Biological Applications of Deep Learning Lecture 11

Alexander Schönhuth

Bielefeld University January 11, 2023

CONTENTS TODAY

DiseaseCapsule

- Predicting ALS disease status from genotype profiles
- Using capsule networks for
 - enhanced prediction
 - enhanced interpretation and
 - economic training data usage
- Attention Mechanisms I
 - ▶ Basic Idea: Queries, Keys and Values
 - Nadaraya-Watson Regression
 - Attention Scoring Functions

Disease Capsule

Reference

 X. Luo, X. Kang, A. Schönhuth Predicting the prevalence of complex genetic diseases from individual genotype profiles using capsule networks Nature Machine Intelligence, to appear

Reminder: Learning the Genetic Architecture

THE GENETIC ARCHITECTURE OF ALS DEFINITION

Let *X* be all people, represented by their genotype profiles.

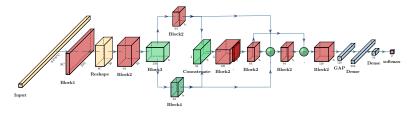
The *genetic architecture* f_{ALS} of ALS is a function

$$f_{\text{ALS}}: X \longrightarrow \{0, 1\}$$

where

$$f(x) = \begin{cases} 1 & x \text{ affected by ALS} \\ 0 & \text{otherwise} \end{cases}$$

PRIOR WORK: CONVOLUTIONAL NEURAL NETWORK [YIN ET AL, 2019]

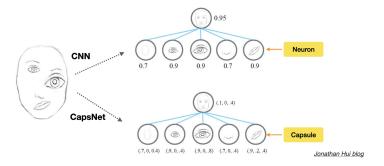


ALS-Net

- ► Advantage: Good accuracy (76.9%) in prediction using 4 chromosomes
- ► Disadvantages:
 - ► Black box character 🖙 interpretation of results impossible
 - Requires large amounts of training data
 - Whole genome input leads to overfitting
 - May get confused when combining effects

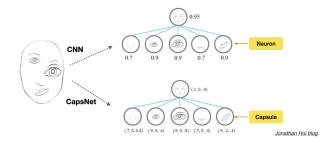
Capsule Networks – Motivation

CAPSULE NETWORKS: THEORETICAL ADVANTAGES



- Capsules = vector style neurons; can handle distortions and overlaps
- ▶ Point out natural ways to interpret results 🖙 break open black box
- Require sufficiently less training data and are more accurate

CAPSULE NETWORKS: MOTIVATION



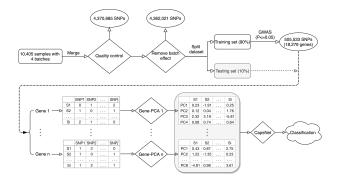
► *Goal:* enable whole genome input processing *without confusion*

- Map spatially local structures intrinsically present across genomes
- Map hierarchical structures corresponding to protein complexes, pathways, processes, compartments
- Reasonable, meaningful interpretation of results
- Less training data reprevents generation of massive cohorts

UNIVERSITÄT BIELEFELD

Methods

WORKFLOW



Feature selection:

- Standard routines for discarding irrelevant SNP's
- ▶ Novel: Gene-PCA reduces dimensionality while preserving non-linearity

GENE-PCA: PROTOCOL I

- Let $M \approx 20\,000$ be the number of genes of the human genome
- ► One can assign a region C_i of the genome to each gene g_i, i = 1, ..., M
 - ► The *C_i* are supposed to be non-overlapping
 - ► Together, the *C_i* are supposed to span the entire genome
- Let N_i be the number of polymorphic sites contained in C_i
 - ▶ If *N* is the number of polymorphic sites overall, then

$$N = \sum_{i=1}^{M} N_i$$

GENE-PCA: PROTOCOL II

 Let N_i be the number of polymorphic sites contained in gene region C_i

• If *N* is the number of polymorphic sites overall, then $N = \sum_{i=1}^{M} N_i$

• Let $X \in \{0, 1, 2\}^N$ be an individual genotype profile

► Let

$$X(i) \in \{0, 1, 2\}^{N_i} \quad \text{where} \quad X(i)[j] = X[\sum_{k < i} N_k + j], j = 1, ..., N_i$$
(1)

be the vector whose entries correspond to the genotypes referring to the polymorphic sites in the contiguous region C_i

