
Biological Applications of Deep Learning
Lecture 2

Alexander Schönhuth

Bielefeld University
October 19, 2022

CONTENTS TODAY

I Motivation: why using neural networks?

I Motivation: why going deep, i.e. why stacking layers?

I Training: gradient descent

I Slow / fast training

Neural Networks

NEURONS
LINEAR + ACTIVATION FUNCTION

output = a(wT · x + b)

Note: replace f in Figure by a!

Neuron: linear function followed
by activation function

Examples

I Linear regression:

a = Id

a is identity function
I Perceptron:

a(x) =

{
1 x ≥ 0
0 x < 0

a is step function

NEURAL NETWORKS
CONCATENATING NEURONS

NEURAL NETWORKS
ARCHITECTURES

DEEP NEURAL NETWORKS

Width = Number of nodes in a hidden layer
Depth = Number of hidden layers

Deep = depth ≥ 8 (for historical reasons)

NEURAL NETWORKS
FORMAL DEFINITION

I Let xl ∈ Rd(l) be all outputs from neurons in layer l, where d(l) is
the width of layer l.

I Let y ∈ V be the output.

I Let x =: x0 be the input.

I Then
xl = al(W(l)xl−1 + bl)

where al(.) = (al
1(.), ..., al

d(l)(.)), W(l) ∈ Rd(l)×d(l−1), bl ∈ Rd(l)

I The function f representing a neural network with L layers (with
depth L) can be written

y = f (x0) = f (L)(f (L−1)(...(f (1)(x(0)))...))

where xl = f (l)(xl−1) = al(W(l)xl−1 + bl)

TRAINING: BACKPROPAGATION

I E.g. let X be a set of images, labels 1 and 0: tree or not
I Let

f(w,b) : X→ {0, 1} and f̂ : X→ {0, 1}

network function (fw,b) and true function (̂f)

I L(f(w,b), f̂) loss function, differentiable in network parameters w,b

I Back Propagation: Minimize L(f , f̂) through gradient descent

+ Heavily parallelizable!
I Decisive: Ratio number of parameters and training data

Why Neural Networks?

WHY NEURAL NETWORKS?

Given an (unknown) functional relationship f : Rd → V, why
should we learn f by approximating it with a neural network?

Practical, Intuitive Consideration

DEEP LEARNING
INTUITIVE EXPLANATION

I Face recognition: decompose classification task into subtasks

DEEP LEARNING IS INTUITIVE

I Face recognition: decompose subtask (eye recognition) into
sub-subtasks

I Subtasks are composed into overall task “layer by layer”

RUNNING EXAMPLE: MNIST CLASSIFICATION
DATA, FUNCTION

f : R28×28=784 −→ {0, 1, ..., 9} (1)

RUNNING EXAMPLE
MODEL CLASS: NN WITH 1 HIDDEN LAYER

RUNNING EXAMPLE

together makes

Neurons of hidden layer recognize characterizing parts of digit

Theoretical Consideration

THE UNIVERSAL APPROXIMATION THEOREM

Theorem
A feedforward network with a single hidden layer containing a finite number
of neurons can approximate any nonconstant, bounded and continuous
function with arbitrary closeness, as long as there are enough hidden nodes.

Whiteboard Example

Step function with n steps as neural network

I requires n hidden nodes

I hence O(n) training data

Whiteboard Example

Why Deep Learning?

THE UNIVERSAL APPROXIMATION THEOREM

Theorem
A feedforward network with a single hidden layer containing a finite number
of neurons can approximate any nonconstant, bounded and continuous
function with arbitrary closeness, as long as there are enough hidden nodes.

Whiteboard Example

Step function with n steps as neural network

I requires n hidden nodes

I hence O(n) training data

Whiteboard Example

WHY DEEP LEARNING

I Great: as long as there are on the order of m training data,
we can learn any step function with m steps using an NN
with one hidden layer

I However: Both SVM’s and Nearest Neighbor can do this,
too.
I Obvious for Nearest Neighbor
I For SVM’s use Gaussian kernel or radial basis function (RBF)

kernel
k(u,v) = N (u− v; 0, σ2I) (2)

I + RBF kernel measures closeness, hence is similar to
Nearest Neighbor

I Moreover: In particular RBF kernel SVM’s enjoy rapid,
closed form optimization and fast prediction

I While: neural networks do not

RULE OF THUMB

One needs approximately

as many training data
as there are parameters

in the class of models

MORE LAYERS
MOTIVATION

I We have 2 parameters per hidden neuron, amounting to
requiring approximately 2n data points

I Can we save on neurons/parameters, while increasing number
of steps, by increasing depth?

