Biological Applications of Deep Learning Lecture 2

Alexander Schönhuth

Bielefeld University October 19, 2022

CONTENTS TODAY

- Motivation: why using neural networks?
- Motivation: why going deep, i.e. why stacking layers?
- Training: gradient descent
- ► Slow / fast training

Neural Networks

NEURONS Linear + Activation Function

output = $a(w^T \cdot x + b)$

Note: replace *f* in Figure by *a*!

Neuron: linear function followed by activation function

Examples

► Linear regression:

a = Id

- *a* is identity function
- ► Perceptron:

$$a(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

a is step function

NEURAL NETWORKS

CONCATENATING NEURONS

NEURAL NETWORKS

ARCHITECTURES

DEEP NEURAL NETWORKS

Width = Number of nodes in a hidden layerDepth = Number of hidden layers $Deep = depth \ge 8$ (for historical reasons)

NEURAL NETWORKS

FORMAL DEFINITION

- Let x^l ∈ ℝ^{d(l)} be all outputs from neurons in layer *l*, where d(l) is the *width* of layer *l*.
- Let $y \in V$ be the output.
- Let $\mathbf{x} =: \mathbf{x}^0$ be the input.
- ► Then

$$\mathbf{x}^{l} = \mathbf{a}^{l} (\mathbf{W}^{(l)} \mathbf{x}^{l-1} + \mathbf{b}^{l})$$

where $\mathbf{a}^{l}(.) = (a_{1}^{l}(.), ..., a_{d(l)}^{l}(.))$, $\mathbf{W}^{(l)} \in \mathbb{R}^{d(l) \times d(l-1)}$, $\mathbf{b}^{l} \in \mathbb{R}^{d(l)}$

► The function *f* representing a neural network with *L* layers (with depth *L*) can be written

$$y = f(\mathbf{x}^0) = f^{(L)}(f^{(L-1)}(...(f^{(1)}(\mathbf{x}^{(0)}))...))$$

where $\mathbf{x}^{l} = f^{(l)}(\mathbf{x}^{l-1}) = \mathbf{a}^{l}(\mathbf{W}^{(l)}\mathbf{x}^{l-1} + \mathbf{b}^{l})$

TRAINING: BACKPROPAGATION

• *E.g.* let *X* be a set of images, labels 1 and 0: tree or not

► Let

 $f_{(\mathbf{w},\mathbf{b})}:X\to\{0,1\}\quad\text{ and }\quad \widehat{f}:X\to\{0,1\}$

network function $(f_{w,b})$ and true function (\hat{f})

- ► $L(f_{(\mathbf{w},\mathbf{b})},\hat{f})$ loss function, differentiable in network parameters \mathbf{w}, \mathbf{b}
- Back Propagation: Minimize L(f, f) through gradient descent
 Image: Heavily parallelizable!
- Decisive: Ratio number of parameters and training data

Why Neural Networks?

WHY NEURAL NETWORKS?

Given an (unknown) functional relationship $f : \mathbb{R}^d \to V$, why should we learn f by approximating it with a neural network?

Practical, Intuitive Consideration

DEEP LEARNING

INTUITIVE EXPLANATION

► *Face recognition*: decompose classification task into subtasks

DEEP LEARNING IS INTUITIVE

- Face recognition: decompose subtask (eye recognition) into sub-subtasks
- ► Subtasks are composed into overall task "layer by layer"

RUNNING EXAMPLE: MNIST CLASSIFICATION

DATA, FUNCTION

$$f: \mathbb{R}^{28 \times 28 = 784} \longrightarrow \{0, 1, ..., 9\}$$

(1)

RUNNING EXAMPLE Model Class: NN with 1 hidden layer

RUNNING EXAMPLE

together makes

Neurons of hidden layer recognize characterizing parts of digit

Theoretical Consideration

THE UNIVERSAL APPROXIMATION THEOREM

Theorem

A feedforward network with a single hidden layer containing a finite number of neurons can approximate any nonconstant, bounded and continuous function with arbitrary closeness, as long as there are enough hidden nodes.

Whiteboard Example

Step function with n steps as neural network

- ► requires *n* hidden nodes
- ▶ hence *O*(*n*) training data

Whiteboard Example

Why Deep Learning?