GENE-PCA: PROTOCOL III

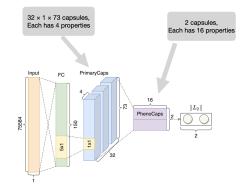
GENE-PCA

- Let \mathcal{X} be all genotype profiles
- ► Let $X(i) := {X(i) | X \in X}$ be all partial genotype profiles, see (1)
- For each gene g_i , i = 1, ..., M, do
 - 1. Apply principal component analysis (PCA) to $\mathcal{X}(i)$
 - 2. Depending on $1 \le N_i \le 4$ (a), $4 < N_i \le 20$ (b) or $N_i > 20$ (c), keep 1 (a), 4 (b) or 8 (c) principal components (PC's)
- ► This yielded 75584 PC's overall
- Representing each $X \in \mathcal{X}$ over the 75584 PC's turns

$$X \in \{0, 1, 2\}^N$$
 into $\tilde{X} \in \mathbb{R}^{75584}$

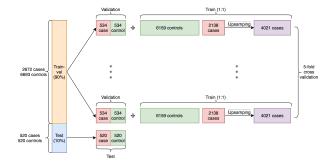
• Continue using \tilde{X} , instead of X as input

DISEASECAPSULE: NETWORK ARCHITECTURE



- Design: Adopted from seminal work [Sabour et al, 2017]
- ► Input: Vector of length 75584 🖙 entries corresponding to Gene-PC's
- Output: Binary-valued, indicating disease or not
- UNIVERSITÄT BIELEFELD

DISEASECAPSULE: TRAINING AND TESTING



- ► Training: 5-fold cross-validation
- ► *Testing:* Balanced test data set

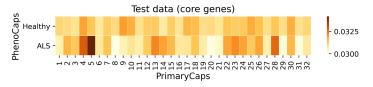
Results

CLASSIFICATION PERFORMANCE

Dir	nension reduction	Classifier	Accuracy	Precision	Recall	F1-Score
	Gene-PCA	DiseaseCapsule	86.9	85.2	89.4	87.2
	Gene-PCA	MLP	84.2	92.2	74.8	82.6
	Gene-PCA	Logistic Regression	78.2	71.1	94.8	81.3
	Gene-PCA	SVM	76.3	94.8	55.8	70.3
	Gene-PCA	CNN	74.5	86.1	58.5	69.7
	Gene-PCA	Random Forest	63.3	73.0	42.1	53.4
	Gene-PCA	AdaBoost	62.7	86.3	30.2	44.7
	All-PCA	DiseaseCapsule	81.9	80.7	83.8	82.2
	All-PCA	Logistic Regression	78.1	70.7	96.0	81.4
	All-PCA	SVM	76.3	94.8	55.8	70.3
	All-PCA	MLP	72.5	85.2	54.4	66.4
	All-PCA	AdaBoost	67.6	84.8	42.9	57.0
	All-PCA	Random Forest	64.1	73.3	44.4	55.3
	All-PCA	CNN	53.8	54.8	42.5	47.9
	-	Logistic Regression ^{a}	81.8	91.5	70.2	79.4
	-	Logistic Regression ^{b}	78.5	84.4	69.8	76.4
	-	Logistic Regression c	74.2	76.8	69.4	72.9
	-	${\rm Logistic}~{\rm Regression}^d$	63.5	63.5	63.3	63.4

Gene-PCA + DiseaseCapsule outperform alternative approaches

INTERPRETABILITY – 922 DECISIVE GENES I

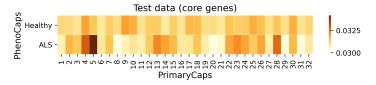


Strong link between primary capsule 5 and ALS pheno capsule

Selecting Genes that Drive Accurate Prediction: Protocol

- ▶ Primary capsule 5 activated by gene ensemble decisive for calling 'ALS'
- Select 922 genes that activate primary capsule 5 the most
- ► Annotating 922 genes revealed various reasonable, associated GO terms

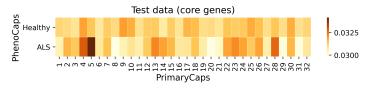
INTERPRETABILITY – 922 DECISIVE GENES I



Strong link between primary capsule 5 and ALS pheno capsule

- Primary capsule 5 activated by gene ensemble decisive for calling 'ALS'
- Select 922 genes that activate primary capsule 5 the most
- Annotating 922 genes revealed various reasonable, associated GO terms

