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WHO ARE WE?

I Research group “Genome Data Science”
https://gds.techfak.uni-bielefeld.de

I Coordinates:
Prof. Dr. Alexander Schönhuth
email: aschoen@cebitec.uni-bielefeld.de
office: UHG U10-128

https://gds.techfak.uni-bielefeld.de
mailto:aschoen@cebitec.uni-bielefeld.de


Organization



MODULES

I Lecture part of modules

I 31-M-ASM2 Advanced Statistical Methods II (graded,
“benotete Prüfungsleistung”)

I 39-Inf-AB Algorithmen der Bioinformatik (ungraded,
“Studienleistung”)

I 39-Inf-SAB a Spezielle Algorithmen der Bioinformatik
(ungraded, “Studienleistung”)

I 39-M-Inf-ABDA Advanced Big Data Analytics (ungraded)
I See here https://ekvv.uni-bielefeld.de/sinfo/

publ/modul/308598306

https://ekvv.uni-bielefeld.de/sinfo/publ/modul/308598306
https://ekvv.uni-bielefeld.de/sinfo/publ/modul/308598306


PRESENTATION, PAPERS

I Presentations:
I Presentations individually, or in groups of 2
I Individual presentation to last for approx. 30 minutes,

followed by discussion
I Papers:

I Papers for presentations: some already available, list will
be completed

I Papers available via Wiki:
https://gds.techfak.uni-bielefeld.de/
teaching/2022winter/graphnet

https://gds.techfak.uni-bielefeld.de/teaching/2022winter/graphnet
https://gds.techfak.uni-bielefeld.de/teaching/2022winter/graphnet


SCHEDULE

I Organization and introduction: today

I How to present (brief): Oct 27

I How to write (brief): shortly before first presentation

I Introductory tutorial: today, Oct 27, Nov 3, Nov 10 (yet TBD in
detail, will be announced)



SCHEDULE

I Presentations: from December 1 (earlier possible if desired)
I Up to two presentations per week, if that suits everyone’s

schedules
I If desired/necessary, block seminar day possible as well

I Technical Report: after presentation:
I Each report 8-15 pages
I Optimally, report profits from feedback provided after

presentation
I Drafts can be submitted for discussion
I Improving drafts based on feedback
I Submission deadline: February 28



Graph Neural Networks: Motivation



Neural Networks



NEURONS
LINEAR + ACTIVATION FUNCTION

output = a(wT · x + b)

Note: replace f in Figure by a!

Neuron: linear function followed
by activation function

Examples

I Linear regression:

a = Id

a is identity function
I Perceptron:

a(x) =

{
1 x ≥ 0
0 x < 0

a is step function



NEURAL NETWORKS
CONCATENATING NEURONS



NEURAL NETWORKS
ARCHITECTURES



DEEP NEURAL NETWORKS

Width = Number of nodes in a hidden layer
Depth = Number of hidden layers

Deep = depth ≥ 8 (for historical reasons)



NEURAL NETWORKS
FORMAL DEFINITION

I Let xl ∈ Rd(l) be all outputs from neurons in layer l, where d(l) is
the width of layer l.

I Let y ∈ V be the output.

I Let x =: x0 be the input.

I Then
xl = al(W(l)xl−1 + bl)

where al(.) = (al
1(.), ..., al

d(l)(.)), W(l) ∈ Rd(l)×d(l−1), bl ∈ Rd(l)

I The function f representing a neural network with L layers (with
depth L) can be written

y = f (x0) = f (L)(f (L−1)(...(f (1)(x(0)))...))

where xl = f (l)(xl−1) = al(W(l)xl−1 + bl)



TRAINING: BACKPROPAGATION

I E.g. let X be a set of images, labels 1 and 0: tree or not
I Let

f(w,b) : X→ {0, 1} and f̂ : X→ {0, 1}

network function (fw,b) and true function (̂f )

I L(f(w,b), f̂ ) loss function, differentiable in network parameters w,b

I Back Propagation: Minimize L(f , f̂ ) through gradient descent

+ Heavily parallelizable!
I Decisive: Ratio number of parameters and training data



Why Neural Networks?



WHY NEURAL NETWORKS?

