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Transformers



TRANSFORMERS: MOTIVATION

Transformers translate “languages”
From https://jalammar.github.io

I Inspiration for transformers: translating languages

I Transformers lend themselves to (maximum) parallelization

I Google: reference model for cloud TPU based computations

https://jalammar.github.io


TRANSFORMERS: MOTIVATION II

From https://jalammar.github.io

I Transformers employ encoder-decoder architecture
I However, neither encoder nor decoder RNN based
I Seminal paper: “Attention is all you need”

+ https://arxiv.org/abs/1706.03762

https://jalammar.github.io
https://arxiv.org/abs/1706.03762


TRANSFORMERS: STRUCTURE I

Transformers: encoders and decoders layer structured
From https://jalammar.github.io

I Transformers make use of stacks of encoders and decoders
I Seminal paper: stacks are 6 layers each
I Other numbers very well conceivable
I Architectural design may vary by application

https://jalammar.github.io


TRANSFORMERS: STRUCTURE II

Transformers: encoders and decoders layer structured
From https://jalammar.github.io

I Encoders and decoders interact in different ways
I All but last encoder provide input to next encoder
I Last encoder provides input to all decoders
I All but last decoder provide input to next decoder
I Last decoder outputs translated sentence

https://jalammar.github.io


TRANSFORMERS: ENCODER STRUCTURE I

Transformers: encoders follow particular structure
From https://jalammar.github.io

I Encoders are identical in structure
I But they do not share weights

I Encoders have two sublayers
I A self-attention layer
I A feedforward neural network layer

https://jalammar.github.io


TRANSFORMERS: ENCODER STRUCTURE II

Transformers: encoders follow particular structure
From https://jalammar.github.io

I Self-attention layer:
I Encoder can look at other words when encoding words

I Feedforward neural network (FFNN) layer:
I Exact same FFNN applied for each position in sentence

https://jalammar.github.io


TRANSFORMERS: DECODER STRUCTURE I

Transformers: encoder and decoder interact in particular way
From https://jalammar.github.io

I Decoder shares structure with encoder, but ...

I ... has an additional encoder-decoder attention sublayer

I Helps decoder to pay attention as guided by input

https://jalammar.github.io


TRANSFORMERS: ENCODER STRUCTURE III

Transformers: encoders sublayer by sublayer
From https://jalammar.github.io

1. Words are embedded + yields vectors xi

2. Vectors xi run through self-attention sublayer + yields vectors yi

3. Each yi runs through exact same FFNN + yields vectors zi

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION I

Words pay more/less attention to others
From https://jalammar.github.io

I 5th sublayer, 2nd out of 8
attention heads

I Word “it” pays most
attention to “the
animal”

I Word “it” pays less
attention to “the street”

I Word “it” pays no
attention to “because”

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION II

Self-attention: queries, keys and values
From https://jalammar.github.io

I Input vectors xi are transformed to
I queries qi, keys ki, values vi by
I applying matrices WQ,WK,WV to xi from the right

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION III

Self-attention: queries, keys and values
From https://jalammar.github.io

I Seminal paper: dimension of xi = 512, of qi, ki, vi = 64
I So, WQ,WK,WV ∈ R512×64

I Recall: qi = xiWQ, ki = xiWK, vi = xiWV

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION IV

Self-attention: from input to output
From https://jalammar.github.io

I Scores for x1 w.r.t. v1, v2

I v1: Compute q1 · k1,
divide by 8, yields 112

I v2: Compute q1 · k2,
divide by 8, yields 96

I Softmax’ing: Probabilities
0.88, 0.12 for v1, v2

I Final output for x1:

0.88 · v1 + 0.12 · v2

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION V

Calculating queries, keys and values
From https://jalammar.github.io

I Pack embedded words
into matrix X

I Each row corresponds
to one word

I Multiply X with trained
matrices WQ,WK,WV

I Recall real dimensions:
I Words: 512 (here: 4);

Q,K,V: 64 (here: 3)

https://jalammar.github.io


TRANSFORMERS: SELF-ATTENTION VI

Computing values: compact matrix representation
From https://jalammar.github.io

1. Multiply queries with keys: Q · KT

2. Normalize relative to query/key length dk (= 64 in reality)

3. Softmax across columns: S := softmax(QKT/
√

dk) (here: ∈ R2×2)

4. Compute weighted sum for each word: Z = S · V

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION I

Multi-head attention with 2 heads
From https://jalammar.github.io

I Learn several “heads”, attending to different interactions
I Learn several (here: 2) different WQ,WK,WK
I Establish differences by randomized initialization

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION II

Original paper: multi-head attention with 8 heads
From https://jalammar.github.io

I Seminal paper uses 8 different attention heads

I How to summarize / combine the 8 resulting outputs?