THE UNIVERSAL APPROXIMATION THEOREM

Theorem

A feedforward network with a single hidden layer containing a finite number of neurons can approximate any nonconstant, bounded and continuous function with arbitrary closeness, as long as there are enough hidden nodes.

Whiteboard Example

Step function with n steps as neural network

- ► requires *n* hidden nodes
- ▶ hence *O*(*n*) training data

Whiteboard Example

- ► *Great*: as long as there are on the order of *m* training data, we can learn any step function with *m* steps using an NN with one hidden layer
- However: Both SVM's and Nearest Neighbor can do this, too.
 - Obvious for Nearest Neighbor
 - For SVM's use Gaussian kernel or radial basis function (RBF) kernel

$$k(\mathbf{u}, \mathbf{v}) = \mathcal{N}(\mathbf{u} - \mathbf{v}; 0, \sigma^2 \mathbf{I})$$
(2)

- RBF kernel measures closeness, hence is similar to Nearest Neighbor
- Moreover: In particular RBF kernel SVM's enjoy rapid, closed form optimization and fast prediction
- ► *While*: neural networks do not

UNIVERSITÄT BIELEFELD

Rule of Thumb

One needs approximately

as many training data as there are parameters

in the class of models

MORE LAYERS

MOTIVATION

- ► We have 2 parameters per hidden neuron, amounting to requiring approximately 2*n* data points
- Can we save on neurons/parameters, while increasing number of steps, by increasing depth?

Whiteboard Example

Symmetric step function with 2*n* steps modeled by NN with 2 hidden layers

Whiteboard Example

- ► We need only O(n+1) (and not O(2n)) many parameters to model a constellation with 2n steps and one symmetry axis
- ► Hence, we only need O(n + 1) many training data, and not O(2n) (like SVM's or Nearest Neighbor)
- In general O(n^l) (symmetric) steps need only O(nl) training data
- This illustrates why deeper NN's can deal with symmetry invariance in images

CURSE OF DIMENSIONALITY

The increase in areas is exponential in the dimensions

- On increasing dimensions, one needs exponentially increasing training data
- Deep NN's, beyond symmetry in one dimension, can deal with invariances in terms of exchanging features (dimensions)
- This explains why they can detect cats in the lower-right corner although training data only showed cats in the upper-left corner

UNIVERSITÄT BIELEFELD

Theorem (Universal Approximation; Montufar (2014))

Let f be an NN with d inputs, l hidden layers (depth l) of width n each. Then the number of differently labeled regions is

$$O(\binom{n}{d}^{d(l-1)}n^d) \tag{3}$$

That is, the number of regions that can receive different labels is exponential in the depth (the number of hidden layers) *l*.

[Montufar 2014]: Every neuron can fold space along an axis

DEEP LEARNING

ASSUMPTIONS

- Model classes make certain assumptions about properties of the functions they aim to approximate
- Many model classes (such as Nearest Neighbors and SVM's) require *local consistency* and *smoothness*: nearby points are likely to receive the same label
- Deep neural networks make further assumptions such as invariance to shifts, rotations and mirroring

IMPORTANT EXAMPLE: XOR FUNCTION

XOR :	$\{0,1\}^2$	\longrightarrow	$\{0,1\}$
	(0, 0)	\mapsto	0
	(0, 1)	\mapsto	1
	(1, 0)	\mapsto	1
	(1, 1)	\mapsto	0

See chapter 6.1 in Bengio's book:

http://www.deeplearningbook.org/contents/mlp.html

warmly recommended!

Challenges: Optimization

DEEP LEARNING: CHALLENGES

- So, as we have seen, given that we can make some reasonable assumptions about the functions to be learnt, deep learning is just awesome, both
 - powerful and
 - ► intuitive

Where is the trouble?

DEEP LEARNING: CHALLENGES

- ► The functions *f*_w representing NN's cannot be described in closed form
- ► Hence the loss C(w) := C(f_w) := C(f_w, f^{*}) cannot be described in closed form either
- ► However, we need to both
 - evaluate $f_{\mathbf{w}}$ when predicting
 - optimize with respect to a loss function C(f_w)
 ^{ISF} we require to get control of the gradient ∇_wC(f_w)
- both difficult when not in possession of closed form description

How to overcome the issue?