Given an (unknown) functional relationship f : Rd → V, why
should we learn f by approximating it with a neural network?



Practical, Intuitive Consideration



DEEP LEARNING
INTUITIVE EXPLANATION

I Face recognition: decompose classification task into subtasks



DEEP LEARNING IS INTUITIVE

I Face recognition: decompose subtask (eye recognition) into
sub-subtasks

I Subtasks are composed into overall task “layer by layer”



RUNNING EXAMPLE: MNIST CLASSIFICATION
DATA, FUNCTION

f : R28×28=784 −→ {0, 1, ..., 9} (1)



RUNNING EXAMPLE
MODEL CLASS: NN WITH 1 HIDDEN LAYER



RUNNING EXAMPLE

together makes

Neurons of hidden layer recognize characterizing parts of digit



Theoretical Consideration



THE UNIVERSAL APPROXIMATION THEOREM

Theorem
A feedforward network with a single hidden layer containing a finite number
of neurons can approximate any nonconstant, bounded and continuous
function with arbitrary closeness, as long as there are enough hidden nodes.
Step function with n steps as neural network

I requires n hidden nodes

I hence O(n) training data



Why Deep Learning?



THE UNIVERSAL APPROXIMATION THEOREM

Theorem
A feedforward network with a single hidden layer containing a finite number
of neurons can approximate any nonconstant, bounded and continuous
function with arbitrary closeness, as long as there are enough hidden nodes.
Example: Step function with n steps as neural network

I requires n hidden nodes

I hence O(n) training data



RULE OF THUMB

One needs approximately

as many training data
as there are parameters

in the class of models



MORE LAYERS
MOTIVATION

I We have 2 parameters per hidden neuron, amounting to
requiring approximately 2n data points

I Can we save on neurons/parameters, while increasing number
of steps, by increasing depth?

Example: Symmetric step function with 2n steps modeled by
NN with 2 hidden layers one with n and one with 2 neurons



WHY DEEP LEARNING

I We need only O(n+1) (and not O(2n)) many parameters to
model a constellation with 2n steps and one symmetry axis

I Hence, we only need O(n + 1) many training data, and not
O(2n) (like SVM’s or Nearest Neighbor)

I In general O(nl) (symmetric) steps need only O(nl)
training data

I This illustrates why deeper NN’s can deal with symmetry
invariance in images



WHY DEEP LEARNING

Theorem (Universal Approximation; Montufar (2014))
Let f be an NN with d inputs, l hidden layers (depth l) of width n each. Then
the number of differently labeled regions is

O(

(
n
d

)d(l−1)

nd) (2)

That is, the number of regions that can receive different labels is
exponential in the depth (the number of hidden layers) l.

[Montufar 2014]: Every neuron can fold space along an axis



DEEP LEARNING
ASSUMPTIONS

I Model classes make certain assumptions about properties
of the functions they aim to approximate

I Many model classes (such as Nearest Neighbors and
SVM’s) require local consistency and smoothness: nearby
points are likely to receive the same label

I Deep neural networks make further assumptions such as
invariance to shifts, rotations and mirroring



IMAGENET AND ILSVRC
DATASET AND FIRST RESULTS

ImageNet examples: “beading plane”, “brown root rot fungus”, “scalded milk”,
“common roundworm”

I ImageNet dataset: 16 million full color images; 20 000 categories
I Starting point: Le, Ranzato, Monga, Devin, Chen, Corrado, Dean & Ng:

“Building high-level features using large scale unsupervised learning”,
2012, https://ai.google/research/pubs/pub38115 achieved
15.3 % test accuracy

I ILSVRC: Image-Net Large-Scale Visual Recognition Challenge
I 2012: 1000 categories; Training 1.2 million images; Validation 50 000

images; Test 150 000 images

https://ai.google/research/pubs/pub38115


GOING DEEPER

https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_

networks_kaiminghe.pdf; Note: correct error rate for AlexNet is 15.4%

https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf
https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf


Graph Neural Networks: Introduction



Graphs



GRAPHS: INTRODUCTION

From https://mathinsight.org/network_introduction

https://mathinsight.org/network_introduction


DIRECTED GRAPH

From https://mathinsight.org/network_introduction

https://mathinsight.org/network_introduction


GRAPHS, ADJACENCY MATRIX: DEFINITION

DEFINITION [GRAPH]:
A graph G = (V,E) has vertices V and edges E ⊂ V × V. If G is directed, the
order (i, j) := (vi, vj) ∈ E matters (and edges are often referred to as arcs). If G
is undirected, (i, j) can be considered unordered, so (i, j) = (j, i).