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION III

Combining outputs of different attention heads
From https://jalammar.github.io

I Combining attention head outputs:

1. Concatenate all outputs
2. Multiply resulting matrix with learned matrix WO

3. Yields output being equal to input in dimension
+ Remark: Need to learn WO also for single head

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION IV

Multi-head attention: Overview / Summary
X: embedded words, input for first attention layer
R: output of earlier layer input for all but first layer

From https://jalammar.github.io

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION V

Multi-head attention:
Considering two (of eight) heads

From https://jalammar.github.io

I Considering two attention
heads, orange and green

I Orange: “it” mostly attends
to “the animal”

I Green: “it” mostly attends
to “tired”

https://jalammar.github.io


TRANSFORMERS: MULTI-HEAD ATTENTION VI

Multi-head attention:
Considering all (eight) heads

From https://jalammar.github.io

I Considering all eight
attention heads

I Things are more difficult to
interpret

I Each head reflects different
relationships

https://jalammar.github.io


TRANSFORMERS: POSITIONAL ENCODING

Integrating positional encodings
From https://jalammar.github.io

I Problem: Self attention unaware of order

I Solution: Consider vectors ti that code order of word xi

I Add ti to xi + order i can be determined
I Details of generation of ti not discussed here

https://jalammar.github.io


TRANSFORMERS: ENCODER DETAILS

Transformer encoder block: details
From https://jalammar.github.io

1. Embedded words are equipped with
positional encodings

2. Self attention is applied
2.1 Original xi is added to zi

+ Residual skip connection
2.2 Layer norm is applied

+ Normalizes values across layer

3. Each resulting zi passed through
identical feedforward NN (FFNN)

3.1 Original zi added to FFNN output
+ Residual skip connection

3.2 Layer norm is applied
+ Normalizes values across layer

https://jalammar.github.io


TRANSFORMERS: ENCODER-DECODER INTERACTION

Transformer with two encoder and two decoder blocks
From https://jalammar.github.io

I Decoder blocks integrate encoder-decoder attention layers
I Between decoder self attention and FFNN layer
I Encoder output transformed into keys and values
I Decoder output transformed into queries

https://jalammar.github.io


TRANSFORMER: DECODER I

From https://jalammar.github.io

1. Encoder processes input sequence (here: with positional encoding)

2. Output of top encoder transformed into keys Kencdec and values Vencdec

3. Decoder uses Kencdec and Vencdec in encoder-decoder attention layer

https://jalammar.github.io


TRANSFORMER: DECODER II

From https://jalammar.github.io

1. Decoder takes in already generated tokens (words)

2. Self-attention: decoder only attends to already generated tokens
I Achieved by masking future positions

3. Encoder-decoder attention layer generates its own queries
I but uses keys and values from topmost encoder output

https://jalammar.github.io


TRANSFORMERS: DECODER FINAL LAYER

Transformer decoder: final layer consists of linear and softmax sublayer
From https://jalammar.github.io

I Linear layer takes decoder output, computes a value for each word
I See logits layer in figure; number of words equal to size of vocabulary

I Softmax layer turns values into probabilities
I Yields log probs layer; word with greatest probability is output

https://jalammar.github.io


TRANSFORMERS: ARCHITECTURE SUMMARY I

Transformer: Summary. n encoder and n
decoder layers

From https://jalammar.github.io

Encoder
I Both encoder and decoder

consist of n layers
+ original paper: n = 6

I Encoder stacks identical
layers

I Each layer has two sublayers
I Multi-head attention layer
I Positionwise feedforward