Whiteboard Example

Symmetric step function with 2n steps
modeled by NN with 2 hidden layers

Whiteboard Example

WHY DEEP LEARNING

I We need only O(n + 1) (and not O(2n)) many parameters to
model a constellation with 2n steps and one symmetry axis

I Hence, we only need O(n + 1) many training data, and not
O(2n) (like SVM’s or Nearest Neighbor)

I In general O(nl) (symmetric) steps need only O(nl)
training data

I This illustrates why deeper NN’s can deal with symmetry
invariance in images

WHY DEEP LEARNING
CURSE OF DIMENSIONALITY

The increase in areas is exponential in the dimensions

I On increasing dimensions, one needs exponentially increasing
training data

I Deep NN’s, beyond symmetry in one dimension, can deal with
invariances in terms of exchanging features (dimensions)

I This explains why they can detect cats in the lower-right corner
although training data only showed cats in the upper-left corner

WHY DEEP LEARNING

Theorem (Universal Approximation; Montufar (2014))
Let f be an NN with d inputs, l hidden layers (depth l) of width n each. Then
the number of differently labeled regions is

O(

(
n
d

)d(l−1)

nd) (3)

That is, the number of regions that can receive different labels is
exponential in the depth (the number of hidden layers) l.

[Montufar 2014]: Every neuron can fold space along an axis

DEEP LEARNING
ASSUMPTIONS

I Model classes make certain assumptions about properties
of the functions they aim to approximate

I Many model classes (such as Nearest Neighbors and
SVM’s) require local consistency and smoothness: nearby
points are likely to receive the same label

I Deep neural networks make further assumptions such as
invariance to shifts, rotations and mirroring

IMPORTANT EXAMPLE: XOR FUNCTION

XOR : {0, 1}2 −→ {0, 1}

(0, 0) 7→ 0
(0, 1) 7→ 1
(1, 0) 7→ 1
(1, 1) 7→ 0

See chapter 6.1 in Bengio’s book:
http://www.deeplearningbook.org/contents/mlp.html

warmly recommended!

http://www.deeplearningbook.org/contents/mlp.html

Challenges: Optimization

DEEP LEARNING: CHALLENGES

I So, as we have seen, given that we can make some
reasonable assumptions about the functions to be learnt,
deep learning is just awesome, both
I powerful and
I intuitive

Where is the trouble?

DEEP LEARNING: CHALLENGES

I The functions fw representing NN’s cannot be described in
closed form

I Hence the loss C(w) := C(fw) := C(fw, f ∗) cannot be
described in closed form either

I However, we need to both
I evaluate fw when predicting
I optimize with respect to a loss function C(fw)

+ we require to get control of the gradient∇wC(fw)

I both difficult when not in possession of closed form
description

How to overcome the issue?

ACTIVATION FUNCTION
MOTIVATION

I Output needs to be differentiable in the weights
I Recall: We would like to compute gradients

SIGMOID NEURONS

I Perceptrons, where activation functions are step functions do
not work as neuron model, because they are not differentiable

I Idea: Use sigmoid functions (i.e. ”smoothed step functions”)

σ(z) =
1

1 + e−z where z =
∑

j

wjxj + b (4)

as activation function + sigmoid neurons

Gradient Descent

GRADIENT DESCENT

I Let C(v1, ..., vn) be a differentiable function in n variables,
here n = 2. We look for the minimum of C.

I Idea: At point v1, v2 (green ball), move into direction of
steepest decline (green arrow).

GRADIENT DESCENT

Algorithm
I When at v = (v1, v2), compute gradient

∇vC = (
∂C
∂v1

,
∂C
∂v2

)T (5)

I We know that

∆C ≈ ∂C
∂v1

∆v1 +
∂C
∂v2

∆v2 = ∇vCT ·∆v (6)

I Choosing ∆v = η∇vC yields [note: η is another hyperparameter!]

