
Biological Applications of Deep Learning
Lecture 6

Alexander Schönhuth

Bielefeld University
November 16, 2022

CONTENTS TODAY

I Recurrent Neural Networks
I Long Short Term Memory (LSTM) Networks

I Vanishing Gradients

I Batch Normalization

Recurrent Neural Networks

RECURRENT NEURAL NETWORKS
INTRODUCTION

I Unlike CNNs, which specialize in processing grid-/matrix-style
input, recurrent neural networks (RNNs) specialize in processing
sequences of values

x(1), ..., x(τ) (1)

I Advantages:

I RNNs can process very long sequences
I RNNs can process sequences of flexible length

I To make this possible, they also employ parameter sharing

I Additional literature: “Supervised Sequence Labelling with
Recurrent Neural Networks”, A. Graves, 2012,
https://www.springer.com/de/book/9783642247965

https://www.springer.com/de/book/9783642247965

RECURRENT NEURAL NETWORKS
ARCHITECTURE

RNN with one hidden layer and no outputs

I Generating values:

h(t) = f (h(t−1), x(t); θ) (2)

I Recurrence:

h(t) = f (h(t−1), x(t); θ) = f (f (h(t−2), x(t−1); θ), x(t); θ)

= f (f (...(f (h(0), x(1); θ), x(2); θ)...), x(t); θ)

=: g(t)(x(t), x(t−1), ..., x(1); θ)

(3)

RECURRENT NEURAL NETWORKS
ARCHITECTURE

Output at each time step, recurrent connections between hidden units

RECURRENT NEURAL NETWORKS
FORWARD PROPAGATION

Let σ be a suitable activation function. Then forward propagation in
RNN’s of the type from the slide before proceeds as follows:

a(t) = b + Wh(t−1) + Ux(t) (4)
h(t) = σ(a(t)) (5)
o(t) = c + Vh(t) (6)
ŷ(t) = softmax(o(t)) (7)

where b, c are the bias vectors along with W,U and V, respectively.

b, c,U,V,W are to be learnt

RECURRENT NEURAL NETWORKS
COMPUTING COST

I Let y = (y(1), ..., y(t)) be true labels for the sequence x(1), ..., x(t).

I Then we compute the cost C as

C({x(1), ..., x(τ)}, {y(1), ..., y(τ)}) =
τ∑

t=1

C(t) (8)

where
C(t) = − log pmodel(y(t) | {x(1), ..., x(t)}) (9)

and pmodel refers to the probability computed by application of
softmax to o(t), see (7).

RECURRENT NEURAL NETWORKS
COMPUTING GRADIENTS

I Computing gradients does not involve any particular
complications.

I See http:
//www.deeplearningbook.org/contents/rnn.html,
10.2.2 (+ Homework if you wish)

http://www.deeplearningbook.org/contents/rnn.html
http://www.deeplearningbook.org/contents/rnn.html

RECURRENT NEURAL NETWORKS
ARCHITECTURE II

Less powerful, but easier to train:
RNNs where output units connect to hidden units

a(t) = b + Wo(t−1) + Ux(t) (10)

RECURRENT NEURAL NETWORKS
ARCHITECTURE II

RNN that generates one, summarizing output

I Used for generation of fixed-size representation
I Further used as input for further processing

RECURRENT NEURAL NETWORKS
GOING DEEP

(a) Extra layer of hidden units, all operating the same way

(b) Introduction of units between hidden units

(c) Like (b), but with skip connections

RECURRENT NEURAL NETWORKS
MOTIVATION / SUMMARY

I Time Dynamics: Model that behaviour of a network may vary
over time

I Recurrence: Model that output derived from input may depend
on inputs seen earlier

I Particularly useful for analyzing data / processes that change
over time

I Speech recognition
I Natural language processing

I NNs have trouble solving certain problems conventional
approaches are good at and vice versa

I Recurrent Neural Networks are an attempt to have a unifying
model that is good at everything

RECURRENT NEURAL NETWORKS
FURTHER MODELS

I Bidirectional RNNs
I For computing h(s) take both earlier (t = 1, ..., s − 1) and later

(t = s + 1, ..., τ) values into account
I Successful in handwriting and speech recognition

I Encoder-Decoder Sequence to Sequence Architectures
I Ordinary RNNs map sequences to sequences of same length
I Encoder-Decoder RNNs map sequences to sequences of not necessarily

the same length
I Applications: Translations, question answering

Transformers: We will get to that later...