neural network

I Contains skip connections
+ inspired by ResNet

https://jalammar.github.io


Transformer Variants



TRANSFORMERS: ARCHITECTURE SUMMARY II

Transformer: Summary. n encoder and n
decoder layers

From https://d2l.ai

Decoder
I Decoder stacks identical

layers

I Each layer: three sublayers
I Multi-head self attention
I Encoder-decoder attention
I Positionwise feedforward

neural network

I Encoder-decoder attention
does not exist in encoder

I Contains skip connections
+ inspired by ResNet

I Each position only attends to
earlier positions

I Masked attention preserves
autoregressive property

https://d2l.ai


Transformer Variants: Encoder Only



TRANSFORMER VARIANTS: ENCODER ONLY I

Transformer encoder only: pretraining
From https://d2l.ai

I Prominent example: Bidirectional Encoder Representations from
Transformers (BERT), see https://arxiv.org/abs/1810.04805

I Pretraining supposed to pick up basic language structure
I Principle: Learn masked words in sentences

https://d2l.ai
https://arxiv.org/abs/1810.04805


TRANSFORMER VARIANTS: ENCODER ONLY II

Transformer encoder only: finetuning for sentiment analysis
From https://d2l.ai

I After pretraining, encoder-only transformer is finetuned
I Involves different kind of training

I Example: Sentiment analysis
I Predicting sentiments inherent to sentences

I Principle: Use final representation of special token < cls >

https://d2l.ai


Transformer Variants: Encoder-Decoder



TRANSFORMER VARIANTS: ENCODER-DECODER I

Transformer encoder-decoder: pretraining
From https://d2l.ai

I Advantage: Output can vary in length
I Prominent example: T5, see https://arxiv.org/abs/1910.10683

https://d2l.ai
https://arxiv.org/abs/1910.10683


TRANSFORMER VARIANTS: ENCODER-DECODER II

Transformer encoder-decoder: pretraining
From https://d2l.ai

I Pretraining Example: Predict consecutive spans
I Here: Replace “〈X〉” with “〈X〉 love” and “〈Y〉” with “〈Y〉 red car”

https://d2l.ai


TRANSFORMER VARIANTS: ENCODER-DECODER III

Transformer encoder-decoder: pretraining
From https://d2l.ai

I Encoder: Each input token attends to each other

I Decoder: Target tokens attend to
I all input tokens (encoder-decoder attention)
I only past and present target tokens (causal attention)

https://d2l.ai


TRANSFORMER VARIANTS: ENCODER-DECODER IV

Transformer encoder-decoder: Finetuning for generating text summaries
From https://d2l.ai

I After pretraining, encoder-decoder transformer is finetuned
I Involves different training principle

I Example: Summarization of large texts
I Input: Task description and large text
I Output: Brief summary of large text

https://d2l.ai


TRANSFORMER VARIANTS: ENCODER-DECODER V

Imagen, based on T5 encoder: Turning texts into images
From https://d2l.ai

I Generate image that reflects text contents
I Text-to-image model “Imagen”, see

https://arxiv.org/abs/2205.11487

I Imagen based on “frozen” T5 encoder

https://d2l.ai
https://arxiv.org/abs/2205.11487


Transformer Variants: Decoder Only



TRANSFORMER VARIANTS: DECODER ONLY I

Transformer decoder only: pretraining
From https://d2l.ai

I De facto architecture in large-scale language modeling
I Encoder-decoder attention sublayers removed

I Pretraining: Teacher forcing
I Target sequence is input sequence shifted by one token

https://d2l.ai


TRANSFORMER VARIANTS: DECODER ONLY II

Transformer decoder only: pretraining
From https://d2l.ai

I Self-supervised learning: Learns structures in unlabeled data
I Leverages abundantly existing, unlabeled text corpora

I Prominent example: GPT-3, see https://arxiv.org/abs/2005.14165
I Basis of ChatGPT, for example

https://d2l.ai
https://arxiv.org/abs/2005.14165


TRANSFORMER VARIANTS: DECODER ONLY III

Transformer encoder-decoder: pretraining
From https://d2l.ai

I GPT-2 demonstrated that model can be re-used for other tasks
I without parameter re-training / updating (!), so no finetuning

