
Biological Applications of Deep Learning
Lecture 5

Alexander Schönhuth

Bielefeld University
November 9, 2022



CONTENTS TODAY

I Reminder: Convolutional Neural Networks (CNNs)

I Getting CNNs to Work in Practice

I Choosing Hyperparameters

I Convolutional Backpropagation

I Training Variations



Convolutional Neural Networks (CNNs)
Reminder



CONVOLUTIONAL NEURAL NETWORKS

Motivation
I Use that images have a spatial structure

+ Neighboring pixels are more likely to belong to the same
structural elements

I Exploit this to speed up training, and reduce number of
parameters (weights)

Basic Ideas
I Local receptive fields
I Shared weights
I Pooling



Local Receptive Fields and Convolutional Filters



CONVOLUTIONAL NEURAL NETWORKS
LOCAL RECEPTIVE FIELDS

In a convolutional NN,

I Every node in the first
hidden layer is
connected to a
rectangular subregion

I Here: subregion =
square of 5x5=25 input
neurons

Convolutional filter of size 5 x 5

Definition
The region in the input images to which a hidden neuron is
connected is called the local receptive field (LRF) of the hidden neuron.



CONVOLUTIONAL NEURAL NETWORKS
LOCAL RECEPTIVE FIELDS

One receptive field is responsible for one hidden layer

Procedure
I Slide the local receptive field across the entire image

I Stride length: Step size in sliding field (example here: stride = 1)



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS

For generating one hidden layer, identical parameters, together defining one
convolutional filter, are used



NEURAL NETWORKS
CONVOLUTION FILTERS

Filter for recognizing a curve



NEURAL NETWORKS
CONVOLUTION FILTERS



NEURAL NETWORKS
CONVOLUTION FILTERS



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS

Definition
A feature map is a mapping associated with one convolutional filter.

I A complete convolutional layer consists of several hidden
sublayers

I Each sublayer is defined by one feature map



Sharing Weights



CONVOLUTIONAL NEURAL NETWORKS
SHARED WEIGHTS AND BIASES

I Convolution Formula: The activation al+1
jk of the j, k-th hidden

neuron within the layer, using a M×M LRF, is computed as (σ
may represent activation function of choice)

al+1
jk = σ(b +

M∑
l=0

M∑
m=0

wl,mal
j+l,k+m) (1)

I Observation: For each node in the same hidden layer, the same
parameters wl,m, 1 ≤ l,m ≤M are used

I That is, we only need M×M parameters to generate the entire
hidden layer



CONVOLUTIONAL NEURAL NETWORKS
SHARED WEIGHTS AND BIASES

MNIST example
:

I Convolutional layer, 20 feature maps, each of size 5× 5, roughly
requires 20× 5× 5 = 500 weights

I Fully connected network, connecting 784 input neurons with 30
hidden neurons requires 784× 30 = 23 520 weights

I CNN requires roughly 40 times less parameters



Pooling Layers



CONVOLUTIONAL NEURAL NETWORKS
POOLING LAYERS

2× 2 pooling

I Max pooling: Each L× L rectangle is mapped onto the maximum of its
values

I L2 pooling: Each L× L rectangle is mapped to the rooted average of the
squares of the values

I This overall yields a layer that is L× L times smaller
I Usually L = 2 is used



CONVOLUTIONAL NEURAL NETWORKS
COMBINING CONVOLUTIONAL AND POOLING LAYERS

Convolutional layer followed by pooling layer

I Convolutional and pooling layers are used in combination

I Pooling layers usually follow convolutional layers

I Intuition:
I The exact location of the occurrence of a feature is not important
I Pooling helps to handle distortions and rotations



CONVOLUTIONAL NEURAL NETWORKS
ARCHITECTURE

I Great depth at (relatively) little parameters
I Each filter recognizes substructure in image
I Substructures combine to larger structures ...
I ... until image can be classified



Convolutional Neural Networks in Practice



GOAL

Setting up a neural network that correctly classifies 9967 out of 10 000
images; see below for the 33 misclassified ones.

33 misclassified images; correct/predicted classification upper/lower right corner



FULLY CONNECTED NETWORKS

Fully connected neural network with 3 hidden layers

Issue: With fully connected NN’s, we only reach about 98%
accuracy in prediction.