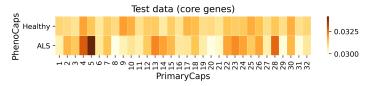
INTERPRETABILITY – 922 DECISIVE GENES II



Strong link between primary capsule 5 and ALS pheno capsule

- ▶ Compute c_{ij} , $i = 1, ..., 32, j \in \{\text{Healthy}, \text{ALS}\}$ for each test sample
 - ▶ Remember that *c*_{ij} are determined individually for each sample
- Average c_{ij} obtained across all (here: 1040) test samples $\mathcal{X}_{\text{test}}$
- ► *Figure*: Averages for each combination *i* and *j*
- *Result:* c_{ij} is greatest for i = 5, j = ALS

INTERPRETABILITY – 922 DECISIVE GENES III



Strong link between primary capsule 5 and ALS pheno capsule

Selecting Genes that Drive Accurate Prediction: Protocol

- Primary capsule 5 activated by gene ensemble decisive for calling 'ALS'
- Select 922 genes that activate primary capsule 5 the most
- Annotating 922 genes revealed various reasonable, associated GO terms

INTERPRETABILITY – 922 DECISIVE GENES IV

- Consider a sample $\mathbf{x} \in \mathbb{R}^{75584}$ and one gene *g*
- Let $\mathbf{x}[n_g + 1], ..., \mathbf{x}[n_g + j_g]$ refer to the PC's of g
 - $n_g + 1$ indicates the position of the first PC of *g* within **x**
 - ▶ *Recall:* $j_g \in \{1, 4, 8\}$, depending on number of variants in *g*

• Let
$$\mathbf{x}(g) \in \mathbb{R}^{75584}$$
 be defined by

$$\mathbf{x}(g) = [0, ..., 0, \mathbf{x}[n_g + 1], ..., \mathbf{x}[n_g + j_g], 0, ..., 0]$$
(2)

That is, all but the entries referring to *g* in **x** are turned to zero

INTERPRETABILITY – 922 DECISIVE GENES V

- ▶ Run trained Disease Capsule on all **x**(*g*) across all **x** and *g*
- Yields $c_{ij}^{\mathbf{x}(g)}$ for all combinations of i, j, g, \mathbf{x}
- For each gene *g*, average resulting $c_{5,ALS}^{\mathbf{x}(g)}$ across all \mathbf{x}

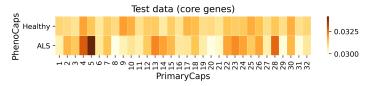
$$c_{5,\text{ALS}}^{g} = \frac{1}{|\mathcal{X}_{\text{test}}| = 1040} \sum_{\mathbf{x} \in \mathcal{X}_{\text{test}}} c_{5,\text{ALS}}^{\mathbf{x}(g)}$$
(3)

yielding gene specific coupling coefficients $c_{5,ALS}^g$ for each g

► Keep the top 5% genes that yield the largest $c_{5,ALS}^g$

I Result: 922 genes

INTERPRETABILITY – 922 Decisive Genes VI



Strong link between primary capsule 5 and ALS pheno capsule

Selecting Genes that Drive Accurate Prediction: Protocol

- Primary capsule 5 activated by gene ensemble decisive for calling 'ALS'
- Select 922 genes that activate primary capsule 5 the most
- Annotating 922 genes revealed reasonable gene ontology (GO) terms

INTERPRETABILITY – 922 DECISIVE GENES VII

nervous system development	GO:0007399	2.454×10 ⁻¹³
neurogenesis	GO:0022008	2.655×10 ⁻¹¹
neuron differentiation	GO:0030182	3.942×10 ⁻¹¹
generation of neurons	GO:0048699	2.367×10 ⁻¹⁰
neuron projection development	GO:0031175	2.801×10 ⁻⁹
neuron development	GO:0048666	5.736×10 ⁻⁹
anatomical structure development	GO:0048856	6.961×10 ⁻⁹
system development	GO:0048731	4.750×10 ⁻⁸
multicellular organism development	GO:0007275	1.937×10 ⁻⁷
developmental process	GO:0032502	3.128×10 ⁻⁷
central nervous system development	GO:0007417	5.386×10 ⁻⁷
cell morphogenesis	GO:0000902	2.398×10 ⁻⁶