∆C ≈ −η∇C · ∇C = −η||∇C||2 ≤ 0 (7)

I So, updating
v −→ v′ = v− η∇C (8)

guarantees to decrease C.
I Repeat until done (for example in case of convergence)

GRADIENT DESCENT FOR NEURAL NETWORKS
PRACTICAL SCHEME

Input

I A NN with appropriately chosen initial parameters w0

I Training data X(train) ∈ Rm×n,y(train) ∈ Rm

+ m training data points x ∈ Rn

I Cost function

C =
1
m

∑
x

Cx =
1
m

∑
x

C(f (x), y(x))

GRADIENT DESCENT FOR NEURAL NETWORKS
PRACTICAL SCHEME

Iteration i

1. Compute∇wC(wi−1)

I Need training data to update C, based on having updated w

2. Update: w(i) ← w(i−1) + η∇wC

I w(i)
k ← w(i−1)

k − η ∂C
∂wk

I b(i)
l ← b(i−1)

l − η ∂C
∂bl

3. Stop, if appropriate

GRADIENT DESCENT
THINGS TO CONSIDER IN PRACTICE

I Choose appropriate η
I Too small η: too slow convergence
I Too large η: (6) no longer good approximation

I Direction of gradient minimizes ∆C the most

I Stochastic Gradient Descent: Divide m training data points into
small batches of sizes m1, ...,ml where m1 + ...+ ml = m.

I Run gradient descent on each batch separately. For each batch
h = 1, ...,H, update

I w(i)
k ← w(i−1)

k − η
mh

∑mh
j=1

∂Cxj
∂wk

I b(i)
l ← b(i−1)

l − η
mh

∑mh
j=1

∂Cxj
∂bl

until all batches are processed
I Variations conceivable!
I Epoch: One round of using all training data (that is using all

batches)

Early Stopping Revisited

REMINDER: EARLY STOPPING
REGULARIZATION

Epoch: One iteration of using all training data

How to Stop Early?

I Run gradient descent on training data
I After each iteration (epoch), evaluate C on validation data X(val), y(val)

I Stop if no improvements on X(val), y(val) can be seen

REMINDER: EARLY STOPPING
REGULARIZATION

Epoch: One iteration of using all training data

General Wisdom
I Points nearby training optimum generalize better
I But: No consistent theory to support this intuition available

Preventing Slow Learning

SLOW LEARNING

SLOW LEARNING II

SIGMOID FUNCTION
DRAWBACK

Cost function:

C =
(y− a)2

2
=

(y− σ(z))2

2
=

(y− σ(wx + b))2

2
(9)

Training input x = 1, desired output y = 0:

∂C
∂w

= (a− y)σ′(z)x = aσ′(z) and
∂C
∂b

= (a− y)σ′(z) = aσ′(z) (10)

When σ(z) ≈ 0 or σ(z) ≈ 1, we have σ′(z) ≈ 0 + learning slows down

SIGMOID NEURONS
REMEDY: ALTERNATIVE COST FUNCTION

Consider

where z =
∑

j wjxj + b.

Issue: Sigmoid activation and quadratic cost make unfortunate
combination

Solution: Use alternative cost function: cross entropy:

C = − 1
m

∑
x

[y(x) log a(x) + (1− y(x)) log(1− a(x)) (11)

where x runs over all m training examples.

CROSS ENTROPY

Cross entropy:

C = − 1
m

∑
x

[y(x) log a(x) + (1− y(x)) log(1− a(x))] (12)

where x runs over all m training examples.

Remarks
I C ≥ 0: log’s are negative because of a(x) = σ(z) ∈ [0, 1], minus

sign in front

I C close to zero if y(x) ≈ a(x) (considering y(x) ∈ {0, 1})
I If y(x) ∈ [0, 1], cross entropy C is minimal iff a(x) = y(x).

CROSS ENTROPY

Substituting a = σ(z) into (11), we obtain

∂C
∂wj

= − 1
m

∑
x

(
y

σ(z)
− (1− y(x))

1− σ(z)
)
∂σ

∂wj

= − 1
m

∑
x

(
y

σ(z)
− (1− y(x))

1− σ(z)
)σ′(z)xj

(13)

Further simplifying yields:

∂C
∂wj

=
1
m

∑
x

σ′(z)xj

σ(z)(1− σ(z))
(σ(z)− y) (14)

CROSS ENTROPY

Realizing that σ′(z) = σ(z)(1− σ(z)), we finally obtain

∂C
∂wj

=
1
m

∑
x

xj(σ(z)− y(x)) (15)

Similarly
∂C
∂b

=
1
m

∑
x

(σ(z)− y(x)) (16)

FAST LEARNING

FAST LEARNING II

CROSS ENTROPY
MULTINEURON OUTPUT

Cross entropy also works for more than one output neuron. Let
y(x) = (y1(x), ..., yd(x)) be the true labels, while
aL(x) = (aL

1(x), ..., aL
d(x)) are the actual output values.

