Biological Applications of Deep Learning
Lecture 12

Alexander Schonhuth

UNIVERSITAT
BIELEFELD

s Faculty of Technology

Bielefeld University
January 18, 2023

CONTENTS TODAY

» Attention Mechanisms I

» Attention Scoring Functions
» Multi-Head Attention

» Encoder-Decoder Architectures

» Motivation: Sequence-2-Sequence Models
1= Translating Languages

» Architectural Details

» Origin: RNN based Architectures

» Contexts and Embeddings

» Attention Mechanisms II

» Bahdanau Attention
» Self Attention

UNIVERSITAT
BIELEFELD

REMINDER: NADARAYA-WATSON KERNEL
REGRESSION

From https://d21.ai

» Using a Gaussian kernel yields (dashed pink curve)

n

~ n exn(— L (x — i2
f(x)ZZa(x,xi)y,-:Z . p(—3(x —x)7) "

i=1 i=1 zj:l exp(—3 (¥ — x))?)

= Z softmax(f%(x —x:)%)yi

i=1

)

UNIVERSITAT
BIELEFELD

https://d2l.ai

Attention Scoring Functions

UNIVERSITAT
BIELEFELD

ATTENTION POOLING: DIGEST I

» Re-consider (1):
R n n 1
o) =3 alwxiys = 3 softmax(—)7y
1= =
» One can view «(x, x;) as
» an attention scoring function
1 2
a(x,x;) == —E(x — X;))
» that is further fed into a softmax operation, yielding

a(x, x;) = softmax(a(x, x;)) 3)

UNIVERSITAT
BIELEFELD

ATTENTION POOLING: DIGEST II

» One can view «a(x, x;) as
» an attention scoring function
1 2
a(x, %) 1= —5 (x = xi) (4)
» that is further fed into a softmax operation, yielding
a(x, x;) = softmax(a(x, x;)) (5)

» Result: Probability distribution

» over values y; paired with keys x; where
» probabilities are attention weights «(x, x;)

UNIVERSITAT
BIELEFELD

ATTENTION SCORING FUNCTIONS: MOTIVATION

Attention C I:l Ouiout

weights

Attention
scoring
function

L

Keys

Query
Output of attention pooling is weighted average of values
» Let x be query, and x; keys. Attention weights generally compute as

a(x, x;) = softmax(a(x, x;)) 6)

» Advantage: Freedom in choosing attention scoring functions a(x, x;)

UNIVERSITAT
BIELEFELD

ATTENTION POOLING: FORMAL SUMMARY

» Letq € R7be a query and (ki,v1), ..., (ku, viu), ki € R, v; € R’ be m
key-value pairs

» The attention pooling f computes as
m
f((L (klvvl) km7Vm ZCM q, Vz €ER’ 7)
i=1

» The attention weight a(q, k;) € R computes as

a(q, ki) = softmax(a(q, k;)) = Xy{exz(:}z)—((g,(l:)kj)) ®)
j=1 ’

» The attention scoring function a(q, k) maps two vectors to a scalar

a:RTx R — R)

UNIVERSITAT
BIELEFELD

ADDITIVE ATTENTION SCORING

» Let q € R7be a query and k € R be a key
> Let W, € R"™1 W, € R"* w, € R collect learnable parameters

» The additive attention scoring function computes as
a(q, k) = witanh(W,q + Wik) € R (10)

» Interpretation: (10) reflects running q, k through MLP

» Input: Concatenation of q and k

One hidden layer of width h

Parameters from input to hidden layer are W,, Wi

The activation function is tanh

Parameters from hidden to output layer captured by w,

vvyyvyy

UNIVERSITAT
BIELEFELD

SCALED DOT-PRODUCT ATTENTION SCORING

» Let q,k € R? be equal-sized query and key

» The scaled dot-product attention scoring function computes as
a(q.k) = q"k/Vd (11)

» Note: Dot product q’k has mean 0 and variance d
w Dividing by v/d implies standard deviation of 1
Minibatches:
» Computing attention for n queries and m keys at once

» For queries Q € R, keys K € R"*%, values V € R"*? compute

T
softmax(Q\;(E)V € R"™? (12)

UNIVERSITAT
BIELEFELD

Multi-Head Attention

UNIVERSITAT
BIELEFELD

MULTI-HEAD ATTENTION I

» Motivation: Capture different attention mechanisms for same
queries, keys, values

» Example: Attend to both short- and long-range dependencies in
sequential data

» Question: How to vary attention mechanisms in informed way?