First 12 GO Terms Associated with 922 Decisive Genes 1st / 2nd column: GO term / GO identifier 3rd, 4th column: significance of association

- Many annotations related with nervous system
- Conclusion: Extraction of biomedical meaning from network possible

DISCOVERING 644 "NON-ADDITIVE" GENES

- ► Let *G* be the set of all 18 279 genes
- Let $S \subset G$ denote a subset of genes
- ► Let ACC_{DC}(*S*) be the training accuracy achieved by Gene-PCA + DiseaseCapsule (DC) on genes *S*
- ► Let ACC_{LR}(*S*) be the training accuracy of Gene-PCA + LogisticRegression (LR) on genes *S*
- ► *Goal:* Determine

$$\underset{S \subset G}{\arg\max} \operatorname{ACC}_{\operatorname{DC}}(S) - \operatorname{ACC}_{\operatorname{LR}}(S)$$
(4)

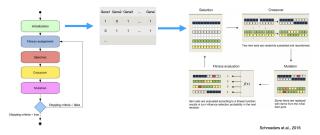
DISCOVERING 644 "NON-ADDITIVE" GENES

► *Goal:* Determine

$$\underset{S \subset G}{\operatorname{arg\,max}\,\operatorname{ACC}_{\operatorname{DC}}(S)} - \operatorname{ACC}_{\operatorname{LR}}(S)$$

- The resulting S yields the greatest difference in performance between DC and LR
- ► *Insight:* This *S* must bring up non-additive effects to do this
- *Question:* How to determine the optimal *S*?

DISCOVERING 644 "NON-ADDITIVE" GENES



Genetic Algorithm: Workflow

- ► Idea: Use genetic algorithm for determining S that maximizes ACC_{DC}(S) - ACC_{LR}(S)
- ▶ *Result:* 644 genes yield maximal gain of non-linear DC over linear LR

DISCOVERING 644 "NON-ADDITIVE" GENES II

Model	Accuracy	precison	Recall	
LogisticReg	0.512	0.522	0.292	
DiseaseCapsule	0.712	0.715	0.706	
Difference	0.200	0.193	0.414	

Classification Performance on 644 "Non-Additive" Genes

- *Experiment:* Retrain DiseaseCapsule and Logistic Regression using only 644 "non-additive" genes
- ► Result:
 - ▶ 644 "non-additive" genes do not work in linear regression scheme
 - ► 644 "non-additive" genes work excellently in DiseaseCapsule

DISEASECAPSULE NEEDS LESS TRAINING DATA

DR Classifiers	Gene-PCA DiseaseCapsule	Gene-PCA MLP	Gene-PCA LR	Gene-PCA SVM	Gene-PCA CNN	- PRS*
5%	$\textbf{74.0} \pm 1.4$	61.5 ± 1.1	69.1 ± 0.5	50.0 ± 0.0	53.7 ± 2.0	60.1 ± 1.1
10%	$\textbf{79.0} \pm 0.8$	66.0 ± 0.9	72.1 ± 0.5	53.2 ± 0.3	56.2 ± 1.6	67.0 ± 0.8
20%	81.3 ± 0.6	71.4 ± 0.6	73.4 ± 0.3	61.4 ± 0.2	61.7 ± 2.0	71.9 ± 0.8
40%	$\textbf{83.5}\pm0.5$	76.5 ± 0.6	74.6 ± 0.4	67.3 ± 0.3	66.8 ± 0.9	76.9 ± 0.9
60%	84.2 ± 0.3	79.9 ± 0.7	76.1 ± 0.3	71.1 ± 0.1	70.2 ± 1.3	79.3 ± 0.6
80%	$\textbf{85.1}\pm0.4$	81.5 ± 0.6	76.7 ± 0.3	73.2 ± 0.2	72.3 ± 1.1	80.8 ± 0.5
100%	$\textbf{86.3}\pm0.3$	83.6 ± 0.9	78.6 ± 0.3	76.1 ± 0.2	73.7 ± 0.7	81.9 ± 0.3

Classification Performance Relative to Size of Training Data

- DC's performance stable on decreasing training data
- Other methods: performance collapses
- Only *exception:* logistic regression (LR)

DISEASECAPSULE: SUMMARY

- DiseaseCapsule shows superior accuracy in prediction
- DiseaseCapsule opens up interesting ways for interpreting results
 - DiseaseCapsule reveals genes that are decisive for classification
 - DiseaseCapsule reveals genes that do not add up their effects
- DiseaseCapsule requires less training data