ACTIVATION FUNCTION

MOTIVATION

- Output needs to be differentiable in the weights
- ► *Recall*: We would like to compute gradients

SIGMOID NEURONS

- Perceptrons, where activation functions are step functions do not work as neuron model, because they are not differentiable
- ► *Idea*: Use *sigmoid functions* (i.e. "smoothed step functions")

$$\sigma(z) = \frac{1}{1 + e^{-z}} \quad \text{where} \quad z = \sum_{j} w_j x_j + b \tag{4}$$

UNIVERSITAT as activation function resistant sigmoid neurons

(

Gradient Descent

GRADIENT DESCENT

- Let $C(v_1, ..., v_n)$ be a differentiable function in *n* variables, here n = 2. We look for the minimum of *C*.
- Idea: At point v₁, v₂ (green ball), move into direction of steepest decline (green arrow).

GRADIENT DESCENT

Algorithm

• When at $\mathbf{v} = (v_1, v_2)$, compute gradient

$$\nabla_{\mathbf{v}} C = \left(\frac{\partial C}{\partial v_1}, \frac{\partial C}{\partial v_2}\right)^T \tag{5}$$

We know that

$$\Delta C \approx \frac{\partial C}{\partial v_1} \Delta v_1 + \frac{\partial C}{\partial v_2} \Delta v_2 = \nabla_{\mathbf{v}} C^T \cdot \Delta v \tag{6}$$

• Choosing $\Delta v = \eta \nabla_v C$ yields [note: η is another hyperparameter!]

$$\Delta C \approx -\eta \nabla C \cdot \nabla C = -\eta ||\nabla C||^2 \le 0 \tag{7}$$

So, updating

$$v \longrightarrow v' = v - \eta \nabla C \tag{8}$$

guarantees to decrease C.

Repeat until done (for example in case of convergence)
 UNIVERSITÄT
 BIELEFELD

GRADIENT DESCENT FOR NEURAL NETWORKS PRACTICAL SCHEME

Input

- \blacktriangleright A NN with appropriately chosen initial parameters w_0
- Training data $\mathbf{X}^{(\text{train})} \in \mathbb{R}^{m \times n}, \mathbf{y}^{(\text{train})} \in \mathbb{R}^m$ m training data points $x \in \mathbb{R}^n$
- Cost function

$$C = \frac{1}{m} \sum_{x} C_x = \frac{1}{m} \sum_{x} C(f(x), y(x))$$

GRADIENT DESCENT FOR NEURAL NETWORKS PRACTICAL SCHEME

Iteration *i*

- 1. Compute $\nabla_{\mathbf{w}} C(\mathbf{w}_{i-1})$
 - ▶ Need training data to update *C*, based on having updated **w**

2. Update:
$$\mathbf{w}^{(i)} \leftarrow \mathbf{w}^{(i-1)} + \eta \nabla_{\mathbf{w}} C$$

$$\quad \bullet \quad w_k^{(i)} \leftarrow w_k^{(i-1)} - \eta \frac{\partial C}{\partial w_k} \\ \quad \bullet \quad b_l^{(i)} \leftarrow b_l^{(i-1)} - \eta \frac{\partial C}{\partial b_l}$$

3. Stop, if appropriate

GRADIENT DESCENT

THINGS TO CONSIDER IN PRACTICE

- ► Choose appropriate η
 - Too small η : too slow convergence
 - Too large η : (6) no longer good approximation
- Direction of gradient minimizes ΔC the most
- Stochastic Gradient Descent: Divide *m* training data points into small batches of sizes $m_1, ..., m_l$ where $m_1 + ... + m_l = m$.
 - Run gradient descent on each batch separately. For each batch h = 1, ..., H, update

$$\begin{array}{l} \blacktriangleright \quad w_k^{(i)} \leftarrow w_k^{(i-1)} - \frac{\eta}{m_h} \sum_{j=1}^{m_h} \frac{\partial C_{x_j}}{\partial w_k} \\ \blacktriangleright \quad b_l^{(i)} \leftarrow b_l^{(i-1)} - \frac{\eta}{m_h} \sum_{j=1}^{m_h} \frac{\partial C_{x_j}}{\partial b_l} \end{array}$$

until all batches are processed

- Variations conceivable!
- *Epoch*: One round of using *all training data* (that is using all batches)

Early Stopping Revisited

Reminder: Early Stopping

REGULARIZATION

Epoch: One iteration of using all training data

How to Stop Early?