UNIVERSITAT
BIELEFELD

MULTI-HEAD ATTENTION II

» Question: How to vary attention mechanisms in informed way?

» Solution:

>
>

>

>
>

Let / be intended number of attention mechanisms

Linearly transform queries, keys, values using & different sets of
matrices Wfq), W,.(k),W,.(”)7 i=1,..,h

Run the £ differently transformed queries, keys, values through
attention pooling

Transformations Wfq), Wi(k), Wl@, i=1,...,harelearnt

The h attention pooling outputs are concatenated, and linearly
transformed by another learned matrix W,

» Design is called multi-head attention

» Each of the & attention pooling outputs is referred to as a head

UNIVERSITAT
BIELEFELD

MULTI-HEAD ATTENTION III

» Letq € RY, k € R%, v € R% be query, key, value

> Let Wfq) e Rev<ds W ¢ Rpexde W) ¢ Rpexd collect learnable
parameters

» f is attention pooling, such as additive (10) or dot-product
attention (11)

» Each attention head is computed as

hi = f(W" q, Wk, Wv) € R (13)

UNIVERSITAT
BIELEFELD

MULTI-HEAD ATTENTION IV

| Attention | | Attention |

[Fc][Fc]| Fc] [Fc][Fc][Fc |

Queries Keys Values

From https://d21.ai

» Attention heads:

h = (W q, Wk Wv) € R (14)

» Initial "FC’ layers reflect operations Wl@q, Wi(k)k, Wi(v)v
> ’Attention’ layers reflect application of f to Wl.(q)q7 Wl@k, Wi(”)v

UNIVERSITAT
BIELEFELD

https://d2l.ai

MULTI-HEAD ATTENTION V

» Attention heads:

h; = (WP q, Wi, Wv) € P (15)

> Let W, € RP*M: collect further learnable parameters
» The multi-head attention output computes as
h,

W, || ern (16)
hy,

UNIVERSITAT
BIELEFELD

MULTI-HEAD ATTENTION II

Attention | | Attention |

[Fc][Fc][Fc] [Fc][Fc][Fc |

Queries Keys Values

From https://d21l.ai

» Multi-head attention output computes as
W,[h{,... . hf]" e R (17)

» ‘Concat’ layer reflects forming [h{, ..., hj]

» Final 'FC’ layer reflects application of W,

UNIVERSITAT
BIELEFELD

https://d2l.ai

Encoder-Decoder Architectures

UNIVERSITAT
BIELEFELD

Motivation: Sequence-2-Sequence Models

UNIVERSITAT
BIELEFELD

SEQUENCE-2-SEQUENCE MODELS I

» Motivation: Translate series of tokens into another series of
tokens

» Specific Example: Translate sentences from one language to
another

» Challenges:

» Input and output differ in length
» Sentences are unaligned (e.g. different grammar rules apply)

» Sequence-2-sequence models: neural networks accounting for
this

UNIVERSITAT
BIELEFELD

SEQUENCE-2-SEQUENCE MODELS II

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

SEQUENCE-2-SEQUENCE MODELS III

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

Encoder-Decoder Architecture

UNIVERSITAT
BIELEFELD

ENCODER-DECODER ARCHITECTURE I

Input | Encoder [—| State |—| Decoder [—| Output

From https://d21.ai

» Encoder:

» Takes input sentence
» Transforms it into context state

» Decoder:

» Takes context state as input
» Generates output sequence, token by token

UNIVERSITAT
BIELEFELD

https://d2l.ai

ENCODER-DECODER ARCHTITECTURE II

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

ENCODER-DECODER ARCHITECTURE III

From https://jalammar.github.io

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

Encoder-Decoder using RNN’s

UNIVERSITAT
BIELEFELD

ENCODER-DECODER: RNN REMINDER

Time step #1:

. 5 PPt
Iinput vector #1 : T

hidden hidden

input #1

hidden
state #1

output vector #1

From https://jalammar.github.io

Time step #1 shown; for time step #i,i > 1 in general:
» RNN takes in hidden state #(i — 1), input vector #i
» RNN generates hidden state #i, output vector #i

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

ENCODER-DECODER RNN I

From https://jalammar.github.io

» RNN Encoder:

» Uses sentence to translate as input
» Generates new hidden state each time step; no output

» RNN Decoder:

» Uses last hidden state of encoder as input
» Output is translated sentence

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

ENCODER-DECODER RNN II

From https://jalammar.github.io

» Unrolled view: Inputs and outputs per time step

» Not shown:

» Encoder stops when receiving “end-of-sequence” < eos > token
» Decoder stops when generating “end-of-sequence” < eos > token

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

ENCODER-DECODER: CONTEXT

-0.62

From https://jalammar.github.io

» Context vector is a real-valued vector

» Dimension of context = # hidden units in encoder RNN

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

ENCODER-DECODER: WORD EMBEDDING

[.
| W |
[
From https://jalammar.github.io
» Tokens are embedded using word embedding techniques
» Popular choice: Word2Vec (e.g. 15.1in https://d21.ai)

» Typical sizes of embedding vectors: 200 to 300

» Excellent pre-trained embeddings available

UNIVERSITAT
BIELEFELD

https://jalammar.github.io
https://d2l.ai

RNN ENCODER: FORMAL DESCRIPTION

Let x1, ..., xr be the input sequence, where x; is t-th token
Let x; be feature vector of x;, i.e. the embedding of x;

To generate hidden state ¢, the encoder computes at time step :

fxt;hia) (18)
where f expresses the transformation of the encoder’s recurrent layer

In general, the context variable ¢ is computed as
C:q(hl,...,hr) (19)
where g is a customized function

For example, often (e.g. in movies) ¢ = q(hy,...,hr) = hr

Remark: This refers to a unidirectional RNN
5 bidirectional RNN’s can be used as well

UNIVERSITAT

BIELEFELD

RNN DECODER: FORMAL DESCRIPTION

» Lety, ...,y be a target output sequence

» Training: y1, ..., yr reflects true sequence
» Prediction: y 41 predicted based on y1, ...,y

» Let ¢ be the context variable generated by encoder

» At time step t’ + 1, decoder computes
P P

P(y[/Jrl | yly"~7ytl7c) (20)

for all possible y, 41
» Given yy, the hidden state s,y _; and ¢, the RNN decoder computes

s = g(Ypr, ;8¢ _1) (21)

» Given sy, one uses output layer and softmax operation to compute (20)

UNIVERSITAT
BIELEFELD

TRAINING: TEACHER FORCING

Encoder Decoder
lls regardent . <eos>
- f t t 1 7 T 1 7
They are watching . <eos> | 0] 0
<bos> lls regardent .

From https://jalammar.github.io

» Training uses correctly translated sequence as output target sequence

» Teacher forcing: Input and output shifted by one position relative to each
other

» < bos > and < eos > mean beginning and end of sentence, resp.

» Given all prior words, decoder RNN trained to translate next word

UNIVERSITAT
BIELEFELD

https://jalammar.github.io

PREDICTION: TOKEN BY TOKEN

Encoder Decoder

lls regardent . <eos>

e ke

They are watching

<bos>

From https://d21.ai

» Predicted token y from previous step fed into decoder as input
» At the beginning, feed < bos > as input
» Simple strategy: Predict yy 1, that maximizes P(yy 41 | y1, ..., Yr, €)

» Beware: Resulting y1, ..., y7- may not maximize P(y, ..., y7/)
» More complex strategies available (e.g. https://d21.ai, 10.8)

» When < eos > is predicted, output is complete

UNIVERSITAT
BIELEFELD

https://d2l.ai
https://d2l.ai

Attention 11

UNIVERSITAT
BIELEFELD

Bahdanau Attention

UNIVERSITAT
BIELEFELD

BAHDANAU ATTENTION: MOTIVATION

» Encoder-decoder architectures work well for short sentences

» Long, complex sentences:

» Final encoder state too small to capture long sentence
» But, final state complete and only source of information

» In 2014, Bahdanau suggested a model that

> was inspired by the idea to align sequences / sentences
» is differentiable
» does not have the unidirectional alignment limitation

» When predicting a token, the model

» only aligns (attends) to parts of input sequence deemed relevant
» uses attention pattern to update current state before prediction

» Arguably, one of the most influential ideas in the last decade

UNIVERSITAT
BIELEFELD

BAHDANAU ATTENTION: FORMAL DEFINITION

vV v vy

Let h; be the hidden state of the encoder at time ¢t

Let si_1 be the hidden state of the decoder at time ¢/ — 1
Let ¢ be the context variable (i.e. state) after time ¢/
Taking sy _; as query, and h; as both key and value