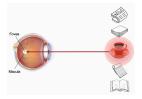
Attention

Attention: Biological Motivation

ATTENTION: MOTIVATION I

- Optic nerve receives 10⁸ bits per second
- *Challenge:* Distinguish between important and irrelevant information
- ► Solution: Attention
 - Brain focuses on only a fraction of information
 - Smart usage of resources
 - Brain needs to know where to direct attention
- ► Idea: William James, "father of American psychology", 1890's
- ▶ Distinguish between *non-volitional* and *volitional cues*
 - They trigger subconscious and conscious actions

ATTENTION: NONVOLITIONAL CUES

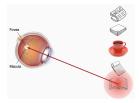


Nonvolitional cue: eye directs attention *non-voluntarily* to red coffee cup

From https://d2l.ai

- Nonvolitional cues based on saliency / conspicuity of objects
- ► Example:
 - Papers on desk black and white
 - Coffee cup red
 - Consequence: Eye "sees" coffee cup first
 Person grabs and drinks coffee

ATTENTION: VOLITIONAL CUES



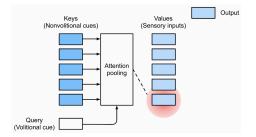
Deliberately searching for entertainment, eye *voluntarily* directs attention to book

From https://d2l.ai

- Done with coffee, brain wants entertainment
- ► Consequence: Eye "sees" book in a deliberate attempt
- ► Task-oriented search:
 - Brain pre-trained to recognize objects that promise entertainment
 - Selection of book under full cognitive and volitional control

Queries, Keys and Values

ATTENTION: QUERIES, KEYS AND VALUES I

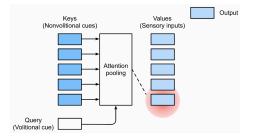


Attention pooling: integrating queries with keys (input) and values (output)

- Ordinary networks reflect non-volitional attention
- *Examples:* Convolutional and fully connected networks
- ► Goal: Model volitional attention cues and integrate them appropriately

ATTENTION: QUERIES, KEYS AND VALUES II

SOLUTION

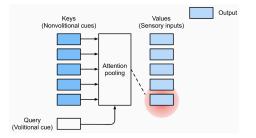


Attention pooling: integrating queries with keys (input) and values (output)

- ▶ Input / output ordinary neurons: keys and values
- Keys and values come in pairs
- Volitional cues = queries
- Model patterned after searches in databases
- UNIVERSITÄT BIELEFELD

ATTENTION: QUERIES, KEYS AND VALUES III

ATTENTION POOLING

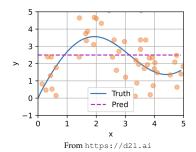


Attention pooling: integrating queries with keys (input) and values (output)

- Computes attention weights for each key
- Attention weight reflects compatibility of key and query
- Attention pooling computes weighted sum of values
- Output dominated by value whose key matches query best
 RSITÄT
 RELD

Attention Pooling

ATTENTION AVERAGE POOLING



- Truth: $y = f(x) := 2\sin(x) + x^{0.8}$ (blue)
- Data points (x_i, y_i) sampled from y_i = f(x_i) + ε where ε follows normal distribution with μ = 0, σ = 0.5 (orange dots)
- *Prediction:* $\hat{f}(x) := \sum_{i=1}^{n} y_i$ where n = # training data (dashed pink)

Reflects unweighted average pooling

► *Conclusion:* Unweighted average pooling not necessarily good idea UNIVERSITÄT BELEFELD

NADARAYA-WATSON KERNEL REGRESSION I

- Let K(.) be a *kernel*
- ► Kernel properties:
 - $K(x) \to 0$ for $|x| \to \infty$
 - ► *K*(0) is maximum
- ► Example: Gaussian kernel

$$K(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2})$$
 (5)

► Nadaraya-Watson kernel regression: For unseen *x*, determine

$$\hat{f}(x) = \sum_{i=1}^{n} \frac{K(x - x_i)}{\sum_{j=1}^{n} K(x - x_j)} y_i$$
(6)

where $(x_i, y_i), i = 1, ..., n$ are the training data points

NADARAYA-WATSON KERNEL REGRESSION II

► Nadaraya-Watson kernel regression: For unseen *x*, determine

$$\hat{f}(x) = \sum_{i=1}^{n} \frac{K(x-x_i)}{\sum_{j=1}^{n} K(x-x_j)} y_i$$
(7)

where $(x_i, y_i), i = 1, ..., n$ are the training data points

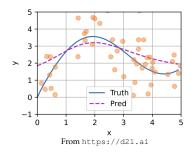
This agrees with general concept of attention pooling

