Biological Applications of Deep Learning Lecture 5

Alexander Schönhuth

Bielefeld University November 9, 2022

CONTENTS TODAY

- Reminder: Convolutional Neural Networks (CNNs)
- Getting CNNs to Work in Practice
- Choosing Hyperparameters
- Convolutional Backpropagation
- Training Variations

Convolutional Neural Networks (CNNs) Reminder

Motivation

- ► Use that images have a spatial structure
 - Neighboring pixels are more likely to belong to the same structural elements
- Exploit this to speed up training, and reduce number of parameters (weights)

Basic Ideas

- ► Local receptive fields
- ► Shared weights
- Pooling

Local Receptive Fields and Convolutional Filters

LOCAL RECEPTIVE FIELDS

In a convolutional NN,

- Every node in the first hidden layer is connected to a rectangular subregion
- Here: subregion = square of 5x5=25 input neurons

Convolutional filter of size 5 x 5

Definition

The region in the input images to which a hidden neuron is connected is called the *local receptive field (LRF)* of the hidden neuron.

LOCAL RECEPTIVE FIELDS

input neurons

000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

first hidden layer

o												

input neurons

000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
0 00000 000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	

first hidden layer

CONVOLUTIONAL FILTERS

For generating one hidden layer, identical parameters, together defining one convolutional filter, are used

NEURAL NETWORKS

CONVOLUTION FILTERS

Pixel representation of filter

Visualization of a curve detector filter

Filter for recognizing a curve

NEURAL NETWORKS

CONVOLUTION FILTERS

Visualization of the filter on the image

NEURAL NETWORKS

CONVOLUTION FILTERS

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30) = 6600 (A large number!)

CONVOLUTIONAL FILTERS

Definition A *feature map* is a mapping associated with one convolutional filter.

- A complete convolutional layer consists of several hidden sublayers
- Each sublayer is defined by one feature map
- UNIVERSITÄ BIELEFELD

Sharing Weights

SHARED WEIGHTS AND BIASES

 Convolution Formula: The activation a^{l+1}_{jk} of the j, k-th hidden neuron within the layer, using a M × M LRF, is computed as (σ may represent activation function of choice)

$$a_{jk}^{l+1} = \sigma(b + \sum_{l=0}^{M} \sum_{m=0}^{M} w_{l,m} a_{j+l,k+m}^{l})$$
(1)

- ► *Observation:* For each node in the same hidden layer, the same parameters $w_{l,m}$, $1 \le l, m \le M$ are used
- ► That is, we only need *M* × *M* parameters to generate the entire hidden layer

SHARED WEIGHTS AND BIASES

MNIST example

- Convolutional layer, 20 feature maps, each of size 5 × 5, roughly requires 20 × 5 × 5 = 500 weights
- ► Fully connected network, connecting 784 input neurons with 30 hidden neurons requires 784 × 30 = 23 520 weights
- CNN requires roughly 40 times less parameters

:

Pooling Layers

POOLING LAYERS

hidden neurons (output from feature map)

 2×2 pooling

- Max pooling: Each L × L rectangle is mapped onto the maximum of its values
- ► *L2 pooling*: Each *L* × *L* rectangle is mapped to the rooted average of the squares of the values
- This overall yields a layer that is $L \times L$ times smaller
- UNIVERSITÄUsually L = 2 is used

CONVOLUTIONAL NEURAL NETWORKS Combining Convolutional and Pooling Layers

Convolutional layer followed by pooling layer

- Convolutional and pooling layers are used in combination
- Pooling layers usually follow convolutional layers
- ► Intuition:
 - ► The exact location of the occurrence of a feature is not important
 - Pooling helps to handle distortions and rotations

ARCHITECTURE

- Great depth at (relatively) little parameters
- Each filter recognizes substructure in image
- Substructures combine to larger structures ...
- ▶ ... until image can be classified

Convolutional Neural Networks in Practice

GOAL

Setting up a neural network that correctly classifies 9967 out of 10000 images; see below for the 33 misclassified ones.

33 misclassified images; correct/predicted classification upper/lower right corner

FULLY CONNECTED NETWORKS

Fully connected neural network with 3 hidden layers

Issue: With fully connected NN's, we only reach about 98% accuracy in prediction.

Question: How to get to 99,67% accuracy?