Question: How to get to 99,67% accuracy?



CNNS IN PRACTICE
BASELINE: SIMPLE FULLY CONNECTED NETWORK

I Baseline:
I One hidden layer, 100 neurons
I Output layer, cost function: softmax + log-likelihood

I Training:
I 60 epochs
I Learning rate η = 0.1
I Mini-batch size 10

I Test accuracy: 97.80%



CNNS IN PRACTICE
FIRST CNN: ONE COVOLUTION-POOLING LAYER

Inserting a convolution and max-pooling layer

I Convolutional layer:
I 5× 5 LRFs, stride length 1
I 20 feature maps

I Pooling layer:
I 2× 2 max-pooling

I Accuracy: 98.78% test accuracy



CNNS IN PRACTICE
TWO CONVOLUTION-POOLING LAYERS

I 2 Convolutional layers:
I First convolution: 20 feature maps, each associated with

5× 5 LRFs, stride length 1
I Second convolution: 40 feature maps, each associated with

20× 5× 5 filter, stride length 1

I Pooling layer:
I 2× 2 max-pooling

I Intuition: after the first layer, each image consists of 12× 12
pixels, where each pixel has 20 channels, each of which codes for
a different “color”

I So, each LRF corresponds to 20× 12× 12 tensor

I Spatial strucure is still preserved in second conv-pooling layer,
so employing conv-pooling makes sense

I Accuracy: 99.06% test accuracy



CNNS IN PRACTICE
TRYING ALTERNATIVE ACTIVATION FUNCTIONS

I Tanh activation function:

I Definition:

σ(z) =
1 + tanh(z/2)

2
(2)

I Training is (a bit) faster
I Results are near-identical

I Rectified linear units (ReLUs):
I Activation:

f (z) = max(0, z)

I Learning rate: η = 0.03 (earlier: 0.1)
I L2 regularization at λ = 0.1
I Test accuracy: 99.23%
I Modest gain, but also in other experiments ReLUs have

shown to consistently outperform sigmoid neurons



CNNS IN PRACTICE
EXPANDING THE TRAINING DATA

I Experiment:
I Displace each image by one pixel to above, the right, below,

or to the left
I Each image has 4 extra copies
+ 250 000 images instead of 50 000

I Run the same network with ReLU’s (99.23%)
I Expanding training data yields 99.37%
I P. Simard, D. Steinkraus, J. Platt, “Best Practices for

Convolutional Neural Networks Applied to Visual
Document Analysis”, 2003:
I Very similar architecture
I Training data expansion: rotations, translations, skewing
I “Elastic distortions”: emulating random oscillations of

hand muscles
I Accuracy: 99.6%



CNNS IN PRACTICE
EXTRA/LARGER FULLY CONNECTED LAYER

I Larger fully connected layer:
I 300 neurons + accuracy: 99.46%
I 1000 neurons + accuracy: 99.43%
I Not really convincing

I Extra fully connected layer:
I 2 fully connected layers, each of 100 neurons + accuracy

99.43%
I 2 fully connected layers, each of 300/1000 neurons +

accuracy 99.47/99.48%

I No convincing improvements



CNNS IN PRACTICE
DROPOUT

I 2 fully connected layers each of 1000 neurons

I Dropout (probability = 0.5) applied to neurons in fully connected
layers

I Accuracy: 99.6% (which is substantial improvement)

I Remarks:

I Less epochs (40 instead of 60), because of faster training
I More hidden neurons (1000 instead of 300 or 100) slightly

preferable when using dropout
I No dropout on convolutional layers: those have in-built

resistance to overfitting because of parameter sharing



CNNS IN PRACTICE
ENSEMBLE OF NETWORKS

Ensemble of networks: Idea
I Train several different networks
I For example, employ repeated random initialization while

always using the same architecture
I For classification, take the majority vote of the different

networks
I While each network performs similarly, the majority vote

may yield improvements
I Here: 5 randomly initialized network of the architecture o

described in the slides before
I Accuracy: 99.67%
I That has been our goal!



CNNS IN PRACTICE
ENSEMBLE OF NETWORKS

I Ensemble of 5 randomly initialized networks
I Architecture as described in the slides before
I Accuracy: 99.67% – that has been our goal!

