
Biological Applications of Deep Learning
Lecture 4

Alexander Schönhuth

Bielefeld University
November 2, 2022



CONTENTS TODAY

I Reminder: Regularization

I Convolutional Neural Networks



Reminder: Dropout, Regularization



REGULARIZATION REVISITED
L1 VERSUS L2 REGULARIZATION

I In L1 regularization, weights shrink by a constant amount.
I In L2 regularization, weights shrink by an amount

proportionally to w.
I L1 regularization tends to bring forward a small number of

high-importance connections.
I L2 regularization tends to keep all weights small.



REGULARIZATION REVISITED
DROPOUT

Full network, before dropout



REGULARIZATION REVISITED
DROPOUT

Network after having dropped half of the hidden nodes



REGULARIZATION REVISITED
DROPOUT

Procedure
1. Choose a mini batch of training data of size m̂
2. Randomly delete half of the hidden nodes, while keeping

all input and output nodes
3. Train the resulting network using the mini batch; update

all weights and biases
4. If validation accuracy not yet satisfying, return to 1.
5. After each epoch, decrease each weight by a factor of 1

2



DROPOUT
EXPLANATIONS

I Dropout can be perceived as averaging over several
smaller networks, where averaging over several models is
generally helpful to prevent overfitting

I Dropout can be perceived as projecting points in
parameter space onto the linear subspace defined by only
half of the elementary basis vectors.

I Combining optima in subspaces yields a selection of
parameters that are not optimal, but nearby an optimum
+ experience shows that this prevents overfitting

I Dropout prevents “co-adaptation of neurons”



L1/2 REGULARIZATION, DROPOUT, EARLY STOPPING
TAKE-HOME MESSAGE

Try to find a reasonable point near the very optimum
I L1/2 regularization: shrink or eliminate weights that don’t

change much
I Dropout: Randomly project points to linear subspaces, and

optimize there, and then average out
I Early stopping: Stop before reaching the optimum



REGULARIZATION REVISITED
ARTIFICIAL EXPANSION OF TRAINING DATA

More training data improves test accuracy



REGULARIZATION REVISITED
ARTIFICIAL EXPANSION OF TRAINING DATA

NN versus SVM on same training data

I Sometimes better training data delivers substantial improvements
I Always good to aim for methodical improvements, but:
I Don’t miss “easy wins” by generating more and/or better training data



REGULARIZATION REVISITED
GENERATING ARTIFICIAL TRAINING DATA

Rotating 5 by 15 degrees to the left yields new training datum

Other Techniques

I Translating, skewing

I “Elastic distortions”

I For more details, see [Simard, Steinkraus & Platt, 2003]
https://ieeexplore.ieee.org/document/1227801

https://ieeexplore.ieee.org/document/1227801


Convolutional Neural Networks (CNNs)



Motivation



GOAL

Setting up a neural network that correctly classifies 9967 out of 10 000
images; see below for the 33 misclassified ones.

33 misclassified images; correct/predicted classification upper/lower right corner



FULLY CONNECTED NETWORKS

Fully connected neural network with 3 hidden layers

Issue: With fully connected NN’s, we only reach about 98%
accuracy in prediction.

Question: How to get to 99,67% accuracy?



CONVOLUTIONAL NEURAL NETWORKS

Motivation
I Use that images have a spatial structure

+ Neighboring pixels are more likely to belong to the same
structural elements

I Exploit this to speed up training, and reduce number of
parameters (weights)

Basic Ideas
I Local receptive fields
I Shared weights
I Pooling



Local Receptive Fields and Convolutional Filters



CONVOLUTIONAL NEURAL NETWORKS
LOCAL RECEPTIVE FIELDS

One image are 28 x 28 = 784 pixels

In a fully connected network

I Every node of the first hidden
layer is connected to every
input neuron (a.k.a pixel)

I Every node of the second
layer is connected to every
neuron in the first hidden
layer



CONVOLUTIONAL NEURAL NETWORKS
LOCAL RECEPTIVE FIELDS

In a convolutional NN,

I Every node in the first
hidden layer is
connected to a
rectangular subregion

I Here: subregion =
square of 5x5=25 input
neurons

Convolutional filter of size 5 x 5

Definition
The region in the input images to which a hidden neuron is
connected is called the local receptive field (LRF) of the hidden neuron.



CONVOLUTIONAL NEURAL NETWORKS
LOCAL RECEPTIVE FIELDS

One receptive field is responsible for one hidden layer

Procedure
I Slide the local receptive field across the entire image

I Stride length: Step size in sliding field (example here: stride = 1)



CONVOLUTIONAL NEURAL NETWORKS
COMPUTING HIDDEN LAYERS

I One hidden layer is generated by one pass of the LRF

I Several hidden layers will be generated by several passes of the
LRF

I The activation al+1
jk of the j, k-th hidden neuron within the layer,

using a M × M LRF, is computed as (σ may represent activation
function of choice)

a(l+1)
jk = σ(b +

M∑
l=0

M∑
m=0

wl,mal
j+l,k+m) (1)



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS

For generating one hidden layer, identical parameters, together defining one
convolutional filter, are used



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS

For generating one hidden layer, identical parameters, together defining one
convolutional filter, are used



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS

Definition
A feature map is a mapping associated with one convolutional filter.