BASELINE: SIMPLE FULLY CONNECTED NETWORK

► Baseline:

One hidden layer, 100 neurons

- Output layer, cost function: softmax + log-likelihood
- ► Training:
 - ► 60 epochs
 - Learning rate $\eta = 0.1$
 - Mini-batch size 10
- ► Test accuracy: 97.80%

FIRST CNN: ONE COVOLUTION-POOLING LAYER

Inserting a convolution and max-pooling layer

- ► Convolutional layer:
 - 5×5 LRFs, stride length 1
 - 20 feature maps
- ► Pooling layer:
 - ► 2 × 2 max-pooling

univeRitäAccuracy: 98.78% test accuracy

TWO CONVOLUTION-POOLING LAYERS

- ► 2 Convolutional layers:
 - ► *First convolution*: 20 feature maps, each associated with 5 × 5 LRFs, stride length 1
 - Second convolution: 40 feature maps, each associated with $20 \times 5 \times 5$ filter, stride length 1
- ► Pooling layer:
 - ► 2 × 2 max-pooling

- So, each LRF corresponds to $20 \times 12 \times 12$ tensor
- Spatial strucure is still preserved in second conv-pooling layer, so employing conv-pooling makes sense

UNIVERSITE Accuracy: 99.06% test accuracy

TRYING ALTERNATIVE ACTIVATION FUNCTIONS

- ► Tanh activation function:
 - ► Definition:

$$\sigma(z) = \frac{1 + \tanh(z/2)}{2} \tag{2}$$

- Training is (a bit) faster
- Results are near-identical
- ► *Rectified linear units (ReLUs):*
 - ► Activation:

$$f(z) = \max(0, z)$$

- Learning rate: $\eta = 0.03$ (earlier: 0.1)
- L2 regularization at $\lambda = 0.1$
- ► Test accuracy: 99.23%
- Modest gain, but also in other experiments ReLUs have shown to consistently outperform sigmoid neurons

EXPANDING THE TRAINING DATA

- ► *Experiment*:
 - Displace each image by one pixel to above, the right, below, or to the left
 - ► Each image has 4 extra copies
 - 250 000 images instead of 50 000
- ▶ Run the same network with ReLU's (99.23%)
- ► Expanding training data yields 99.37%
- P. Simard, D. Steinkraus, J. Platt, "Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis", 2003:
 - ► Very similar architecture
 - Training data expansion: rotations, translations, skewing
 - "Elastic distortions": emulating random oscillations of hand muscles
 - ► Accuracy: 99.6%

EXTRA/LARGER FULLY CONNECTED LAYER

► Larger fully connected layer:

- ► 300 neurons 🖙 accuracy: 99.46%
- ▶ 1000 neurons 🖙 accuracy: 99.43%
- Not really convincing
- ► Extra fully connected layer:
 - ► 2 fully connected layers, each of 100 neurons S accuracy 99.43%
 - ► 2 fully connected layers, each of 300/1000 neurons INT accuracy 99.47/99.48%
- No convincing improvements

DROPOUT

- ► 2 fully connected layers each of 1000 neurons
- Dropout (probability = 0.5) applied to neurons in fully connected layers
- Accuracy: 99.6% (which is substantial improvement)
- ► Remarks:
 - ► Less epochs (40 instead of 60), because of faster training
 - More hidden neurons (1000 instead of 300 or 100) slightly preferable when using dropout
 - No dropout on convolutional layers: those have in-built resistance to overfitting because of parameter sharing

ENSEMBLE OF NETWORKS

Ensemble of networks: Idea

- Train several different networks
- For example, employ repeated random initialization while always using the same architecture
- For classification, take the majority vote of the different networks
- While each network performs similarly, the majority vote may yield improvements
- Here: 5 randomly initialized network of the architecture o described in the slides before
- ► Accuracy: 99.67%
- ► That has been our goal!

ENSEMBLE OF NETWORKS

- Ensemble of 5 randomly initialized networks
- Architecture as described in the slides before
- ► Accuracy: 99.67% that has been our goal!