Then multi output neuron cross entropy is defined by

C = − 1
m

∑
x

∑
j

[yj(x) log aL
j (x) + (1− yj(x)) log(1− aL

j (x))] (17)

where j = 1, ..., d.

SOFTMAX

Consider the case of J outputs aL
j , j = 1, ..., J. Let (as usual)

zL
j =

∑
k

wL
jkaL−1

k + bL
j (18)

be the input to the corresponding J neurons making the output
layer.

Then the softmax activation is defined by

aL
j =

ezL
j∑

k ezL
k

(19)

SOFTMAX

Note that ∑
j

aL
j =

∑
j ezL

j∑
k ezL

k
= 1 (20)

I All outputs are positive
I A softmax layer can be thought of as a probability

distribution over the J different possible outputs.
I Observation: Softmax output values depend on the inputs

to all output neurons, and not only on the particular one
that generates the output.

SOFTMAX
COST FUNCTION

Let (x, y(x)) be one training example, where y(x) ∈ {1, ..., J}. Then the
log-likelihood cost is defined to be

− log aL
y(x) (21)

Let here yj = 1 iff j = y(x) and yj = 0 iff j 6= y(x) (in abuse of earlier notation).
Then we obtain

∂C
∂bL

j
= aL

j − yj (22)

∂C
∂wL

jk
= aL−1

k (aL
j − yj) (23)

Note that (22) and (23) are, apart from not summing over many training
examples here, identical to (15) and (16).

So, what is better, sigmoid + cross-entropy, or softmax + loglikelihood? It
depends, in fact both can lead to good results in many cases.

ALTERNATIVE ACTIVATION FUNCTIONS
TANGENS HYPERBOLICUS

Tangens hyperbolicus is defined by

tanh(z) :=
ez − e−z

ez + e−z (24)

It holds that
σ(z) =

1 + tanh(z/2)

2
(25)

so tanh turns out to be a scaled version of the sigmoid function σ.

Tangens hyperbolicus is a scaled version of a sigmoid

TANGENS HYPERBOLICUS
MOTIVATION

Remember that
∂C
∂wl+1

jk

= al
kδ

l+1
j (26)

When using sigmoid neurons, al
k ∈ [0, 1], hence non-negative, while

for tangens hyperbolicus al
k ∈ [−1, 1], so possibly also negative.

Hence, if δl+1
j > 0 (or δl+1

j < 0) then

I all weights wl+1
jk will decrease (or increase) for sigmoid neurons

I some weights will decrease, and some weights will increase (or
vice versa) for tanh neurons

The latter case can be advantageous.

However, empirically, tanh were not found to have decisive
advantages over sigmoid neurons.

ALTERNATIVE ACTIVATION FUNCTIONS
RECITIFIED LINEAR UNITS

Rectifying function

The rectified linear function with input z is defined by

max(0, z) (27)

so a rectified linear neuron with input x, weight vector w and bias b is
defined by

max(0,wx + b) (28)

RECTIFIED LINEAR NEURONS
PROPERTIES

I No theoretical deep understanding available
I Rectified linear neurons do not saturate on positive input

+ no learning slowdown
I When input is negative, rectified linear neurons stop

learning entirely!
I Empirically, rectified linear neurons have been proven to

be of great use in image recognition

RECTIFIED LINEAR NEURONS
LITERATURE

I “What is the best multi-stage architecture for object
recognition?”, http://yann.lecun.com/exdb/publis/
pdf/jarrett-iccv-09.pdf

I “Deep sparse rectifier neural networks”,
http://proceedings.mlr.press/v15/glorot11a/
glorot11a.pdf

I “ImageNet classification with deep convolutional neural
networks”, https://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

I Papers provide interesting details about choice of cost functions,
setting up the output layer, and regularization.

http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf
http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

LECTURE 2: SUMMARY

I Topics:
I Deep Learning: Motivation
I Gradient Descent
I Addressing Slow Learning

I Reading:
I http://neuralnetworksanddeeplearning.com:

Chapter 1, Chapter 2 until ’Overfitting and Regularization’
I https://www.deeplearningbook.org/: 6.1, 6.2 (until

6.2.1.1), 6.3 (not treated today, but next time), 6.4, see also
6.6, if interested

I Outlook:
I The Backpropagation Algorithm
I Regularization Revisited

http://neuralnetworksanddeeplearning.com
https://www.deeplearningbook.org/

Thanks for your attention