I A complete convolutional layer consists of several hidden
sublayers

I Each sublayer is defined by one feature map



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL FILTERS REAL WORLD EXAMPLE

MNIST example, 20 different filters

I The darker the more positive, the whiter the more negative
I In reality, convolutional filters are hard to interpret
I Literature: M.D. Zeiler, R. Fergus, “Visualizing and Understanding

Convolutional Networks”, https://arxiv.org/abs/1311.2901

https://arxiv.org/abs/1311.2901


Sharing Weights



CONVOLUTIONAL NEURAL NETWORKS
SHARED WEIGHTS AND BIASES

I Reminder: The activation al+1
jk of the j, k-th hidden neuron within

the layer, using a M × M LRF, is computed as (σ may represent
activation function of choice)

al+1
jk = σ(b +

M∑
l=0

M∑
m=0

wl,mal
j+l,k+m) (2)

I Observation: For each node in the same hidden layer, the same
parameters wl,m, 1 ≤ l,m ≤ M are used

I That is, we only need M × M parameters to generate the entire
hidden layer



CONVOLUTIONAL NEURAL NETWORKS
SHARED WEIGHTS AND BIASES

MNIST example
:

I Convolutional layer, 20 feature maps, each of size 5 × 5, roughly
requires 20 × 5 × 5 = 500 weights

I Fully connected network, connecting 784 input neurons with 30
hidden neurons requires 784 × 30 = 23 520 weights

I CNN requires roughly 40 times less parameters



CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL LAYER

I Remark: Sometimes it helps to think of a convolutional
layer, as a new type of image, where each sublayer refers
to a different color.

I Note that colored pictures of size N × N come in 3 input
layers of size N × N, each of which refers to one of the 3
base colors red, green and blue.

I So, when using M × M-filters, one applies a 3 × M × M
sized tensor (and not an M × M-sized matrix) to the input
layer

I This principle can later be repeated: hence the name tensor
flow.



Pooling Layers



CONVOLUTIONAL NEURAL NETWORKS
POOLING LAYERS

I In addition to convolutional layers, CNN’s make use of
pooling layers.

I Pooling layers generate condensed feature maps: it takes a
rectangle of neurons, and summarizes their values into one
value

I This generates a considerably smaller layer



CONVOLUTIONAL NEURAL NETWORKS
POOLING LAYERS

2 × 2 pooling

I Max pooling: Each L × L rectangle is mapped onto the maximum of its
values

I L2 pooling: Each L × L rectangle is mapped to the rooted average of the
squares of the values

I This overall yields a layer that is L × L times smaller
I Usually L = 2 is used



CONVOLUTIONAL NEURAL NETWORKS
COMBINING CONVOLUTIONAL AND POOLING LAYERS

Convolutional layer followed by pooling layer

I Convolutional and pooling layers are used in combination

I Pooling layers usually follow convolutional layers

I Intuition:
I The exact location of the occurrence of a feature is not important
I Pooling helps to handle distortions and rotations



CONVOLUTIONAL NEURAL NETWORKS
A COMPLETE CNN

Convolution followed by pooling followed by fully connected output layer

I 10 output nodes, one for each digit

I Each output node is connected to every node of the pooling layer

I Training: Stochastic gradient descent plus backpropagation



Convolutional Neural Networks in Practice



CNNS IN PRACTICE
BASELINE: SIMPLE FULLY CONNECTED NETWORK

I Baseline:
I One hidden layer, 100 neurons
I Output layer, cost function: softmax + log-likelihood

I Training:
I 60 epochs
I Learning rate η = 0.1
I Mini-batch size 10

I Test accuracy: 97.80%



CNNS IN PRACTICE
FIRST CNN: ONE COVOLUTION-POOLING LAYER

Inserting a convolution and max-pooling layer

I Convolutional layer:
I 5 × 5 LRFs, stride length 1
I 20 feature maps

I Pooling layer:
I 2 × 2 max-pooling

I Accuracy: 98.78% test accuracy



CNNS IN PRACTICE
TWO CONVOLUTION-POOLING LAYERS

I 2 Convolutional layers:
I First convolution: 20 feature maps, each associated with

5 × 5 LRFs, stride length 1
I Second convolution: 40 feature maps, each associated with

20 × 5 × 5 filter, stride length 1

I Pooling layer:
I 2 × 2 max-pooling

I Intuition: after the first layer, each image consists of 12 × 12
pixels, where each pixel has 20 channels, each of which codes for
a different “color”

