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WHO ARE WE?

» Research group “Genome Data Science”
https://gds.techfak.uni-bielefeld.de
» Coordinates:
Prof. Dr. Alexander Schonhuth

email: aschoen@cebitec.uni-bielefeld.de
office: UHG U10-128
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Organization
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MODULES

» Lecture part of modules
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>

>

31-M-ASM2 Advanced Statistical Methods II (graded,

“benotete Priifungsleistung”)

39-Inf-AB Algorithmen der Bioinformatik (ungraded,

“Studienleistung”)

39-Inf-SAB_a Spezielle Algorithmen der Bioinformatik

(ungraded, “Studienleistung”)

39-M-Inf-ABDA Advanced Big Data Analytics (ungraded)

» See here https://ekvv.uni-bielefeld.de/sinfo/

publ/modul/308598306


https://ekvv.uni-bielefeld.de/sinfo/publ/modul/308598306
https://ekvv.uni-bielefeld.de/sinfo/publ/modul/308598306

PRESENTATION, PAPERS

» Presentations:

» Presentations individually, or in groups of 2

» Individual presentation to last for approx. 30 minutes,
followed by discussion

» Papers:

» Papers for presentations: some already available, list will
be completed

» Papers available via Wiki:
https://gds.techfak.uni-bielefeld.de/
teaching/2022winter/graphnet
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SCHEDULE

» Organization and introduction: today
» How to present (brief): Oct 27
» How to write (brief): shortly before first presentation

» Introductory tutorial: today, Oct 27, Nov 3, Nov 10 (yet TBD in
detail, will be announced)
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SCHEDULE

» Presentations: from December 1 (earlier possible if desired)

>

>

Up to two presentations per week, if that suits everyone’s
schedules
If desired /necessary, block seminar day possible as well

» Technical Report: after presentation:

>
>

>

v
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Each report 8-15 pages

Optimally, report profits from feedback provided after
presentation

Drafts can be submitted for discussion

Improving drafts based on feedback

Submission deadline: February 28



Graph Neural Networks: Motivation
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Neural Networks
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NEURONS

LINEAR + ACTIVATION FUNCTION

output = a(w’ - x + b)

Note: replace f in Figure by a!

Neuron: linear function followed
by activation function
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Examples

» Linear regression:
a=1d

a is identity function

» Perceptron:

1 x>0
a(x) =
{0 x<0

a is step function



NEURAL NETWORKS

CONCATENATING NEURONS

output




NEURAL NETWORKS

ARCHITECTURES
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DEEP NEURAL NETWORKS

Simple Neural Network Deep Learning Neural Network

@ nput Layer (O Hidden Layer @ Output Layer

Width = Number of nodes in a hidden layer
Depth = Number of hidden layers
Deep = depth > 8 (for historical reasons)
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NEURAL NETWORKS

FORMAL DEFINITION
> Letx' € RYD be all outputs from neurons in layer I, where d(1) is
the width of layer I.
» Lety € V be the output.
> Let x =: x’ be the input.

» Then
x' = al(W(l)xl_1 + bl)

where a'(.) = (a}(.), ..., ay) (), WO € RIO-1 ! e RIO

» The function f representing a neural network with L layers (with
depth L) can be written

y=f() = OO D))
where x = f0 (x'=1) = al(WDxI=1 + b!)
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TRAINING: BACKPROPAGATION

Input Data

Forward

» E.g.let X be a set of images, labels 1 and 0: tree or not
> Let

bt bud  Backwad

fowp) : X = {0,1} and f:X — {0,1}

network function (fw,p) and true function (f)

» L(f(w,b),f) loss function, differentiable in network parameters w, b
» Back Propagation: Minimize L(f,f) through gradient descent
1= Heavily parallelizable!

» Decisive: Ratio number of parameters and training data
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Why Neural Networks?
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WHY NEURAL NETWORKS?

Given an (unknown) functional relationship f : RY — V, why
should we learn f by approximating it with a neural network?
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Practical, Intuitive Consideration
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DEEP LEARNING

INTUITIVE EXPLANATION

Is there an eye in the top left?

Is there aun eye in the top right?

Is there a nose in the middle? Is this a face?

Is there a mouth at the bottom?

Is there hair on top?

» Face recognition: decompose classification task into subtasks
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DEEP LEARNING IS INTUITIVE

Is there an eve in the top lefe? = Are there eyelashes?

» Face recognition: decompose subtask (eye recognition) into
sub-subtasks

» Subtasks are composed into overall task “layer by layer”
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RUNNING EXAMPLE: MNIST CLASSIFICATION

DATA, FUNCTION
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RUNNING EXAMPLE

MODEL CLASS: NN WITH 1 HIDDEN LAYER

hidden layer

{n = 15 neurans)

input layer

(784 neurons)
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RUNNING EXAMPLE

A .