I GPT-3 exploits the in-context learning principle further

https://d2l.ai


TRANSFORMER VARIANTS: DECODER ONLY IV

Transformer encoder-decoder: pretraining
From https://d2l.ai

I In-context learning requires task description and prompt, as task input
I In addition, in-context learning may involve no examples (zero-shot),

one example (one-shot) or few examples: few-shot

https://d2l.ai


AlphaFold
Predicting Protein Structure from Primary Sequence



ALPHAFOLD: MOTIVATION

From protein sequence to structure
From https://en.wikipedia.org

I Protein structure traditionally
determined by cristallography
+ Time consuming and expensive

I Databases have been filling up with
high quality protein structures for
decades

I Idea: Exploit the existing knowledge
+ Predict structure directly from
sequence

I AlphaFold predicts tertiary structure
I Reference: [Jumper et al., Nature,

2021], see https://www.nature.com/

articles/s41586-021-03819-2

https://en.wikipedia.org
https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2


ALPHAFOLD: MULTIPLE SEQUENCE ALIGNMENTS

Multiple sequence alignment of same protein from different species
From https://en.wikipedia.org

I AlphaFold makes use of multiple sequence alignments (MSA)
I MSA’s align evolutionarily related protein sequences
I Each row reflects organism / species; each column amino acid residue

https://en.wikipedia.org


ALPHAFOLD: WORKFLOW

AlphaFold workflow
From [Jumper et al., 2021]

I Very deep: 3× 48 Evoformer blocks plus 8 Structure Module blocks



ALPHAFOLD: INPUT I

AlphaFold input
From [Jumper et al., 2021]

I Primary amino acid sequence
of interest

I Evolutionarily related
(homologous) sequences
+ From genetic databases

I Related structures
+ From structure databases



ALPHAFOLD: INPUT II

AlphaFold input
From [Jumper et al., 2021]

Multiple sequence alignment representation
(MSA-R in the following)

I Relies on relationships with
homologous sequences (homologs)

I Captures evolutionary constraints
among residues, across homologs

Pair representation
(Pair-R in the following)

I Builds on input from structure
databases

I Captures structural / 3D distance
constraints among residues



ALPHAFOLD: INPUT III

AlphaFold input
From [Jumper et al., 2021]

I Let r be length of primary sequence
I Let s be number of homologs

I MSA-R↔ r× s matrix M
I Mij ∈ Rcm for each

1 ≤ i ≤ r, 1 ≤ j ≤ s
I cm = 256

I Pair-R↔ s× s matrix Z
I Zij ∈ Rcz for each

1 ≤ i ≤ r, 1 ≤ j ≤ r
I cz = 128



ALPHAFOLD: EVOFORMER BLOCK

AlphaFold EvoFormer block
From [Jumper et al., 2021]

I MSA-R draws from self attention as major mechanism
I Pair-R draws from “triangular” updates
I MSA-R and Pair-R interact to generate updates
I After 48 updates, output is passed on to structure module



ALPHAFOLD: ROW-WISE SELF ATTENTION I

AlphaFold: Row wise self attention
From [Jumper et al., 2021]

I Applied for each row (homolog) 1 ≤ i ≤ s separately
I Attention between Mij ∈ Rcm , 1 ≤ j ≤ r for particular homolog i

I Lower three “Linear cm → (h, c)”:
I Turns Mij ∈ Rcm to values, keys, queries ∈ Rc

I h is number of heads; here h = 8



ALPHAFOLD: ROW-WISE SELF ATTENTION II

AlphaFold: Row wise self attention
From [Jumper et al., 2021]

I Lower three “Linear cm → (h, c)”:
I Turns Mij ∈ Rcm to values, keys, queries ∈ Rc

I h is number of heads; here h = 8
I Reflect applying (h different) matrices WQ,WK,WV ∈ Rc×cm to Mij
I Usually, rq = rv ↔ each residue transformed in both query and key



ALPHAFOLD: ROW-WISE SELF ATTENTION III

AlphaFold: Row wise self attention
From [Jumper et al., 2021]

I Uppermost “Linear cm → (h, c)” reflects generation of gating values
I Remember principles of LSTM RNN’s

I “Linear cz → h” turns vectors Rcz into h biases ∈ R
I One bias for each attention head, to be added to dot-product affinities
I Further softmax’ed to obtain attention weights



ALPHAFOLD: COLUMN-WISE SELF ATTENTION

AlphaFold: Column wise self attention
From [Jumper et al., 2021]

I Applied for each column (residue) 1 ≤ j ≤ s separately
I Attention between Mij ∈ Rcm , 1 ≤ i ≤ r for particular residue j

I Further, analogous to row-wise self attention

I Only exception: Pair-R has no influence on column-wise self attention
I Pair-R reflects relationship between residues, not homologs (!)