I So, each LRF is a 20 × 12 × 12 tensor

I Spatial strucure is still preserved in second conv-pooling layer,
so employing conv-pooling makes sense

I Accuracy: 99.06% test accuracy



CNNS IN PRACTICE
TRYING ALTERNATIVE ACTIVATION FUNCTIONS

I Tanh activation function:

I Training is (a bit) faster
I Results are near-identical
I Explanation:

σ(z) =
1 + tanh(z/2)

2
(3)

I Rectified linear units (ReLUs):
I Activation:

f (z) = max(0, z)

I Learning rate: η = 0.03 (earlier: 0.1)
I L2 regularization at λ = 0.1
I Test accuracy: 99.23%
I Modest gain, but also in other experiments ReLUs have

shown to consistently outperform sigmoid neurons



CNNS IN PRACTICE
EXPANDING THE TRAINING DATA

I Experiment:
I Displace each image by one pixel to above, the right, below,

or to the left
I Each image has 4 extra copies
+ 250 000 images instead of 50 000

I Run the same network with ReLU’s (99.23%)
I Expanding training data yields 99.37%
I P. Simard, D. Steinkraus, J. Platt, “Best Practices for

Convolutional Neural Networks Applied to Visual
Document Analysis”, 2003:
I Very similar architecture
I Training data expansion: rotations, translations, skewing
I “Elastic distortions”: emulating random oscillations of

hand muscles
I Accuracy: 99.6%



CNNS IN PRACTICE
EXTRA/LARGER FULLY CONNECTED LAYER

I Larger fully connected layer:
I 300 neurons + accuracy: 99.46%
I 1000 neurons + accuracy: 99.43%
I Not really convincing

I Extra fully connected layer:
I 2 fully connected layers, each of 100 neurons + accuracy

99.43%
I 2 fully connected layers, each of 300/1000 neurons +

accuracy 99.47/99.48%

I No convincing improvements



CNNS IN PRACTICE
DROPOUT

I 2 fully connected layers each of 1000 neurons

I Dropout (probability = 0.5) applied to neurons in fully connected
layers

I Accuracy: 99.6% (which is substantial improvement)

I Remarks:

I Less epochs (40 instead of 60), because of faster training
I More hidden neurons (1000 instead of 300 or 100) slightly

preferable when using dropout
I No dropout on convolutional layers: those have in-built

resistance to overfitting because of parameter sharing



CNNS IN PRACTICE
ENSEMBLE OF NETWORKS

Ensemble of networks: Idea
I Train several different networks
I For example, employ repeated random initialization while

always using the same architecture
I For classification, take the majority vote of the different

networks
I While each network performs similarly, the majority vote

may yield improvements
I Here: 5 randomly initialized network of the architecture o

described in the slides before
I Accuracy: 99.67%
I That has been our goal!



CNNS IN PRACTICE
ENSEMBLE OF NETWORKS

I Ensemble of 5 randomly initialized networks
I Architecture as described in the slides before
I Accuracy: 99.67% – that has been our goal!

33 misclassified images; correct/predicted classification upper/lower right corner



CNNS IN PRACTICE
REFERENCES

I Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based
learning applied to document recognition”, http://
yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
[Architecture: “LeNet-5”]

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf


CNNS ON MNIST
FURTHER IMPROVEMENTS

I For further improvements on MNIST (and on famous
datasets in general see
http://rodrigob.github.io/are_we_there_yet/
build/classification_datasets_results.html

I Noteworthy:
I See D.C. Ciresan, U. Meier, L.M. Gambardella,

J. Schmidhuber, “Deep Big Simple Neural Nets Excel on
Handwritten Digit Recognition”,
https://arxiv.org/abs/1003.0358

I Fully connected network, without convolutional layers that
achieves 99.65% accuracy.

I Training for that non-convolutional network proceeds very
slow, however.

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
https://arxiv.org/abs/1003.0358


LECTURE4: SUMMARY

I Convolutional Neural Networks
I http://www.deeplearningbook.org/, Chapter 9
I http://neuralnetworksanddeeplearning.com/,

“Deep Learning”

http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/


OUTLOOK
I Choosing hyperparameters

I http://www.deeplearningbook.org/, Chapter 11 (selected
parts)

I http://neuralnetworksanddeeplearning.com/, “Weight
initialization” and “How to choose a network’s
hyperparameters?”

I Convolutional backpropagation
I For further illustrations, see

https://medium.com/@2017csm1006/

forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e.
I Note that there notation differs (error E there is cost C here, X

there is z here, and F are the weights w here, and O is a here, and
there is no bias)

I Training variations
I http://www.deeplearningbook.org/, Chapter 8

(corresponding parts)
I http://neuralnetworksanddeeplearning.com/, Chapter

3, “Variations on stochastic gradient descent”

http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e
https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/


Thanks for your attention