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i \tag{8}$$

where *x* is query, and (x_i, y_i) are key-value pairs

Value y_i receives more weight the closer its key x_i to x

NADARAYA-WATSON KERNEL REGRESSION III

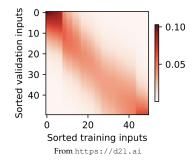


▶ Plugging the Gaussian kernel (5) into (7),(8) yields (dashed pink curve)

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i = \sum_{i=1}^{n} \frac{\exp(-\frac{1}{2}(x - x_i)^2)}{\sum_{j=1}^{n} \exp(-\frac{1}{2}(x - x_j)^2)} y_i$$

$$= \sum_{i=1}^{n} \operatorname{softmax}(-\frac{1}{2}(x - x_i)^2) y_i$$
(9)

NADARAYA-WATSON KERNEL REGRESSION IV



- 50 training data points (x_i, y_i)
- ► 50 validation data points *x*
- ► Sort training and validation data by *x_i* and *x* resp.
- Plot $\alpha(x, x_i) = \sum_{i=1}^n \operatorname{softmax}(-\frac{1}{2}(x x_i)^2)$ for each pair (x_i, x)

NADARAYA-WATSON KERNEL REGRESSION V

Nadaraya-Watson kernel regression

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i = \sum_{i=1}^{n} \frac{K(x - x_i)}{\sum_{j=1}^{n} K(x - x_j)} y_i$$
(10)

is an example of nonparametric attention pooling

- ► Benefit: Converges to true function on increasing training data
 - Reminder: Training data reflect key-value pairs
- ► *Disadvantage:* There are no learnable parameters

PARAMETRIC ATTENTION POOLING I

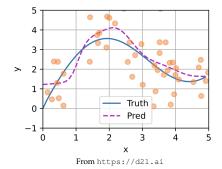
► Integration of a learnable parameter *w* into (9) yields

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i = \sum_{i=1}^{n} \frac{\exp(-\frac{1}{2}((x - x_i)w)^2)}{\sum_{j=1}^{n} \exp(-\frac{1}{2}((x - x_j)w)^2)} y_i$$

$$= \sum_{i=1}^{n} \operatorname{softmax}(-\frac{1}{2}((x - x_i)w)^2) y_i$$
(11)

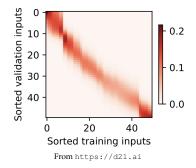
- ► The parameter *w* can be learnt via (stochastic) gradient descent
- ► *w* reflects influence span of keys on queries
 - Number of influential keys decreases on increasing w

PARAMETRIC ATTENTION POOLING II



Predicted curve is less smooth than nonparametric counterpart

PARAMETRIC ATTENTION POOLING III



- Training / validation procedure analogous to nonparametric setting
- ► However, training includes learning parameter *w*
- Region with larger attention weights sharper in parametric setting

Attention Scoring Functions

ATTENTION POOLING: DIGEST I

► Re-consider (9):

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha(x, x_i) y_i = \sum_{i=1}^{n} \operatorname{softmax}(-\frac{1}{2}(x - x_i)^2) y_i$$

• One can view $\alpha(x, x_i)$ as

an attention scoring function

$$a(x, x_i) := -\frac{1}{2}(x - x_i)^2$$
(12)

that is further fed into a softmax operation, yielding

$$\alpha(x, x_i) = \operatorname{softmax}(a(x, x_i))$$
(13)

ATTENTION POOLING: DIGEST II

- One can view $\alpha(x, x_i)$ as
 - an attention scoring function

$$a(x, x_i) := -\frac{1}{2}(x - x_i)^2 \tag{14}$$

$$a(x, x_i) := -\frac{1}{2}(x - x_i)^2 \tag{14}$$

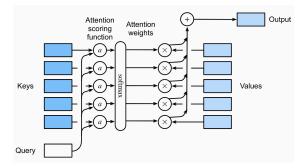
$$\alpha(x, x_i) = \operatorname{softmax}(a(x, x_i))$$
(15)