I See http://www.deeplearningbook.org/contents/rnn.html,
10.3, 10.4

http://www.deeplearningbook.org/contents/rnn.html

RECURRENT NEURAL NETWORKS
RECURSIVE NEURAL NETWORKS

Recursive Net

I Generalize RNNs from
sequence-style to tree-shaped
input

I Inputs are transformed into
outputs according to a
hierarchical structure

I Applications: Process data
structures as input to NNs;
language processing; computer
vision

I See http://www.deeplearningbook.org/

contents/rnn.html, 10.6

http://www.deeplearningbook.org/contents/rnn.html
http://www.deeplearningbook.org/contents/rnn.html

Long Short Term Memory (LSTM) Networks

LONG SHORT TERM MEMORY NETWORKS
MOTIVATION I

Short term memory: predict h3 from x0 and x1

From https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I RNN’s have short-term memory
I Predicting ht+k from xt possible for small enough k
I Example: Predict sky as last word in

“the clouds are in the ...”

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LONG SHORT TERM MEMORY NETWORKS
MOTIVATION II

Predicting ht+k from xt no longer possible for large k
From https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I RNN’s have weak long-term memory
I Predicting ht+k from xt not possible for large k
I Example: Predict French as last word in sentences

“I grew up in France. [...several sentences...] I speak fluently”

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LONG SHORT TERM MEMORY NETWORKS
MOTIVATION III

Predicting ht+k from xt no longer possible for large k
From https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I Memory fading on increasing input length
I In theory, RNN’s have long-term memory
I In practice, however, they do not

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LONG SHORT TERM MEMORY NETWORKS
IDEA I

LSTM’s: Operation f (ht−1, xt; θ) as cell A
From https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I Consider the joining operation f (ht−1, xt; θ) as a cell A
I Idea: Modify A to increase memory duration

I In particular, in A, maintain cell state Ct:
I Ct is like “conveyor belt”
I Ct keeps things in mind unchanged
I Ct only changed when changes imperative

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LONG SHORT TERM MEMORY NETWORKS
DEFINITION

LSTM: Cell A has four interacting neural network layers
From https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I Four different neural network layers fi(ht−1, xt; θi), i = 1, 2, 3, 4
I Each indicated by yellow box
I Simplest version: each ft reflects one neuron
I Separate learned parameters θ1, θ2, θ3, θ4

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LONG SHORT TERM MEMORY NETWORKS
DEFINITION

LSTM: Cell A has four interacting neural network layers
From https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I Upper line: cell state Ct

I Each fi(ht−1, xt; θi) has particular influence on Ct

I As per arrangement possible scenario: no fi changes Ct
I So, Ct may remain unchanged in some cells

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LONG SHORT TERM MEMORY NETWORKS
CELL STATE

LSTM’s: Cell state Ct

From https://colah.github.io/posts/2015-08-Understanding-LSTMs/

I Cell state Ct is like conveyor belt

I Runs straight through cell A, with only minor interactions
I Information can flow unchanged

I LSTM adds / removes information, regulated by gates

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LONG SHORT TERM MEMORY NETWORKS
GATES

LSTM’s: Gate structure
From https://colah.github.io/posts/

2015-08-Understanding-LSTMs/

I Gates control flow of information

I Gates consist of
I Sigmoid neural net layer
I Pointwise multiplication operation

(earlier: Hadamard product)

I Values between 0 and 1
I Values near 0: remove information
I Values near 1: let information pass

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LONG SHORT TERM MEMORY NETWORKS
DIFFERENT GATES

I Leftmost gate: forget gate
I Removes information from Ct

I Middle gate: input gate
I Adds new information to Ct

I Rightmost gate: output gate
I Uses (already modified) Ct to

control output to next cell

LSTM cell: three different gates (where are they? – spot them...)
From https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMS: SUMMARY

I Looking tricky at first glance, but...

I ... all recent successes of RNN’s achieved by LSTM’s

I LSTM’s have substantially longer memory than ordinary RNN’s

I Further advances:
I Grid LSTM’s [Kalchbrenner et al., 2015]
I Attention networks; we will get to that later...

I Further references:
I https://www.deeplearningbook.org/, 10.10
I http://d2l.ai/, 10.1, 10.2

https://www.deeplearningbook.org/
http://d2l.ai/

The Vanishing Gradient

WHY IS DEEP LEARNING TOUGH?

I Deep is supposed to better than shallow
I Less hidden nodes necessary to approximate the true

functional relationship
I See the “Universal Approximation Theorem” by Montufar,

2014
I See further “Learning Deep Architectures”, Bengio, 2009,

http://www.iro.umontreal.ca/˜bengioy/
papers/ftml_book.pdf for a more informal discussion

I However: On increasing depth in a naive way, performance
usually drops

I What is going wrong?

http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf
http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf

WHY IS DEEP LEARNING TOUGH?