DEFINITION [ADJACENCY MATRIX]:
Let G = (V,E) be a graph with vertices V and (directed) edges E. The
adjacency matrix A = (aij)1≤i,j≤|V| is defined by

aij =

{
1 if (i, j) ∈ E
0 otherwise

(3)

Remark: If G is undirected, aij = 1 implies aji = 1. Hence A is symmetric.



ADJACENCY MATRIX: EXAMPLE

DEFINITION [ADJACENCY MATRIX]:
Let G = (V,E) be a graph with vertices V and (directed) edges E. The
adjacency matrix A = (aij)1≤i,j≤|V| is defined by

aij =

{
1 if (i, j) ∈ E
0 otherwise

(4)

From https://mathinsight.org/network_introduction

https://mathinsight.org/network_introduction


Graphs: Storing Information



GRAPHS: STORING INFORMATION I

Graphs can store information in various ways

Vertex attributes
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: STORING INFORMATION II

Graphs can store information in various ways

Edge attributes
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: STORINGINFORMATION III

Graphs can store information in various ways

Global attributes
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: STORINGINFORMATION IV

Graphs can store information in various ways

Embeddings: vector-valued information
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


Graphs: Examples



GRAPHS: IMAGES

Graph and adjacency matrix of an image
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: TEXTS

Graph and adjacency matrix of a piece of text
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: SOCIAL NETWORKS

Graph and adjacency matrix displaying interactions in karate club
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


GRAPHS: MOLECULES

Graph and adjacency matrix displaying interactions in karate club
From https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/


Graphs: Learning Tasks



GRAPH LEVEL TASKS

Structures in molecule graphs. Two rings (red) or not (black).
From https://distill.pub/2021/gnn-intro/

I Labels reflect statements about the entire graph.
I If unknown, determine using machine learning.

https://distill.pub/2021/gnn-intro/


NODE LEVEL TASKS

Karate club: Allegiance to either Mr. Hi (red) or John A. (gray)
From https://distill.pub/2021/gnn-intro/

I Labels reflect statements about individual nodes.
I Some may be known. Others not: determine using ML.

https://distill.pub/2021/gnn-intro/


EDGE LEVEL TASKS

Fight scene in image: elements (two fighters, arbiter, audience, mat).
Labels: relationships.

From https://distill.pub/2021/gnn-intro/

I Labels reflect statements about edges, so indicate relationships.
I Some relationships known. If not known: determine using ML.

https://distill.pub/2021/gnn-intro/


Graphs: Machine Learning Challenges



NEURAL NETWORKS AND GRAPHS

I Techniques for certain graphs available:

I Images = Grids: Convolutional neural networks
I Text = Sequences: Recurrent neural networks, attention

networks

I Techniques for arbitrary graphs desirable:

I Social networks: vary (heavily) by application
I Molecules: plenty of different structures
I Other applications: manifold interaction networks

I Motivation: Extend existing techniques to general graphs

I Issue: Get rid of regularity as a necessary condition



GENERAL GRAPHS: INPUT

I Neural networks usually expect well-arranged input:
I Rectangular, grid-like input
I Sequence type input
I Arrangement in terms of graph-type evaluation obvious

I Graphs may harbor four types of information:
I Node information
I Edge information
I Global information
I Connectivity

How to exploit them by appropriately arranging input?



CHALLENGE: REPRESENTING INPUT

Suitable way of storing graph information. Colors: different information.
From https://distill.pub/2021/gnn-intro/

I Nodes: node information
I Edges: edge information
I Global: global information
I Adjacency List: connectivity information

https://distill.pub/2021/gnn-intro/


CHALLENGE: PERMUTATION INVARIANCE

.
From https://distill.pub/2021/gnn-intro/

I Graphs are permutation invariant
I Goal: Exploit data in permutation invariant way

https://distill.pub/2021/gnn-intro/


Thanks for your attention!