L s

together makes

o,

Neurons of hidden layer recognize characterizing parts of digit
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Theoretical Consideration
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THE UNIVERSAL APPROXIMATION THEOREM

Theorem

A feedforward network with a single hidden layer containing a finite number
of neurons can approximate any nonconstant, bounded and continuous
function with arbitrary closeness, as long as there are enough hidden nodes.

Step function with 7 steps as neural network
» requires n hidden nodes

» hence O(n) training data
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Why Deep Learning?
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THE UNIVERSAL APPROXIMATION THEOREM

Theorem

A feedforward network with a single hidden layer containing a finite number
of neurons can approximate any nonconstant, bounded and continuous
function with arbitrary closeness, as long as there are enough hidden nodes.

Example: Step function with 7 steps as neural network
» requires n hidden nodes

» hence O(n) training data
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RULE OF THUMB

One needs approximately

as many training data
as there are parameters

in the class of models
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MORE LAYERS

MOTIVATION

» We have 2 parameters per hidden neuron, amounting to
requiring approximately 2n data points

» Can we save on neurons/parameters, while increasing number
of steps, by increasing depth?

Example: Symmetric step function with 2n steps modeled by
NN with 2 hidden layers one with # and one with 2 neurons
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WHY DEEP LEARNING

We need only O(n+ 1) (and not O(2n)) many parameters to
model a constellation with 2n steps and one symmetry axis

Hence, we only need O(n + 1) many training data, and not
O(2n) (like SVM’s or Nearest Neighbor)

In general O(r') (symmetric) steps need only O(nl)
training data

This illustrates why deeper NN’s can deal with symmetry
invariance in images
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WHY DEEP LEARNING

Theorem (Universal Approximation; Montufar (2014))

Let f be an NN with d inputs, | hidden layers (depth 1) of width n each. Then
the number of differently labeled regions is

2\ 40D
O( <d> n) 2)

That is, the number of regions that can receive different labels is
exponential in the depth (the number of hidden layers) .

vuversitir - [Montufar 2014]: Every neuron can fold space along an axis



DEEP LEARNING

ASSUMPTIONS

» Model classes make certain assumptions about properties
of the functions they aim to approximate

» Many model classes (such as Nearest Neighbors and
SVM’s) require local consistency and smoothness: nearby
points are likely to receive the same label

» Deep neural networks make further assumptions such as
invariance to shifts, rotations and mirroring
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IMAGENET AND ILSVRC

DATASET AND FIRST RESULTS

ImageNet examples: “beading plane”, “brown root rot fungus”, “scalded milk”,
“common roundworm”

» [ImageNet dataset: 16 million full color images; 20 000 categories

» Starting point: Le, Ranzato, Monga, Devin, Chen, Corrado, Dean & Ng;:
“Building high-level features using large scale unsupervised learning”,

2012, https://ai.google/research/pubs/pub38115 achieved
15.3 % test accuracy

» ILSVRC: Image-Net Large-Scale Visual Recognition Challenge
> 2012: 1000 categories; Training 1.2 million images; Validation 50 000

UNIVERSITAT images; Test 150 000 images
BIELEFELD


https://ai.google/research/pubs/pub38115

GOING DEEPER

ImageNet experiments
f152 Iayers‘

\ 16.4

117

3 i l _ I .

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_

networks_kaiminghe.pdf; Note: correct error rate for AlexNet is 15.4%
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Graph Neural Networks: Introduction
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Graphs
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GRAPHS: INTRODUCTION

nodes (or vertices)

\

edges
(or links)
Sa

From https://mathinsight.org/network_introduction
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https://mathinsight.org/network_introduction

DIRECTED GRAPH

nodes (or vertices)

edges
(or links)
/

From https://mathinsight.org/network_introduction
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GRAPHS, ADJACENCY MATRIX: DEFINITION

DEFINITION [GRAPH]:

A graph G = (V,E) has vertices V and edges E C V x V. If G is directed, the
order (i,]) := (vi,v;) € E matters (and edges are often referred to as arcs). If G
is undirected, (i, ) can be considered unordered, so (i,]) = (j, 7).

DEFINITION [ADJACENCY MATRIX]:
Let G = (V, E) be a graph with vertices V and (directed) edges E. The
adjacency matrix A = (a;)1<ij<|v| is defined by

a,-]-—{l if (i) € E .