Training Deeper NN’s: either the earlier layers (more common; here hidden
layer 1) or the later layers (here: hidden layer 3) do not train well

THE VANISHING GRADIENT PROBLEM

Most commonly: gradients converge to zero in earlier layers

Optimization landscape becomes flatter on deeper layered
neurons:
I Training speed decreases
I Optimization procedure can become messed up

+ accuracy decreases on increasing depth

THE VANISHING GRADIENT PROBLEM

Yellow bars: ∂C
∂b for each hidden neuron

I Changes larger in
later hidden layer

I Learning works
better in later layers

I Are neurons likely to
learn at different
rates in different
layers in general?

THE VANISHING GRADIENT PROBLEM

I Let bl
j be the j-th bias in layer l, and ∂C

∂bl
j

be the respective partial

derivative of the cost C.
I Let

∇(l)
bl C := (

∂C
∂bl

1

, ...,
∂C
∂bl

d(l)

) (11)

I Then, in the example from the slide before:

||∇(1)
b C|| = 0.07 and ||∇(2)

b C|| = 0.31 (12)

THE VANISHING GRADIENT PROBLEM

I Then, in this example,

||∇(1)
b C|| = 0.07 and ||∇(2)

b C|| = 0.31 (13)

I Formal quantification shows: learning faster in hidden layer 2.

I When running the identical training task (MNIST), we obtain

I ||∇(1)
b C|| = 0.012, ||∇(2)

b C|| = 0.06, ||∇(3)
b C|| = 0.283

for three hidden layers
I ||∇(1)

b C|| = 0.003, ||∇(2)
b C|| = 0.017, ||∇(3)

b C|| = 0.07, ||∇(4)
b C|| =

0.285 for four hidden layers
I and so on...

THE VANISHING GRADIENT PROBLEM

Training speed in [784,30,30,30,30,10]-NN on MNIST

THE VANISHING GRADIENT PROBLEM

I Vanishing gradient problem: Neurons in earlier layers learn
more slowly

I Exploding gradient problem: Neurons in earlier layers learn
faster

I In general, gradients in NN’s are unstable across layers
I And: vanishing gradients do not mean that there is

nothing left to be learnt
I + Fundamental problem for gradient-based learning in

NN’s

THE VANISHING GRADIENT PROBLEM
EXPLANATION

Simple NN with 3 hidden layers of one neuron each

Let w1,w2,w3,w4 be the weights, b1, b2, b3, b4 be the biases and C the cost. Let
all neurons be sigmoid, so the output aj from the j-the neuron is σ(zj) where
zj = wjaj−1 + bj is the input of the j-th neuron (notation as usual earlier).

For understanding the Vanishing Gradient Problem, consider ∂C
∂b1

. By
repeated application of the backpropagation rules, we see that

∂C
∂b1

= σ′(z1)× w2 × σ′(z2)× w3 × σ′(z3)× w4 × σ′(z4)×
∂C
∂a4

(14)

THE VANISHING GRADIENT PROBLEM
EXPLANATION

Computing ∂C
∂b1

There is an alternative explanation for (14). Let ∆ indicate small changes. We
know that

∂C
∂b1
≈ ∆C

∆b1
(15)

From a1 = σ(z1) = σ(w1a0 + b1) we further obtain

∆a1 ≈
∂σ(w1a0 + b1)

∂b1
∆b1 = σ′(z1)∆b1 (16)

further leading to

∆z2 ≈
∂z2

∂a1
∆a1 = w2∆a1 implying ∆z2 ≈ σ′(z1)w2∆b1 (17)

THE VANISHING GRADIENT PROBLEM
EXPLANATION

Computing ∂C
∂b1

Repeated application of the computations from the slide before eventually
yield

∆C ≈ σ′(z1)w2σ
′(z2) . . . σ

′(z4)
∂C
∂a4

∆b1 (18)

Dividing by b1 results in the desired expression (14):

∂C
∂b1

= σ′(z1)× w2 × σ′(z2)× w3 × σ′(z3)× w4 × σ′(z4)×
∂C
∂a4

(19)

THE VANISHING GRADIENT PROBLEM
EXPLANATION

∂C
∂b1

= σ′(z1)× w2 × σ′(z2)× w3 × σ′(z3)× w4 × σ′(z4)×
∂C
∂a4

(20)

Except from the last term, this is a product of terms of the form

wjσ
′(zj) (21)

It holds that 0 ≤ σ′(zj) ≤ 1/4, while, in practice, when employing standard
initialization of weights, typically |wj| < 1, so

|wjσ
′(zj)| ≤

1
4

(22)

so in combination
∂C
∂b1
≤ σ′(z1)(

1
4

)3 ∂C
∂a4

(23)

THE VANISHING GRADIENT PROBLEM
EXPLANATION

Comparing ∂C
∂b1

with ∂C
∂b3

So, ∂C
∂b1

is about a factor of 16 (or more) smaller than ∂C
∂b3

. Similar conclusions
are drawn for ∂C

∂wj
.