33 misclassified images; correct/predicted classification upper/lower right corner



CNNS IN PRACTICE
REFERENCES

I Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based
learning applied to document recognition”, http://
yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
[Architecture: “LeNet-5”]

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf


CNNS ON MNIST
FURTHER IMPROVEMENTS

I For further improvements on MNIST (and on famous
datasets in general see
http://rodrigob.github.io/are_we_there_yet/
build/classification_datasets_results.html

I Noteworthy:
I See D.C. Ciresan, U. Meier, L.M. Gambardella,

J. Schmidhuber, “Deep Big Simple Neural Nets Excel on
Handwritten Digit Recognition”,
https://arxiv.org/abs/1003.0358

I Fully connected network, without convolutional layers that
achieves 99.65% accuracy.

I Training for that non-convolutional network proceeds very
slow, however.

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
https://arxiv.org/abs/1003.0358


Initializing Weights



WEIGHT INITIALIZATION

I Draw weights from normal distribution N0,σ with mean 0
and standard deviation σ

I Let nin be the number of inputs to the next node:

z =

nin∑
j=1

xjwj + b (3)

I Then σ :=
√

nin, so sample weights from N0,
√

nin

I Explanation: So, input z to next node will (roughly) be
sampled from N0,1



WEIGHT INITIALIZATION
CONSEQUENCE

I Improved initialization leads to faster learning
I See further [“Practical Recommendations for Gradient-Based Training

of Deep Architectures”, Bengio, 2012]
(https://arxiv.org/pdf/1206.5533v2.pdf) for more details.

https://arxiv.org/pdf/1206.5533v2.pdf


Choosing Hyperparameters



CHOOSING HYPERPARAMETERS

Hyperparameters to be determined:
I Number (and composition) of hidden neurons
I In stochastic gradient descent: mini-batch size
I Number of epochs in training
I Learning rate η
I Regularization parameter λ
I If chosen inappropriately

+ random exploration of search space
+ no training will take place



CHOOSING HYPERPARAMETERS
GENERAL STRATEGY

First Challenge
Establish any non-trivial learning, that is, train a network that
classifies better than chance

Strategies

I Turn multi-class problem into binary problem
I Start experimenting with the simplest possible architecture
I Small batch size: monitor changes in classification

accuracy after each batch
I Check that weight decay (see (26), Lecture 3) is constant with

respect to number of training data + affects both η and λ



CHOOSING LEARNING RATE



CHOOSING LEARNING RATE

I Learning rate η too large: random oscillations + parameters “jump
across” optimum, back and forth

I Learning rate η too small: training too slow
I Strategy: Pick η as large as possible, while avoiding random oscillation
I To refine training, decrease η along epochs



CHOOSING REGULARIZATION PARAMETER
SUGGESTIONS

I Start with no regularization (λ = 0)
I Determine the learning rate η, as described above
I Then do λ = 1.0, and compare accuracy with λ = 0
I Depending on the outcome, multiply or divide by ten

(λ = 10.0 or λ = 0.1)
I Once reached the right order of magnitude, finetune



CHOOSING NUMBER OF EPOCHS

I Use validation data; see earlier lectures for training,
validation and test data. Validation is to be used for
determining hyperparameters.

I Stop as soon as validation accuracy, the ratio of correctly
classified validation data samples over the total number of
validation data samples, no longer improves

I “No improvement-in-ten rule”: stop 10 epochs after
classification accuracy starts to stall



CHOOSING NUMBER OF EPOCHS
COST VERSUS VALIDATION ACCURACY

Validation accuracy (here: test accuracy) suggests to do ≈ 280 epochs



CHOOSING NUMBER OF EPOCHS
COST VERSUS VALIDATION ACCURACY

Validation cost (here: test cost) suggests to do ≈ 15 epochs

I Use cost or validation accuracy to determine number of epochs?
I Cost has no meaning, while accuracy does: use accuracy!