- Result: Probability distribution
 - over values y_i paired with keys x_i where

that is further fed into a softmax operation, yielding

• probabilities are attention weights $\alpha(x, x_i)$

ATTENTION SCORING FUNCTIONS: MOTIVATION



Output of attention pooling is weighted average of values

▶ Let *x* be query, and *x*^{*i*} keys. Attention weights generally compute as

$$\alpha(x, x_i) = \operatorname{softmax}(a(x, x_i)) \tag{16}$$

Advantage: Freedom in choosing attention scoring functions $a(x, x_i)$

ATTENTION POOLING: FORMAL SUMMARY

- Let $\mathbf{q} \in \mathbb{R}^q$ be a query and $(\mathbf{k}_1, \mathbf{v}_1), ..., (\mathbf{k}_m, \mathbf{v}_m), \mathbf{k}_i \in \mathbb{R}^k, \mathbf{v}_i \in \mathbb{R}^v$ be *m* key-value pairs
- The attention pooling f computes as

$$f(\mathbf{q}, (\mathbf{k}_1, \mathbf{v}_1), ..., (\mathbf{k}_m, \mathbf{v}_m)) = \sum_{i=1}^m \alpha(\mathbf{q}, \mathbf{k}_i) \mathbf{v}_i \in \mathbb{R}^v$$
(17)

• The *attention weight* $\alpha(\mathbf{q}, \mathbf{k}_i) \in \mathbb{R}$ computes as

$$\alpha(\mathbf{q}, \mathbf{k}_i) = \operatorname{softmax}(a(\mathbf{q}, \mathbf{k}_i)) = \frac{\exp(a(\mathbf{q}, \mathbf{k}_i))}{\sum_{j=1}^{m} \exp(a(\mathbf{q}, \mathbf{k}_j))}$$
(18)

▶ The *attention scoring function a*(**q**, **k**) maps two vectors to a scalar

$$a: \mathbb{R}^q \times \mathbb{R}^k \longrightarrow \mathbb{R}$$
(19)

ADDITIVE ATTENTION SCORING

- Let $\mathbf{q} \in \mathbb{R}^q$ be a query and $\mathbf{k} \in \mathbb{R}^k$ be a key
- ► Let $\mathbf{W}_q \in \mathbb{R}^{h \times q}$, $\mathbf{W}_k \in \mathbb{R}^{h \times k}$, $\mathbf{w}_v \in \mathbb{R}^h$ collect learnable parameters
- ► The *additive attention scoring function* computes as

$$a(\mathbf{q}, \mathbf{k}) = \mathbf{w}_v^T \tanh(\mathbf{W}_q \mathbf{q} + \mathbf{W}_k \mathbf{k}) \in \mathbb{R}$$
(20)

- ► *Interpretation:* (20) reflects running **q**, **k** through MLP
 - ► *Input:* Concatenation of **q** and **k**
 - ► One *hidden layer* of width *h*
 - Parameters from input to hidden layer are W_q, W_k
 - The activation function is tanh
 - Parameters from hidden to output layer captured by w_v

SCALED DOT-PRODUCT ATTENTION SCORING

- Let $\mathbf{q}, \mathbf{k} \in \mathbb{R}^d$ be *equal-sized* query and key
- ► The *scaled dot-product attention scoring function* computes as

$$a(\mathbf{q}, \mathbf{k}) = \mathbf{q}^T \mathbf{k} / \sqrt{d}$$
(21)

Note: Dot product q^Tk has mean 0 and variance d
 Dividing by \(\sqrt{d}\) implies standard deviation of 1

Minibatches:

- Computing attention for *n* queries and *m* keys at once
- ► For queries $\mathbf{Q} \in \mathbb{R}^{n \times d}$, keys $\mathbf{K} \in \mathbb{R}^{m \times d}$, values $\mathbf{V} \in \mathbb{R}^{m \times v}$ compute

softmax
$$(\frac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{d}})\mathbf{V} \in \mathbb{R}^{n \times v}$$
 (22)

Multi-Head Attention

MULTI-HEAD ATTENTION I

- Motivation: Capture different attention mechanisms for same queries, keys, values
- *Example:* Attend to both short- and long-range dependencies in sequential data
- *Question:* How to vary attention mechanisms in informed way?