T

Cy = Za(st'—l,ht)ht (22)

t=1
determines ¢ where T is the length of the input sequence

a reflects the additive attention scoring function (10)

» One further proceeds using formulas (20),(21)

UNIVERSITAT

BIELEFELD

BAHDANAU ATTENTION: SCHEMATIC

Encoder Decoder

[
| Aggregate | | FC

Recurrent xn

Recurrent

Embedding Embedding
Sources Targets

Schematic of Bahdanau Attention
From https://d21.ai

» One can integrate already generated tokens into attention (22): see
https://arxiv.org/pdf/1508.01211.pdf

UNIVERSITAT
BIELEFELD

https://d2l.ai
https://arxiv.org/pdf/1508.01211.pdf

Self-Attention

UNIVERSITAT
BIELEFELD

SELF-ATTENTION: DEFINITION

» Consider a sequence of tokens xq, ..., X, € R?
» Each token has its own query, key, and value

» Hence, each token can attend to each other token:

» Pair the query vector with the key of the other token
» This yields a weight for its own value

» Compute weighted sum of values as representation in next layer

UNIVERSITAT
BIELEFELD

SELF-ATTENTION: FORMAL SUMMARY

» Consider a sequence of tokens xq, ..., X, € R?
» Replace q with x and both k;, v; with x; in (7)
» One obtains a new sequence yi, ..., y, € RY by

n

yi = f(Xi, (X1,X1), e, (X, Xn)) = Za(xi,xj)xj e R’ (23)

=1

UNIVERSITAT
BIELEFELD

COMPUTATIONAL COMPLEXITY: COMPARISON I

From https://d21.ai

» Let n be the length of the sequence
» Let input/output tokens be represented by d-dimensional vectors

» For CNN’s, this agrees with the number of channels

UNIVERSITAT
BIELEFELD

https://d2l.ai

COMPUTATIONAL COMPLEXITY: COMPARISON II

elelelee

28822 o0
Q 40 Q

From https://d21l.ai

» Computational complexity: Number of arithmetic operations

» Sequential operations: Number of operations to be carried out
consecutively

» Sequential operations prevent parallelization

UNIVERSITAT
BIELEFELD

https://d2l.ai

COMPUTATIONAL COMPLEXITY: COMPARISON III

QQQO
OO

Self-attention

From https://d21l.ai

» Maximum path length: Maximum distance between two tokens

» Distance measured in terms of edges in schematic
» Long path length prevents mapping long-range dependencies

UNIVERSITAT
BIELEFELD

https://d2l.ai

COMPUTATIONAL COMPLEXITY: CNN’s

From https://d21.ai

» Let k be the filter size and d number of both input and output channels
» Computational complexity: O(knd”)

» Sequential operations: O(1)

» Maximum path length: O(n/k)

UNIVERSITAT
BIELEFELD

https://d2l.ai

COMPUTATIONAL COMPLEXITY: RNN'’s

From https://d21.ai

» Computational complexity: O(nd”); multiplying d x d weight matrix with
d-dimensional hidden state

» Sequential operations: O(n)
» Maximum path length: O(n)

UNIVERSITAT
BIELEFELD

https://d2l.ai

COMPUTATIONAL COMPLEXITY: SELF-ATTENTION

From https://d21.ai

» Queries, keys, values: n x d-matrices
» Computational complexity: O(n*d)
» Scaled dot-product attention: multiply n x d with d x n with n x d matrix

T
» Formula in compact form was softmax(%)v

[] umvg;k.mSequentzal operations and maximum path length: O(1)
BIELEFELD

https://d2l.ai

REFERENCES

» Jay Alammar’s ML blog: “Visualizing A Neural Machine
Translatlon MOdel”, S€E€ nhttps://jalammar.github.io/

visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

» http://d21.ai,11.4,11.5,11.6

UNIVERSITAT
BIELEFELD

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
http://d2l.ai

OUTLOOK

» Transformers
» Phyloformer: Reconstructing phylogenetic trees

» AlphaFold2: Predicting protein structure from sequence

UNIVERSITAT
BIELEFELD

Thanks for your attention

UNIVERSITAT
BIELEFELD