CHOOSING MINI-BATCH SIZE
PRELUDE

See “Fully matrix-based approach to backpropagation over a mini-batch” in
http://neuralnetworksanddeeplearning.com/chap2.html:

I Compute the gradient for each training datum separately
I Can be done in parallel

I Average gradients across training data
I Advantage: Computation requires only half the time
I Disadvantage: One training datum versus batch of size m:

w← w− η∇wCx versus w← w− η 1
m

∑
x

∇wCx (4)

Updates per training datum small + slow learning!
I Anything to do about this trade-off?

http://neuralnetworksanddeeplearning.com/chap2.html


CHOOSING MINI-BATCH SIZE
SOLUTION

I Observation: Multiplying η by m yields

w← w− η
∑

x

∇wCx (5)

which looks like summing over all individual examples, so issue of too
little, and too small updates when using mini-batches mended.

Summary

I Mini-batch size too small: One does not exploit the advantages of matrix
computation libraries.

I Mini-batch size too large: Too little updates.
I Overall solution: Find a good trade-off!
I Mini-batch size is fairly independent of other parameters.
I So, first optimize other hyperparameters. Then tune mini-batch size

scaling η according to (5).



CHOOSING HYPERPARAMETERS
SEARCH TECHNIQUES

I Grid Search: Try combinations of hyperparameters, viewing them as
points of a grid, where each dimension refers to one of the
hyperparameters

I See http://www.deeplearningbook.org/ 11.4.3 for details

I Random Search: Randomly pick combinations of hyperparameters,
selected according to reasonable probability distributions

I See http://www.deeplearningbook.org/ 11.4.4 for details

I Model-Based Hyperparameter Optimization: Cast selection of
hyperparameters as optimization problem, and try to pick
hyperparameters that yield minimal error on validation data

I See http://www.deeplearningbook.org/ 11.4.5 for details
I And the following slides for further information on automated

optimization strategies

http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/


CHOOSING HYPERPARAMETERS
GUIDELINES FOR AUTOMATED TECHNIQUES

Automated Techniques

I [“Random search for hyper-parameter optimization”, Bergstra
& Bengio, 2012; https://dl.acm.org/citation.cfm?id=2188395]

I [“Practical Bayesian optimization of machine learning
algorithms”, Snoek, Larochelle & Adams, 2012;
http://papers.nips.cc/paper/

4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf]

https://dl.acm.org/citation.cfm?id=2188395
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf


CHOOSING HYPERPARAMETERS
GUIDELINES FOR AUTOMATED TECHNIQUES

Automated Techniques

I Also possible: “Auto Machine Learning (AutoML)”, methods to
pick optimal selections of hyperparameters, in particular to pick
optimal network architectures.

I See

I https://hackernoon.com/

a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a

I https://ai.googleblog.com/2017/05/using-machine-learning-to-explore.html

if interested

I However: usually very expensive in terms of compute resources

https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a
https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a
https://ai.googleblog.com/2017/05/using-machine-learning-to-explore.html


PRACTICAL RECOMMENDATIONS
FURTHER READING

I “Practical Recommendations for gradient-based training of deep
architectures”, Y. Bengio, 2012, see
https://arxiv.org/abs/1206.5533

I “Efficient BackProp”, Y. LeCun, L. Bottou, G. Orr, K.-R. Müller,
1998, see http:
//yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

I “Neural Networks: Tricks of the Trade”, edited by G. Montavon,
G. Orr, K.-R. Müller, see
https://www.springer.com/de/book/9783642352881
This book contains the above articles, is expensive, but many of
the articles that appear in the book are freely available

https://arxiv.org/abs/1206.5533
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://www.springer.com/de/book/9783642352881


Backpropagation for CNNs



CONVOLUTIONAL BACKPROPAGATION
NOTATION

I In fully connected layers we had [wl
jk is for connecting the k-th

neuron in layer l− 1 with the j-th neuron in layer l]

δl
j =

∂C
∂zl

j
where zl

j =
∑

k

wl
jkal−1

k + bl
j (6)

and al
j = σ(zl

j) (where σ is any activation function)

I For sake of simplicity, assume only one hidden sublayer
I corresponds to one feature map, or one channel
I only one convolutional filter per level of depth required



CONVOLUTIONAL BACKPROPAGATION
NOTATION

I We index neurons using two coordinates, so zl
x,y is the input for

the x, y-th neuron of the hidden layer at level of depth l.