0 otherwise

Remark: If G is undirected, a; = 1 implies a; = 1. Hence A is symmetric.
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ADJACENCY MATRIX: EXAMPLE

DEFINITION [ADJACENCY MATRIX]:

Let G = (V, E) be a graph with vertices V and (directed) edges E. The
adjacency matrix A = (a;)1<ij<|v| is defined by

1 if (i,j) € E
0 otherwise

(4)

ajj =

coocooco~ocor~o
coocoo~ocococo
coo~ococoocococo
coocoocococoococo
coocoocococococ o
o—~ocoococoocoor~o
©o— oo —~o~oco
cooo~—~~ooco
coo~ococoocooco
coo~ococoococo

From https://mathinsight.org/network_introduction

UNIVERSITAT
BIELEFELD


https://mathinsight.org/network_introduction

Graphs: Storing Information
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GRAPHS: STORING INFORMATION 1

Graphs can store information in various ways

o V Vertex (or node) attributes
o E Edge (or link) attributes and directions
o U Global (or master node) attributes

o

Vertex attributes
From https://distill.pub/2021/gnn-intro/

UNIVERSITAT
BIELEFELD


https://distill.pub/2021/gnn-intro/

GRAPHS: STORING INFORMATION 11

Graphs can store information in various ways

V Vertex (or node) attributes

E Edge (or link) attributes and directions

\ U Global (or master node) attributes

Edge attributes
From https://distill.pub/2021/gnn-intro/
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GRAPHS: STORINGINFORMATION III

Graphs can store information in various ways

R Ry,
A (A

V Vertex (or node) attributes
E Edge (or link) attributes and directions

U Global (or master node) attributes

STy,
LALRRLRLRRRRIRRRRRRIRNRRlE)]

~
s

Global attributes
From https://distill.pub/2021/gnn-intro/
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GRAPHS: STORINGINFORMATION 1V

Graphs can store information in various ways

Vertex (or node) embedding

Edge (or link) attributes and embedding

Global (or master node) embedding

Embeddings: vector-valued information
From https://distill.pub/2021/gnn-intro/

UNIVERSITAT
BIELEFELD


https://distill.pub/2021/gnn-intro/

Graphs: Examples
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GRAPHS: IMAGES

Graph and adjacency matrix of an image

From https://distill.pub/2021/gnn-intro/
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GRAPHS: TEXTS

Graphs
around

e = @
w W
all .
|

us

Graph and adjacency matrix of a piece of text
From https://distill.pub/2021/gnn-intro/
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GRAPHS: SOCIAL NETWORKS

9 50
0200,
o
202 o
o
o]
o
© oy ° o
o
O [Ohe}
o g
o o
o
s o o

Graph and adjacency matrix displaying interactions in karate club
From https://distill.pub/2021/gnn-intro/
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GRAPHS: MOLECULES

n
: I.:. - 5
m ;
I '
[ i = ° o
"

Graph and adjacency matrix displaying interactions in karate club
From https://distill.pub/2021/gnn-intro/
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Graphs: Learning Tasks
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GRAPH LEVEL TASKS

Structures in molecule graphs. Two rings (red) or not (black).
From https://distill.pub/2021/gnn-intro/

» Labels reflect statements about the entire graph.

» If unknown, determine using machine learning.
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NODE LEVEL TASKS

Allegiance to Mr. Hi

Karate club: Allegiance to either Mr. Hi (red) or John A. (gray)
From https://distill.pub/2021/gnn-intro/

» Labels reflect statements about individual nodes.

» Some may be known. Others not: determine using ML.
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EDGE LEVEL TASKS

——Yalching
“\watching ™——

Buiyoiem

Fight scene in image: elements (two fighters, arbiter, audience, mat).

Labels: relationships.

From https://distill.pub/2021/gnn-intro/

» Labels reflect statements about edges, so indicate relationships.

» Some relationships known. If not known: determine using ML.
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Graphs: Machine Learning Challenges
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NEURAL NETWORKS AND GRAPHS

» Techniques for certain graphs available:

» Images = Grids: Convolutional neural networks
» Text = Sequences: Recurrent neural networks, attention
networks

» Techniques for arbitrary graphs desirable:

» Social networks: vary (heavily) by application
» Molecules: plenty of different structures
» Other applications: manifold interaction networks

» Motivation: Extend existing techniques to general graphs

» Issue: Get rid of regularity as a necessary condition
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GENERAL GRAPHS: INPUT

» Neural networks usually expect well-arranged input:

» Rectangular, grid-like input
» Sequence type input
» Arrangement in terms of graph-type evaluation obvious

» Graphs may harbor four types of information:

» Node information
» Edge information
» Global information
» Connectivity

How to exploit them by appropriately arranging input?
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CHALLENGE: REPRESENTING INPUT

Adjacency List
(11, 01, (2, 01, [4, 3), (6, 2],
17, 31, (7, 41, 17, 51

Global
1

Suitable way of storing graph information. Colors: different information.
From https://distill.pub/2021/gnn-intro/

» Nodes: node information
» Edges: edge information
» Global: global information

» Adjacency List: connectivity information
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CHALLENGE: PERMUTATION INVARIANCE

From https://distill.pub/2021/gnn-intro/
» Graphs are permutation invariant

» Goal: Exploit data in permutation invariant way
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Thanks for your attention!
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