23 misclassified images; correct/predicted classification upper/lower right corner BELEFELD

References

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition", http:// yann.lecun.com/exdb/publis/pdf/lecun-98.pdf [Architecture: "LeNet-5"]

CNNs on MNIST

FURTHER IMPROVEMENTS

For further improvements on MNIST (and on famous datasets in general see http://rodrigob.github.io/are_we_there_yet/ build/classification_datasets_results.html

- ► Noteworthy:
 - See D.C. Ciresan, U. Meier, L.M. Gambardella, J. Schmidhuber, "Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition", https://arxiv.org/abs/1003.0358
 - Fully connected network, without convolutional layers that achieves 99.65% accuracy.
 - Training for that non-convolutional network proceeds very slow, however.

Initializing Weights

WEIGHT INITIALIZATION

- Draw weights from normal distribution $\mathcal{N}_{0,\sigma}$ with mean 0 and standard deviation σ
- Let *n*_{in} be the number of inputs to the next node:

$$z = \sum_{j=1}^{n_{\rm in}} x_j w_j + b \tag{3}$$

- Then $\sigma := \sqrt{n_{in}}$, so sample weights from $\mathcal{N}_{0,\sqrt{n_{in}}}$
- ► *Explanation*: So, input *z* to next node will (roughly) be sampled from $\mathcal{N}_{0,1}$

WEIGHT INITIALIZATION

CONSEQUENCE

- Improved initialization leads to faster learning
- See further ["Practical Recommendations for Gradient-Based Training of Deep Architectures", Bengio, 2012]

(https://arxiv.org/pdf/1206.5533v2.pdf) for more details.
Choosing Hyperparameters

Hyperparameters to be determined:

- Number (and composition) of hidden neurons
- ► In stochastic gradient descent: mini-batch size
- Number of epochs in training
- Learning rate η
- Regularization parameter λ
- If chosen inappropriately
 random exploration of search space
 no training will take place

GENERAL STRATEGY

First Challenge

Establish *any* non-trivial learning, that is, train a network that classifies better than chance

Strategies

- Turn multi-class problem into binary problem
- ► Start experimenting with the simplest possible architecture
- Small batch size: monitor changes in classification accuracy after each batch
- Check that *weight decay* (see (26), Lecture 3) is constant with respect to number of training data s affects both η and λ

CHOOSING LEARNING RATE

CHOOSING LEARNING RATE

- Learning rate η too large: random oscillations reparameters "jump across" optimum, back and forth
- Learning rate η too small: training too slow
- *Strategy*: Pick η as large as possible, while avoiding random oscillation
- UNIVERSITATO refine training, decrease η along epochs BELEFELD

CHOOSING REGULARIZATION PARAMETER

SUGGESTIONS

- Start with no regularization ($\lambda = 0$)
- Determine the learning rate η , as described above
- Then do $\lambda = 1.0$, and compare accuracy with $\lambda = 0$
- Depending on the outcome, multiply or divide by ten (λ = 10.0 or λ = 0.1)
- Once reached the right order of magnitude, finetune

CHOOSING NUMBER OF EPOCHS

- Use validation data; see earlier lectures for training, validation and test data. Validation is to be used for determining hyperparameters.
- Stop as soon as validation accuracy, the ratio of correctly classified validation data samples over the total number of validation data samples, no longer improves
- "No improvement-in-ten rule": stop 10 epochs after classification accuracy starts to stall

CHOOSING NUMBER OF EPOCHS

COST VERSUS VALIDATION ACCURACY

Validation accuracy (here: test accuracy) suggests to do \approx 280 epochs

CHOOSING NUMBER OF EPOCHS

COST VERSUS VALIDATION ACCURACY

Validation cost (here: test cost) suggests to do \approx 15 epochs

► Use cost or validation accuracy to determine number of epochs?

CHOOSING MINI-BATCH SIZE

Prelude

See "Fully matrix-based approach to backpropagation over a mini-batch" in http://neuralnetworksanddeeplearning.com/chap2.html:

- Compute the gradient for each training datum separately
 - Can be done in parallel
- Average gradients across training data
- Advantage: Computation requires only half the time
- ► *Disadvantage:* One training datum versus batch of size *m*:

$$w \leftarrow w - \eta \nabla_w C_x$$
 versus $w \leftarrow w - \eta \frac{1}{m} \sum_x \nabla_w C_x$ (4)

Updates per training datum small 🖙 slow learning!

Anything to do about this trade-off?