I The M×M filter that connects neurons from level l with neurons
at level l + 1 has weights wl+1

ab , 1 ≤ a, b ≤M

I By applying the convolution operation [and neglecting the exact
indexing in the following]

zl+1
x,y =

∑
a

∑
b

wl+1
ab σ(zl

x−a,y−b) + bl+1
x,y (7)



CONVOLUTIONAL BACKPROPAGATION

I We compute

δl
x,y =

∂C
∂zl

x,y
=

∑
x′

∑
y′

∂C
∂zl+1

x′,y′

∂zl+1
x′,y′

∂zl
x,y

(8)

I Moving on, we get

∂C
∂zl

x,y
=

∑
x′

∑
y′

∂C
∂zl+1

x′,y′

∂zl+1
x′,y′

∂zl
x,y

=
∑

x′

∑
y′
δl+1

x′,y′
∂(
∑

a
∑

b wl+1
ab σ(zl

x′−a,y′−b) + bl+1
x′,y′)

∂zl
x,y

(9)



CONVOLUTIONAL BACKPROPAGATION

I All terms in (9) where x 6= x′ − a or y 6= y′ − b are zero, so

∑
x′

∑
y′
δl+1

x′,y′
∂(
∑

a
∑

b wl+1
ab σ(zl

x′−a,y′−b) + bl+1
x′,y′)

∂zl
x,y

=
∑

x′

∑
y′
δl+1

x′,y′w
l+1
ab σ′(zl

x,y) (10)

I Since now x = x′ − a, y = y′ − b, we have a = x′ − x, b = y′ − y, so∑
x′

∑
y′
δl+1

x′,y′w
l+1
ab σ′(zl

x,y) =
∑

x′

∑
y′
δl+1

x′,y′w
l+1
x′−x,y′−yσ

′(zl
x,y) (11)



CONVOLUTIONAL BACKPROPAGATION

I Summary:
δl

x,y =
∑

x′

∑
y′
δl+1

x′,y′w
l+1
x′−x,y′−yσ

′(zl
x,y) (12)

I A closer look reveals this as a convolution operation in its own
right, applying the filter

σ′(zl
x,y) ·

wMM · · · wM1
...

. . .
...

w1M · · · w11

 (13)

to the l + 1-th layer of gradients δl+1
x′,y′ , for computing values δl

x,y of
the l-th layer of gradients.



CONVOLUTIONAL BACKPROPAGATION

I Convolutional backpropagation: applying filter

σ′(zl
x,y) ·

wMM · · · wM1
...

. . .
...

w1M · · · w11

 (14)

to the l + 1-th layer of gradients δl+1
x′,y′

I + Weights of original filter have been rotated by 180◦

I Further illustrations: https://medium.com/@2017csm1006/

forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e

I Note that notation differs: error E there is cost C here, X there is z
here, and F are the weights w here, and O is a here, and there is no
bias

https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e
https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e


Training Variations



HESSIAN TECHNIQUE

I As usual, let w = (w1,w2, ...) be NN parameters (weights in
particular), and C a cost function.

I By Taylor’s theorem, we can write

C(w + δw) = C(w) +
∑

j

∂C
∂wj

δwj

+
1
2

∑
jk

δwjHjkδwk + ... terms of higher order
(15)

where H is the Hessian matrix, defined by

Hjk =
∂2C

∂wj∂wk
(16)



HESSIAN TECHNIQUE

I Writing (15) as

C(w + δw) = C(w) +∇Cδw +
1
2
δwTHδw + ... (17)

I and discarding all terms of order greater than 2, we obtain

C(w + δw) ≈ C(w) +∇Cδw +
1
2
δwTHδw (18)

I The right hand side of (18) can be minimized by choosing

δw = −H−1∇C (19)



HESSIAN TECHNIQUE

Suggests following algorithm for updating weights:
1. Choose a starting point w
2. Update w to w′ = w− ηH−1∇C