THE EXPLODING GRADIENT PROBLEM

The “Exploding Gradient Problem” occurs when

I Weights are too large (say on the order of 100 each)

I Biases bj are such that σ′(zj) never is small

I Example: bj = −100× aj−1, so zj = 100× aj−1 − 100× aj−1 = 0,
implying σ′(zj) = 1/4, yielding wjσ

′(zj) > 20 as a gradient

I In such situations gradients iteratively explode

GRADIENTS ARE UNSTABLE

I The fundamental problem is that gradients in earlier layers are
products of gradients from (all the) later layers.

I If there are many layers, the situation is unstable, unless the
gradients are balanced out.

I Balancing is very unlikely to happen by chance, so one needs to
fix this explicitly.

I Fixing this seems daunting at first glance: when making weights
wj large,

σ′(zj) = σ′(wjaj−1 + bj)

will get small.

I Solutions:

I Rectified Linear Units instead of sigmoid activation
I Batch Normalization (discussed later in the lecture)

WHY IS DEEP LEARNING TOUGH?
LITERATURE

There are other issues that prevent easy training of neural networks
with deep architectures. For further reading, see for example

I “Understanding the difficulty of training deep feedforward
neural networks”, X. Glorot, Y. Bengio, 2010,
http://proceedings.mlr.press/v9/glorot10a/
glorot10a.pdf

or the earlier

I “Efficient BackProp”, Y. LeCun, L. Bottou, G. Orr, K.-R. Müller,
1998, http:
//yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

I “On the importance of initialization and momentum in deep
learning”, I. Sutskever, J. Martens, G. Dahl, G. Hinton, 2013,
http:
//www.cs.toronto.edu/˜hinton/absps/momentum.pdf

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://www.cs.toronto.edu/~hinton/absps/momentum.pdf
http://www.cs.toronto.edu/~hinton/absps/momentum.pdf

Batch Normalization

BATCH NORMALIZATION
MOTIVATION

Learning black cats might not help to recognize cats of other colors

I The network might not be able to predict well if presented with
examples not present in the training data (batch)

I The function learned can only be guaranteed to predict well in
certain areas of feature space

BATCH NORMALIZATION
MOTIVATION

I Let f be the function that maps values from layer l− 1 to layer l
I After updating gradients, values in layer l− 1 may have been shifted to

a region where f does not approximate the true function well
I The effect is referred to as internal covariate shift (although this is not

necessarily the correct term to describe the effect)
I This slows down training

BATCH NORMALIZATION
SOLUTION

Batch Normalization: Insert normalization layers between normal-type layers

I After each layer, normalize output values
I There are parameters to be learned for normalization layers
I Parameters for normalization layers can be easily learnt with

backpropagation

BATCH NORMALIZATION
DEFINITION

https://arxiv.org/abs/1502.03167

(Ioffe & Szegedy, original paper)

I Compute x̂i when
forwarding
training samples

I Learn γ, β during
backpropagation

BATCH NORMALIZATION
EXPLANATION

[From: http://www.aifounded.com/machine-learning/deep-loss]

I Low error regions are larger
I Boundaries are more clearly / sharply defined
I The reshaping of the cost function surface leads to accelerated training

BATCH NORMALIZATION
SUMMARY BENEFITS

I Gradient Vanishing: Batch Normalization prevents gradients
from vanishing

I Internal Covariate Shift: controversial debate whether it helps
(although it is motivated by it)

I Boundaries of error regions are more clearly / sharply defined

I Reshapes cost function surface: accelerated training

LECTURE5: SUMMARY I

I Recurrent neural networks
I See http://www.deeplearningbook.org/, chapter 10
I Long Short Term Memory Networks: see also

https://colah.github.io/posts/
2015-08-Understanding-LSTMs/

I The vanishing gradient problem
I http://neuralnetworksanddeeplearning.com/, Chapter

5
I Batch normalization

I See http://www.deeplearningbook.org/, 8.7.1
I See also http://www.aifounded.com/

machine-learning/deep-loss, for example

http://www.deeplearningbook.org/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
http://www.aifounded.com/machine-learning/deep-loss
http://www.aifounded.com/machine-learning/deep-loss

OUTLOOK

I Deep neural networks
I http://neuralnetworksanddeeplearning.com/, Chapter

6, “Recent progress in image recognition”
I http:

//d2l.ai/chapter_convolutional-modern/index.html,
Chapter 8

http://neuralnetworksanddeeplearning.com/
http://d2l.ai/chapter_convolutional-modern/index.html
http://d2l.ai/chapter_convolutional-modern/index.html

Thanks for your attention