CHOOSING MINI-BATCH SIZE

SOLUTION

• *Observation*: Multiplying η by *m* yields

$$w \leftarrow w - \eta \sum_{x} \nabla_{w} C_{x} \tag{5}$$

which looks like summing over all individual examples, so issue of too little, and too small updates when using mini-batches mended.

Summary

- Mini-batch size too small: One does not exploit the advantages of matrix computation libraries.
- ► *Mini-batch size too large*: Too little updates.
- Overall solution: Find a good trade-off!
- Mini-batch size is fairly independent of other parameters.
- So, first optimize other hyperparameters. Then tune mini-batch size scaling η according to (5).

UNIVERSITÄ BIELEFELD

SEARCH TECHNIQUES

- Grid Search: Try combinations of hyperparameters, viewing them as points of a grid, where each dimension refers to one of the hyperparameters
 - See http://www.deeplearningbook.org/11.4.3 for details
- *Random Search*: Randomly pick combinations of hyperparameters, selected according to reasonable probability distributions
 - See http://www.deeplearningbook.org/ 11.4.4 for details
- Model-Based Hyperparameter Optimization: Cast selection of hyperparameters as optimization problem, and try to pick hyperparameters that yield minimal error on validation data
 - See http://www.deeplearningbook.org/ 11.4.5 for details
 - And the following slides for further information on automated optimization strategies

GUIDELINES FOR AUTOMATED TECHNIQUES

Automated Techniques

- ["Random search for hyper-parameter optimization", Bergstra & Bengio, 2012; https://dl.acm.org/citation.cfm?id=2188395]
- ["Practical Bayesian optimization of machine learning algorithms", Snoek, Larochelle & Adams, 2012;

http://papers.nips.cc/paper/

4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf

GUIDELINES FOR AUTOMATED TECHNIQUES

Automated Techniques

 Also possible: "Auto Machine Learning (AutoML)", methods to pick optimal selections of hyperparameters, in particular to pick optimal network architectures.

https://hackernoon.com/

a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a

https://ai.googleblog.com/2017/05/using-machine-learning-to-explore.html

if interested

► *However*: usually very expensive in terms of compute resources

PRACTICAL RECOMMENDATIONS

FURTHER READING

- "Practical Recommendations for gradient-based training of deep architectures", Y. Bengio, 2012, see https://arxiv.org/abs/1206.5533
- "Efficient BackProp", Y. LeCun, L. Bottou, G. Orr, K.-R. Müller, 1998, see http: //yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
- "Neural Networks: Tricks of the Trade", edited by G. Montavon, G. Orr, K.-R. Müller, see https://www.springer.com/de/book/9783642352881 This book contains the above articles, is expensive, but many of the articles that appear in the book are freely available

Backpropagation for CNNs

CONVOLUTIONAL BACKPROPAGATION NOTATION

► In fully connected layers we had [w^l_{jk} is for connecting the *k*-th neuron in layer *l* − 1 with the *j*-th neuron in layer *l*]

$$\delta_j^l = \frac{\partial C}{\partial z_j^l} \quad \text{where} \quad z_j^l = \sum_k w_{jk}^l a_k^{l-1} + b_j^l \tag{6}$$

and $a_j^l = \sigma(z_j^l)$ (where σ is any activation function)

- ► For sake of simplicity, assume only one hidden sublayer
 - corresponds to one feature map, or one channel
 - only one convolutional filter per level of depth required

CONVOLUTIONAL BACKPROPAGATION NOTATION

- We index neurons using two coordinates, so z^l_{x,y} is the input for the x, y-th neuron of the hidden layer at level of depth l.
- ► The *M* × *M* filter that connects neurons from level *l* with neurons at level *l* + 1 has weights w^{l+1}_{ab}, 1 ≤ *a*, *b* ≤ *M*
- By applying the convolution operation [and neglecting the exact indexing in the following]

$$z_{x,y}^{l+1} = \sum_{a} \sum_{b} w_{ab}^{l+1} \sigma(z_{x-a,y-b}^{l}) + b_{x,y}^{l+1}$$
(7)

► We compute

$$\delta_{x,y}^{l} = \frac{\partial C}{\partial z_{x,y}^{l}} = \sum_{x'} \sum_{y'} \frac{\partial C}{\partial z_{x',y'}^{l+1}} \frac{\partial z_{x',y'}^{l+1}}{\partial z_{x,y}^{l}}$$
(8)