ALPHAFOLD: TRANSITION

AlphaFold: Transition
From [Jumper et al., 2021]

I Transition reflects application of 2-layer MLP
I Hidden layer has 4cm channels

Summary: No particularly advanced techniques



ALPHAFOLD: OUTER PRODUCT MEAN I

AlphaFold: Outer product mean
From [Jumper et al., 2021]

Intention: Relate residues in MSA-R with each other

I Transforms MSA-R into Pair-R compatible format
I Subsequently added to Pair-R
I Computes outer products for each pair of MSA-R columns



ALPHAFOLD: OUTER PRODUCT MEAN II

AlphaFold: Outer product mean
From [Jumper et al., 2021]

I Outer product of two c-dimensional vectors yields matrix ∈ Rc×c

I Matrix entries averaged across homologs
I Yields one c× c matrix for each pair of residues
I Further transformed into one cz-dimensional vector



ALPHAFOLD: TRIANGULAR UPDATES I

AlphaFold: Triangular updates
From [Jumper et al., 2021]

I Intention: Update entries Zij in Pair-R based on related entries
I Related entries share row or column with Zij within Pair-R

I Remember: Relationships reflect structural constellations (distances etc.)
I Zij influenced by combination of Zik and Zjk, for example

I Procedure: View residues as nodes in graph; systematically evaluate
influence of relationships on other



ALPHAFOLD: MULTIPLICATIVE UPDATES II

AlphaFold: Multiplicative updates
From [Jumper et al., 2021]

I Combines information in each triangle of edges (i, j), (i, k), (j, k)
I Each triangle receives update from other two edges where it is involved

I Two versions:
I Outgoing edges: (i, j) (and (j, i)) updated based on (i, k), (j, k)
I Incoming edges: (i, j) (and (j, i)) updated based on (k, i), (k, j)



ALPHAFOLD: MULTIPLICATIVE UPDATES

AlphaFold: Multiplicative updates, outgoing edges
From [Jumper et al., 2021]

I Outgoing edges from i, j relate to rows i and j in Z
I Insight: All triangles in one go by summing entries in these rows

I Operations refer to standard operations:
I Computing weighted sums (e.g. ”Linear cz → c”) and sigmoid activation
I Hadamard products for gate-type computations; LayerNorm

I Incoming edges: Analogous by doing columns, not rows



ALPHAFOLD: TRIANGULAR SELF ATTENTION I

AlphaFold: Triangular Self Attention
From [Jumper et al., 2021]

I Uses self attention as basic mechanism

I Starting node: Updates each Zij with values from Zik, 1 ≤ k ≤ r
I Corresponds to edges leaving from i↔ left panel in figure
I Pair of edges (i, j), (i, k) “controlled” by (j, k)

I Ending node: Updates each Zij with values from Zkj, 1 ≤ k ≤ r
I Corresponds to edges going into j↔ right panel in figure
I Pair of edges (i, j), (k, j) “controlled” by (k, i)



ALPHAFOLD: TRIANGULAR SELF ATTENTION II

AlphaFold: Triangular self attention from starting node
From [Jumper et al., 2021]

I Queries, keys, values determined for Zij, 1 ≤ j ≤ r
I “Controlled” by biases computed from Pair-R

I Entirely analogous to row-wise self attention for MSA-R
I Difference: Replace rows in MSA-R with rows in Pair-R
I Ending node: Use columns, not rows in Pair-R



ALPHAFOLD: RESULTS

AlphaFold: Results
From [Jumper et al., 2021]

I Statistics from Critical Assessment of
Structure Prediction 14 (CASP-14)

I Regularly recurring, renowned
structure prediction competition

I X-axis: ID’s of ifferent competitors
I AlphaFold’s ID: G427

I Y-axis: Root-mean-square deviation,
measured in Ångström (= 10−10 m)

I Blue bar: median across 10 000
bootstrap samples

I Black line: 95% confidence interval
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Thanks for your attention!!