MULTI-HEAD ATTENTION II

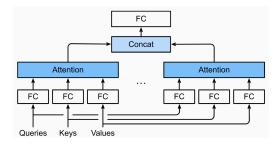
- Question: How to vary attention mechanisms in informed way?
- ► Solution:
 - Let *h* be intended number of attention mechanisms
 - Linearly transform queries, keys, values using h different sets of matrices W_i^(q), W_i^(k), W_i^(v), i = 1, ..., h
 - Run the *h* differently transformed queries, keys, values through attention pooling
 - ► Transformations $\mathbf{W}_{i}^{(q)}, \mathbf{W}_{i}^{(k)}, \mathbf{W}_{i}^{(v)}, i = 1, ..., h$ are learnt
 - The *h* attention pooling outputs are concatenated, and linearly transformed by another learned matrix W_o
- Design is called *multi-head attention*
- Each of the *h* attention pooling outputs is referred to as a *head*

MULTI-HEAD ATTENTION III

- ▶ Let $\mathbf{q} \in \mathbb{R}^{d_q}$, $\mathbf{k} \in \mathbb{R}^{d_k}$, $\mathbf{v} \in \mathbb{R}^{d_v}$ be query, key, value
- ► Let $\mathbf{W}_{i}^{(q)} \in \mathbb{R}^{p_{q} \times d_{q}}, \mathbf{W}_{i}^{(k)} \in \mathbb{R}^{p_{k} \times d_{k}}, \mathbf{W}_{i}^{(v)} \in \mathbb{R}^{p_{v} \times d_{v}}$ collect learnable parameters
- ► *f* is attention pooling, such as additive (20) or dot-product attention (21)
- Each attention head is computed as

$$\mathbf{h}_{i} = f(\mathbf{W}_{i}^{(q)}\mathbf{q}, \mathbf{W}_{i}^{(k)}\mathbf{k}, \mathbf{W}_{i}^{(v)}\mathbf{v}) \in \mathbb{R}^{p_{v}}$$
(23)

Multi-Head Attention IV



From https://d21.ai

Attention heads:

$$\mathbf{h}_{i} = f(\mathbf{W}_{i}^{(q)}\mathbf{q}, \mathbf{W}_{i}^{(k)}\mathbf{k}, \mathbf{W}_{i}^{(v)}\mathbf{v}) \in \mathbb{R}^{p_{v}}$$
(24)

► Initial 'FC' layers reflect operations $\mathbf{W}_i^{(q)}\mathbf{q}, \mathbf{W}_i^{(k)}\mathbf{k}, \mathbf{W}_i^{(v)}\mathbf{v}$

• 'Attention' layers reflect application of f to $\mathbf{W}_{i}^{(q)}\mathbf{q}, \mathbf{W}_{i}^{(k)}\mathbf{k}, \mathbf{W}_{i}^{(v)}\mathbf{v}$

MULTI-HEAD ATTENTION V

Attention heads:

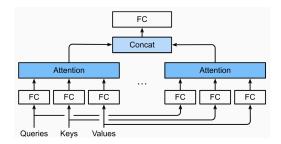
$$\mathbf{h}_{i} = f(\mathbf{W}_{i}^{(q)}\mathbf{q}, \mathbf{W}_{i}^{(k)}\mathbf{k}, \mathbf{W}_{i}^{(v)}\mathbf{v}) \in \mathbb{R}^{p_{v}}$$
(25)

• Let $\mathbf{W}_o \in \mathbb{R}^{p_o \times hp_v}$ collect further learnable parameters

The multi-head attention output computes as

$$\mathbf{W}_{o}\begin{bmatrix}\mathbf{h}_{1}\\\vdots\\\mathbf{h}_{h}\end{bmatrix}\in\mathbb{R}^{p_{o}}$$
(26)

MULTI-HEAD ATTENTION II



From https://d21.ai

Multi-head attention output computes as

$$\mathbf{W}_{o}[\mathbf{h}_{1}^{T},...,\mathbf{h}_{h}^{T}]^{T} \in \mathbb{R}^{p_{o}}$$

$$(27)$$

- 'Concat' layer reflects forming [**h**₁^T, ..., **h**_h^T]
- ► Final 'FC' layer reflects application of **W**_o

UNIVERSITÄT BIELEFELD

References

http://d2l.ai, 10.6, 10.7, 11.1–11.3, 11.5

Outlook

- ► Sequence-2-Sequence Models
- Attention Mechanisms II
- Biological Applications

Thanks for your attention

