Multiply $p^{(k)}$ with $h^{(k-1)}$: a standard matrix-vector multiply operation.

Apply a non-linearity σ to $g^{(k)}$ to get $h^{(k)}$.

Note: weights re-used at every node, as in CNN's. From https://distill.pub/2021/understanding-gnns/

MODERN GNN'S

• Re-consider $p_w(L) = L$, yielding

$$(Lx)_v = D_v x_v - \sum_{u \in \mathcal{N}(v)} x_u \tag{8}$$

- Aggregating over immediate neighbor features $x_u, u \in \mathcal{N}(v)$
- ► Combining with node *v*'s own feature *x_v*
- Idea: Generalize by considering different kinds of aggregation and combination steps
- Caveat: Aggregation needs to be node-order invariant
- Iteratively repeating 1-hop localized convolutions K times: receptive field including all nodes up to K hops away

GRAPH CONVOLUTIONAL NETWORKS (GCN'S)

For k = 1, ..., K

$$\begin{aligned} \boldsymbol{h}_{v}^{(k)} &= f^{(k)} \begin{pmatrix} W^{(k)} \cdot \frac{\sum\limits_{u \in \mathcal{N}(v)} h_{u}^{(k-1)}}{|\mathcal{N}(v)|} + B^{(k)} \cdot h_{v}^{(k-1)} \end{pmatrix} & \text{for all } v \in V. \end{aligned}$$
Node v 's Mean of v 's Node v 's embedding at step k .
$$\begin{array}{c} \text{meighbour's embedding at step } k - 1. \\ \text{step } k - 1. \\ \end{array}$$

Embedding of node v.

Embedding of a neighbour of node v.

(Potentially) Learnable parameters.

GRAPH CONVOLUTIONAL NETWORKS (GCN'S) I

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_v^{(k)} &=& f^{(k)} \left(W^{(k)} \cdot rac{u \in \mathcal{N}(v)}{|\mathcal{N}(v)|} + B^{(k)} \cdot eta_v^{(k-1)}
ight) \end{aligned} ext{ for all } v \in V. \end{aligned}$$

- Derive predictions from $h_v^{(K)}$
- ► Function *f*^(k), matrices *W*^(k), *B*^(k) shared across nodes
- ► Dividing by |N(v)| implements normalization; alternative normalization schemes conceivable

GRAPH ATTENTION NETWORKS (GAN'S)

$$\begin{split} h_v^{(k)} &= f^{(k)} \left(W^{(k)} \cdot \left[\sum_{u \in \mathcal{N}(v)} \alpha_{vu}^{(k-1)} h_u^{(k-1)} + \alpha_{vv}^{(k-1)} h_v^{(k-1)} \right] \right) & \text{ for all } v \in V. \end{split}$$
Node v 's
embedding at
embe

for k = 1, ..., K, where normalized attention weights $\alpha^{(k)}$ are generated by $A^{(k)}$

$$\begin{split} \alpha_{vu}^{(k)} &= \frac{A^{(k)}(h_v^{(k)}, h_u^{(k)})}{\sum\limits_{w \in \mathcal{N}(v)} A^{(k)}(h_v^{(k)}, h_w^{(k)})} & \text{for all } (v, u) \in E. \end{split}$$
Color Codes:
Embedding of node v.
Embedding of a neighbour of node v.
(Potentially) Learnable parameters.

GRAPH ATTENTION NETWORKS (GAN'S) II

$$\boldsymbol{h}_v^{(k)} \qquad = \quad \boldsymbol{f}^{(k)} \left(W^{(k)} \cdot \left[\sum_{u \in \mathcal{N}(v)} \alpha_{vu}^{(k-1)} h_u^{(k-1)} + \alpha_{vv}^{(k-1)} \boldsymbol{h}_v^{(k-1)} \right] \right) \qquad \text{for all } v \in V.$$

• Derive predictions from
$$h_v^{(K)}$$

- Function f^(k), matrices W^(k) and attention mechanism A^(k) (generally another neural network) shared across nodes
- ► Here: single-headed attention; multi-headed attention similar

References

- ChebNet: https://proceedings.neurips.cc/paper/2016/ file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
- Graph Convolutional Networks (GCN's): https://openreview.net/forum?id=SJU4ayYgl
- Graph Attention Networks (GAN's): https://openreview.net/forum?id=rJXMpikCZ

Thanks for your attention!