- Run gradient descent on training data
- After each iteration (epoch), evaluate C on validation data $X^{(val)}, y^{(val)}$
- ▶ Stop if no improvements on $X^{(val)}$, $y^{(val)}$ can be seen

Reminder: Early Stopping

REGULARIZATION

Epoch: One iteration of using all training data

General Wisdom

- Points nearby training optimum generalize better
- ► *But*: No consistent theory to support this intuition available

Preventing Slow Learning

SLOW LEARNING

SLOW LEARNING II

SIGMOID FUNCTION

DRAWBACK

Cost function:

$$C = \frac{(y-a)^2}{2} = \frac{(y-\sigma(z))^2}{2} = \frac{(y-\sigma(wx+b))^2}{2}$$
(9)

Training input x = 1, desired output y = 0:

$$\frac{\partial C}{\partial w} = (a - y)\sigma'(z)x = a\sigma'(z) \text{ and } \frac{\partial C}{\partial b} = (a - y)\sigma'(z) = a\sigma'(z)$$
(10)

When $\sigma(z) \approx 0$ or $\sigma(z) \approx 1$, we have $\sigma'(z) \approx 0$ is learning slows down universität beleffeld

SIGMOID NEURONS

REMEDY: ALTERNATIVE COST FUNCTION

Consider

where
$$z = \sum_{j} w_j x_j + b$$
.

Issue: Sigmoid activation and quadratic cost make unfortunate combination

Solution: Use alternative cost function: cross entropy:

$$C = -\frac{1}{m} \sum_{x} [y(x) \log a(x) + (1 - y(x)) \log(1 - a(x))$$
(11)

UNVERTIE x runs over all m training examples.

Cross entropy:

$$C = -\frac{1}{m} \sum_{x} [y(x) \log a(x) + (1 - y(x)) \log(1 - a(x))]$$
(12)

where *x* runs over all *m* training examples.

Remarks

- ► C ≥ 0: log's are negative because of a(x) = σ(z) ∈ [0, 1], minus sign in front
- *C* close to zero if $y(x) \approx a(x)$ (considering $y(x) \in \{0, 1\}$)
- If $y(x) \in [0, 1]$, cross entropy *C* is minimal iff a(x) = y(x).

Substituting $a = \sigma(z)$ into (11), we obtain

$$\frac{\partial C}{\partial w_j} = -\frac{1}{m} \sum_{x} \left(\frac{y}{\sigma(z)} - \frac{(1 - y(x))}{1 - \sigma(z)}\right) \frac{\partial \sigma}{\partial w_j}$$

$$= -\frac{1}{m} \sum_{x} \left(\frac{y}{\sigma(z)} - \frac{(1 - y(x))}{1 - \sigma(z)}\right) \sigma'(z) x_j$$
(13)

Further simplifying yields:

$$\frac{\partial C}{\partial w_j} = \frac{1}{m} \sum_{x} \frac{\sigma'(z)x_j}{\sigma(z)(1 - \sigma(z))} (\sigma(z) - y)$$
(14)

Realizing that $\sigma'(z) = \sigma(z)(1 - \sigma(z))$, we finally obtain

$$\frac{\partial C}{\partial w_j} = \frac{1}{m} \sum_{x} x_j(\sigma(z) - y(x))$$
(15)

Similarly

$$\frac{\partial C}{\partial b} = \frac{1}{m} \sum_{x} (\sigma(z) - y(x))$$
(16)

FAST LEARNING

FAST LEARNING II

MULTINEURON OUTPUT

Cross entropy also works for more than one output neuron. Let $y(x) = (y_1(x), ..., y_d(x))$ be the true labels, while $a^L(x) = (a_1^L(x), ..., a_d^L(x))$ are the actual output values.

Then multi output neuron cross entropy is defined by

$$C = -\frac{1}{m} \sum_{x} \sum_{j} [y_j(x) \log a_j^L(x) + (1 - y_j(x)) \log(1 - a_j^L(x))]$$
(17)

where j = 1, ..., d.

Softmax

Consider the case of *J* outputs a_j^L , j = 1, ..., J. Let (as usual)

$$z_{j}^{L} = \sum_{k} w_{jk}^{L} a_{k}^{L-1} + b_{j}^{L}$$
(18)

be the input to the corresponding *J* neurons making the output layer.