Moving on, we get

$$\frac{\partial C}{\partial z_{x,y}^{l}} = \sum_{x'} \sum_{y'} \frac{\partial C}{\partial z_{x',y'}^{l+1}} \frac{\partial z_{x',y'}^{l+1}}{\partial z_{x,y}^{l}} = \sum_{x'} \sum_{y'} \delta_{x',y'}^{l+1} \frac{\partial (\sum_{a} \sum_{b} w_{ab}^{l+1} \sigma(z_{x'-a,y'-b}^{l}) + b_{x',y'}^{l+1})}{\partial z_{x,y}^{l}}$$
(9)

• All terms in (9) where $x \neq x' - a$ or $y \neq y' - b$ are zero, so

$$\sum_{x'} \sum_{y'} \delta_{x',y'}^{l+1} \frac{\partial (\sum_{a} \sum_{b} w_{ab}^{l+1} \sigma(z_{x'-a,y'-b}^{l}) + b_{x',y'}^{l+1})}{\partial z_{x,y}^{l}} = \sum_{x'} \sum_{y'} \delta_{x',y'}^{l+1} w_{ab}^{l+1} \sigma'(z_{x,y}^{l}) \quad (10)$$

• Since now x = x' - a, y = y' - b, we have a = x' - x, b = y' - y, so

$$\sum_{x'} \sum_{y'} \delta_{x',y'}^{l+1} w_{ab}^{l+1} \sigma'(z_{x,y}^l) = \sum_{x'} \sum_{y'} \delta_{x',y'}^{l+1} w_{x'-x,y'-y}^{l+1} \sigma'(z_{x,y}^l)$$
(11)

► Summary:

$$\delta_{x,y}^{l} = \sum_{x'} \sum_{y'} \delta_{x',y'}^{l+1} w_{x'-x,y'-y}^{l+1} \sigma'(z_{x,y}^{l})$$
(12)

 A closer look reveals this as a convolution operation in its own right, applying the filter

$$\sigma'(z_{x,y}^l) \cdot \begin{pmatrix} w_{MM} & \cdots & w_{M1} \\ \vdots & \ddots & \vdots \\ w_{1M} & \cdots & w_{11} \end{pmatrix}$$
(13)

to the *l* + 1-*th* layer of gradients $\delta_{x',y'}^{l+1}$, for computing values $\delta_{x,y}^{l}$ of the *l*-th layer of gradients.

► Convolutional backpropagation: applying filter

$$\sigma'(z_{x,y}^l) \cdot \begin{pmatrix} w_{MM} & \cdots & w_{M1} \\ \vdots & \ddots & \vdots \\ w_{1M} & \cdots & w_{11} \end{pmatrix}$$
(14)

to the l + 1-th layer of gradients $\delta_{x',y'}^{l+1}$

▶ 🖙 Weights of original filter have been rotated by 180°

► Further illustrations: https://medium.com/@2017csm1006/

forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e

▶ Note that notation differs: error *E* there is cost *C* here, *X* there is *z* here, and *F* are the weights *w* here, and *O* is *a* here, and there is no bias

Training Variations

- ► As usual, let w = (w₁, w₂, ...) be NN parameters (weights in particular), and C a cost function.
- ► By *Taylor's theorem*, we can write

$$C(w + \delta w) = C(w) + \sum_{j} \frac{\partial C}{\partial w_{j}} \delta w_{j} + \frac{1}{2} \sum_{jk} \delta w_{j} H_{jk} \delta w_{k} + \dots \text{ terms of higher order}$$
(15)

where *H* is the *Hessian matrix*, defined by

$$H_{jk} = \frac{\partial^2 C}{\partial w_j \partial w_k} \tag{16}$$

► Writing (15) as

$$C(w + \delta w) = C(w) + \nabla C \delta w + \frac{1}{2} \delta w^T H \delta w + \dots$$
(17)

$$C(w + \delta w) \approx C(w) + \nabla C \delta w + \frac{1}{2} \delta w^T H \delta w$$
 (18)

► The right hand side of (18) can be minimized by choosing

$$\delta w = -H^{-1}\nabla C \tag{19}$$

Suggests following algorithm for updating weights:

- 1. Choose a starting point **w**
- 2. Update **w** to $\mathbf{w}' = w \eta H^{-1} \nabla C$
 - *H* and ∇C are computed at **w**
- 3. Iterate—until appropriate criteria are met

ADVANTAGES AND DISADVANTAGES

- The Hessian technique takes into account *how fast the gradient changes*
- ► Theoretical and empirical evidence: less iterations are needed
- *Issue:* Size of *H* is N^2 if *N* is the number of parameters
- IN Note that there could be $N = 10^7$ many parameters
- ► Summary:
 - Hessian technique often inapplicable because computations are too expensive
 - However, it provided inspiration for other techniques

REGULARIZATION REVISITED

MOTIVATION

Adopted from deeplearningbook.org

- ▶ *Reminder*: L2 regularization shrinks weights along Hessian eigenvectors
- ► The ball then moves as being pulled by the origin (0,0) in the landscape induced by the eigenvectors of the Hessian

Momentum-based Gradient Descent

MOTIVATION

Black: gradients at each step, zig-zagging through the "valley"

Adopted from deeplearningbook.org

- Motivation: Going back and forth, without making progress, during (stochastic) gradient descent
- ► Reasons:
 - Poorly conditioned Hessian matrix because of "valleys" (see Figure)
 - Variance between batches
 - High curvature in general
 - Noisy gradients

Momentum-based Gradient Descent

SOLUTION

Red: averaged gradients, less zig-zagging

 $Adopted \ from \ {\tt deeplearningbook.org}$

Keep track of earlier gradients and take the average

MOMENTUM-BASED GRADIENT DESCENT

SOLUTION

Red: averaged gradients, less zig-zagging

Adopted from deeplearningbook.org

- ► Formally: maintain velocity **v** in addition to parameters **w** themselves
- Let α be a *momentum hyperparameter*. In each iteration, update
 - velocity

$$\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \nabla_{\mathbf{w}} C \tag{20}$$

and parameters

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{v}$$
 (21)

MOMENTUM-BASED GRADIENT DESCENT

SOLUTION

Red: averaged gradients, less zig-zagging

- ► In momentum based gradient descent, **w** is an exponentially decaying average over gradients
- Variant: Nesterov's accelerated gradient technique
- See also http://neuralnetworksanddeeplearning.com/chap3.html (Nielsen, chapter 3) for more details

ALTERNATIVE OPTIMIZATION

FURTHER READING

► Alternative methods:

- ► Conjugate gradient descent
- ► BFGS (Broyden-Fletcher-Goldfarb-Shanno) method
- ► L-BFGS (Limited-memory-BFGS) method

► Illustrations / Literature:

- Bengio's deep learning book: http://www. deeplearningbook.org/contents/optimization.html
- "Efficient BackProp", Y. LeCun, L. Bottou, G. Orr, K.-R. Müller, 1998, see http:
 - //yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
- "On the importance of initialization and momentum in deep learning", I. Sutskever, J. Martens, G. Dahl and G. Hinton, 2012, http:

//www.cs.toronto.edu/~hinton/absps/momentum.pdf

LECTURE5: SUMMARY I

Convolutional Neural Networks

- http://www.deeplearningbook.org/, Chapter 9
- http://neuralnetworksanddeeplearning.com/, "Deep Learning"

Choosing hyperparameters

- http://www.deeplearningbook.org/, Chapter 11 (selected parts)
- http://neuralnetworksanddeeplearning.com/, "Weight initialization" and "How to choose a network's hyperparameters?"

LECTURE 5: SUMMARY II

Convolutional backpropagation

- For further illustrations, see https://medium.com/@2017csm1006/ forward-and-backpropagation-in-convolutional-neural-network-
- Note that there notation differs (error *E* there is cost *C* here, *X* there is *z* here, and *F* are the weights *w* here, and *O* is *a* here, and there is no bias)

Training variations

- http://www.deeplearningbook.org/, Chapter 8 (corresponding parts)
- http://neuralnetworksanddeeplearning.com/, Chapter 3, "Variations on stochastic gradient descent"

Outlook

The vanishing gradient problem

http://neuralnetworksanddeeplearning.com/, Chapter 5

Batch normalization

- See http://www.deeplearningbook.org/, 8.7.1
- See also http://www.aifounded.com/ machine-learning/deep-loss, for example
- Recurrent neural networks
- Deep neural networks

Thanks for your attention