I H and∇C are computed at w

3. Iterate—until appropriate criteria are met



HESSIAN TECHNIQUE
ADVANTAGES AND DISADVANTAGES

I The Hessian technique takes into account how fast the gradient
changes

I Theoretical and empirical evidence: less iterations are needed

I Issue: Size of H is N2 if N is the number of parameters

I + Note that there could be N = 107 many parameters

I Summary:
I Hessian technique often inapplicable because computations are

too expensive
I However, it provided inspiration for other techniques



REGULARIZATION REVISITED
MOTIVATION

Adopted from deeplearningbook.org

I Reminder: L2 regularization shrinks weights along Hessian eigenvectors
I The ball then moves as being pulled by the origin (0, 0) in the landscape

induced by the eigenvectors of the Hessian

deeplearningbook.org


MOMENTUM-BASED GRADIENT DESCENT
MOTIVATION

Black: gradients at each step, zig-zagging through the “valley”
Adopted from deeplearningbook.org

I Motivation: Going back and forth, without making progress, during
(stochastic) gradient descent

I Reasons:
I Poorly conditioned Hessian matrix because of “valleys” (see Figure)
I Variance between batches
I High curvature in general
I Noisy gradients

deeplearningbook.org


MOMENTUM-BASED GRADIENT DESCENT
SOLUTION

Red: averaged gradients, less zig-zagging
Adopted from deeplearningbook.org

I Keep track of earlier gradients and take the average

deeplearningbook.org


MOMENTUM-BASED GRADIENT DESCENT
SOLUTION

Red: averaged gradients, less zig-zagging
Adopted from deeplearningbook.org

I Formally: maintain velocity v in addition to parameters w themselves

I Let α be a momentum hyperparameter. In each iteration, update
I velocity

v← αv− ε∇wC (20)

I and parameters
w← w + v (21)

deeplearningbook.org


MOMENTUM-BASED GRADIENT DESCENT
SOLUTION

Red: averaged gradients, less zig-zagging

I In momentum based gradient descent, w is an exponentially decaying
average over gradients

I Variant: Nesterov’s accelerated gradient technique
I See also http://neuralnetworksanddeeplearning.com/chap3.html

(Nielsen, chapter 3) for more details

http://neuralnetworksanddeeplearning.com/chap3.html


ALTERNATIVE OPTIMIZATION
FURTHER READING

I Alternative methods:
I Conjugate gradient descent
I BFGS (Broyden-Fletcher-Goldfarb-Shanno) method
I L-BFGS (Limited-memory-BFGS) method

I Illustrations / Literature:
I Bengio’s deep learning book: http://www.

deeplearningbook.org/contents/optimization.html
I “Efficient BackProp”, Y. LeCun, L. Bottou, G. Orr, K.-R. Müller,

1998, see http:
//yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

I “On the importance of initialization and momentum in deep
learning”, I. Sutskever, J. Martens, G. Dahl and G. Hinton, 2012,
http:
//www.cs.toronto.edu/˜hinton/absps/momentum.pdf

http://www.deeplearningbook.org/contents/optimization.html
http://www.deeplearningbook.org/contents/optimization.html
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://www.cs.toronto.edu/~hinton/absps/momentum.pdf
http://www.cs.toronto.edu/~hinton/absps/momentum.pdf


LECTURE5: SUMMARY I

I Convolutional Neural Networks
I http://www.deeplearningbook.org/, Chapter 9
I http://neuralnetworksanddeeplearning.com/,

“Deep Learning”
I Choosing hyperparameters

I http://www.deeplearningbook.org/, Chapter 11
(selected parts)

I http://neuralnetworksanddeeplearning.com/,
“Weight initialization” and “How to choose a network’s
hyperparameters?”

http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/


LECTURE 5: SUMMARY II

I Convolutional backpropagation
I For further illustrations, see

https://medium.com/@2017csm1006/

forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e.
I Note that there notation differs (error E there is cost C here, X

there is z here, and F are the weights w here, and O is a here, and
there is no bias)

I Training variations
I http://www.deeplearningbook.org/, Chapter 8

(corresponding parts)
I http://neuralnetworksanddeeplearning.com/, Chapter

3, “Variations on stochastic gradient descent”

https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e
https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/


OUTLOOK

I The vanishing gradient problem
I http://neuralnetworksanddeeplearning.com/, Chapter

5

I Batch normalization

I See http://www.deeplearningbook.org/, 8.7.1
I See also http://www.aifounded.com/

machine-learning/deep-loss, for example

I Recurrent neural networks

I Deep neural networks

http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/
http://www.aifounded.com/machine-learning/deep-loss
http://www.aifounded.com/machine-learning/deep-loss


Thanks for your attention