Then the *softmax activation* is defined by

$$a_j^L = \frac{e^{z_j^L}}{\sum_k e^{z_k^L}} \tag{19}$$

Softmax

Note that

$$\sum_{j} a_{j}^{L} = \frac{\sum_{j} e^{z_{j}^{L}}}{\sum_{k} e^{z_{k}^{L}}} = 1$$
(20)

- All outputs are positive
- A softmax layer can be thought of as a probability distribution over the *J* different possible outputs.
- Observation: Softmax output values depend on the inputs to all output neurons, and not only on the particular one that generates the output.

Softmax

COST FUNCTION

Let (x, y(x)) be one training example, where $y(x) \in \{1, ..., J\}$. Then the *log-likelihood cost* is defined to be

$$-\log a_{y(x)}^L \tag{21}$$

Let here $y_j = 1$ iff j = y(x) and $y_j = 0$ iff $j \neq y(x)$ (in abuse of earlier notation). Then we obtain

$$\frac{\partial C}{\partial b_j^L} = a_j^L - y_j$$

$$\frac{\partial C}{\partial w_{jk}^L} = a_k^{L-1} (a_j^L - y_j)$$
(22)
(23)

Note that (22) and (23) are, apart from not summing over many training examples here, identical to (15) and (16).

So, what is better, sigmoid + cross-entropy, or softmax + loglikelihood? It depends, in fact both can lead to good results in many cases.

ALTERNATIVE ACTIVATION FUNCTIONS

TANGENS HYPERBOLICUS

Tangens hyperbolicus is defined by

$$\tanh(z) := \frac{e^z - e^{-z}}{e^z + e^{-z}}$$
(24)

It holds that

$$\sigma(z) = \frac{1 + \tanh(z/2)}{2} \tag{25}$$

so tanh turns out to be a scaled version of the sigmoid function σ .

Tangens hyperbolicus is a scaled version of a sigmoid

TANGENS HYPERBOLICUS

MOTIVATION

Remember that

$$\frac{\partial C}{\partial w_{jk}^{l+1}} = a_k^l \delta_j^{l+1} \tag{26}$$

When using sigmoid neurons, $a_k^l \in [0, 1]$, hence non-negative, while for tangens hyperbolicus $a_k^l \in [-1, 1]$, so possibly also negative. Hence, if $\delta_j^{l+1} > 0$ (or $\delta_j^{l+1} < 0$) then

- all weights w_{ik}^{l+1} will decrease (or increase) for sigmoid neurons
- some weights will decrease, and some weights will increase (or vice versa) for tanh neurons

The latter case can be advantageous.

However, empirically, tanh were not found to have decisive advantages over sigmoid neurons.

ALTERNATIVE ACTIVATION FUNCTIONS

RECITIFIED LINEAR UNITS

Rectifying function

The rectified linear function with input z is defined by

$$\max(0, z) \tag{27}$$

so a *rectified linear neuron* with input \mathbf{x} , weight vector \mathbf{w} and bias b is defined by

$$\max(0, \mathbf{wx} + b) \tag{28}$$

Rectified Linear Neurons

PROPERTIES

- No theoretical deep understanding available
- Rectified linear neurons do not saturate on positive input
 no learning slowdown
- When input is negative, rectified linear neurons stop learning entirely!
- Empirically, rectified linear neurons have been proven to be of great use in image recognition

Rectified Linear Neurons

LITERATURE

- "What is the best multi-stage architecture for object recognition?", http://yann.lecun.com/exdb/publis/ pdf/jarrett-iccv-09.pdf
- "Deep sparse rectifier neural networks", http://proceedings.mlr.press/v15/glorot11a/ glorot11a.pdf
- "ImageNet classification with deep convolutional neural networks", https://papers.nips.cc/paper/ 4824-imagenet-classification-with-deep-convolutional pdf
- Papers provide interesting details about choice of cost functions, setting up the output layer, and regularization.

LECTURE 2: SUMMARY

► Topics:

- Deep Learning: Motivation
- Gradient Descent
- Addressing Slow Learning
- ► Reading:
 - http://neuralnetworksanddeeplearning.com: Chapter 1, Chapter 2 until 'Overfitting and Regularization'
 - https://www.deeplearningbook.org/: 6.1, 6.2 (until 6.2.1.1), 6.3 (not treated today, but next time), 6.4, see also 6.6, if interested
- ► Outlook:
 - ► The Backpropagation Algorithm
 - Regularization Revisited

Thanks for your attention

