
Biological Applications of Deep Learning
Lecture 11

Alexander Schönhuth

Bielefeld University
January 11, 2023

CONTENTS TODAY

I DiseaseCapsule
I Predicting ALS disease status from genotype profiles
I Using capsule networks for

I enhanced prediction
I enhanced interpretation and
I economic training data usage

I Attention Mechanisms I
I Basic Idea: Queries, Keys and Values
I Nadaraya-Watson Regression
I Attention Scoring Functions

Disease Capsule

Reference
I X. Luo, X. Kang, A. Schönhuth

Predicting the prevalence of complex genetic diseases from individual genotype
profiles using capsule networks
Nature Machine Intelligence, to appear

Reminder: Learning the Genetic Architecture

THE GENETIC ARCHITECTURE OF ALS
DEFINITION

Let X be all people, represented by their genotype profiles.

The genetic architecture fALS of ALS is a function

fALS : X −→ {0, 1}

where

f (x) =

{
1 x affected by ALS
0 otherwise

PRIOR WORK: CONVOLUTIONAL NEURAL NETWORK
[YIN ET AL, 2019]

64
*8
*C

Input

25
68C

Block1

8C

16

Reshape

64
16

Block2

256
4

Block3

64
4

Block2

64
4

Block4

64

8
4

Concatenate

128

8
4

Block2

64
4

Block2

+

64
4

Block2

+

128
4

Block2

128

GAP
256

Dense

16

Dense

2

softmax

ALS-Net

I Advantage: Good accuracy (76.9%) in prediction using 4 chromosomes

I Disadvantages:
I Black box character + interpretation of results impossible
I Requires large amounts of training data
I Whole genome input leads to overfitting
I May get confused when combining effects

Capsule Networks – Motivation

CAPSULE NETWORKS: THEORETICAL ADVANTAGES

I Capsules = vector style neurons; can handle distortions and overlaps
I Point out natural ways to interpret results + break open black box
I Require sufficiently less training data and are more accurate

CAPSULE NETWORKS: MOTIVATION

I Goal: enable whole genome input processing without confusion
I Map spatially local structures intrinsically present across genomes
I Map hierarchical structures corresponding to protein complexes,

pathways, processes, compartments

I Reasonable, meaningful interpretation of results
I Less training data + prevents generation of massive cohorts

Methods

WORKFLOW

Feature selection:

I Standard routines for discarding irrelevant SNP’s

I Novel: Gene-PCA reduces dimensionality while preserving non-linearity

GENE-PCA: PROTOCOL I

I Let M ≈ 20 000 be the number of genes of the human genome

I One can assign a region Ci of the genome to each gene
gi, i = 1, ...,M

I The Ci are supposed to be non-overlapping
I Together, the Ci are supposed to span the entire genome

I Let Ni be the number of polymorphic sites contained in Ci

I If N is the number of polymorphic sites overall, then

N =

M∑
i=1

Ni

GENE-PCA: PROTOCOL II

I Let Ni be the number of polymorphic sites contained in gene
region Ci

I If N is the number of polymorphic sites overall, then N =
∑M

i=1 Ni

I Let X ∈ {0, 1, 2}N be an individual genotype profile

I Let

X(i) ∈ {0, 1, 2}Ni where X(i)[j] = X[
∑
k<i

Nk + j], j = 1, ...,Ni

(1)
be the vector whose entries correspond to the genotypes
referring to the polymorphic sites in the contiguous region Ci

GENE-PCA: PROTOCOL III

GENE-PCA
I Let X be all genotype profiles
I Let X (i) := {X(i) | X ∈ X} be all partial genotype profiles, see (1)

I For each gene gi, i = 1, ...,M, do
1. Apply principal component analysis (PCA) to X (i)
2. Depending on 1 ≤ Ni ≤ 4 (a), 4 < Ni ≤ 20 (b) or Ni > 20 (c), keep 1 (a), 4

(b) or 8 (c) principal components (PC’s)

I This yielded 75584 PC’s overall
I Representing each X ∈ X over the 75584 PC’s turns

X ∈ {0, 1, 2}N into X̃ ∈ R75584

I Continue using X̃, instead of X as input

DISEASECAPSULE: NETWORK ARCHITECTURE

I Design: Adopted from seminal work [Sabour et al, 2017]
I Input: Vector of length 75584 + entries corresponding to Gene-PC’s
I Output: Binary-valued, indicating disease or not

DISEASECAPSULE: TRAINING AND TESTING

I Training: 5-fold cross-validation
I Testing: Balanced test data set

Results

CLASSIFICATION PERFORMANCE

Gene-PCA + DiseaseCapsule outperform alternative approaches

INTERPRETABILITY – 922 DECISIVE GENES I

Strong link between primary capsule 5 and ALS pheno capsule

Selecting Genes that Drive Accurate Prediction: Protocol

I Primary capsule 5 activated by gene ensemble decisive for calling ’ALS’
I Select 922 genes that activate primary capsule 5 the most
I Annotating 922 genes revealed various reasonable, associated GO terms

INTERPRETABILITY – 922 DECISIVE GENES I

Strong link between primary capsule 5 and ALS pheno capsule

I Primary capsule 5 activated by gene ensemble decisive for calling ’ALS’
I Select 922 genes that activate primary capsule 5 the most
I Annotating 922 genes revealed various reasonable, associated GO terms

INTERPRETABILITY – 922 DECISIVE GENES II

Strong link between primary capsule 5 and ALS pheno capsule

I Compute cij, i = 1, ..., 32, j ∈ {Healthy,ALS} for each test sample
I Remember that cij are determined individually for each sample

I Average cij obtained across all (here: 1040) test samples Xtest

I Figure: Averages for each combination i and j
I Result: cij is greatest for i = 5, j = ALS

INTERPRETABILITY – 922 DECISIVE GENES III

Strong link between primary capsule 5 and ALS pheno capsule

Selecting Genes that Drive Accurate Prediction: Protocol

I Primary capsule 5 activated by gene ensemble decisive for calling ’ALS’
I Select 922 genes that activate primary capsule 5 the most
I Annotating 922 genes revealed various reasonable, associated GO terms

INTERPRETABILITY – 922 DECISIVE GENES IV

I Consider a sample x ∈ R75584 and one gene g

I Let x[ng + 1], ..., x[ng + jg] refer to the PC’s of g
I ng + 1 indicates the position of the first PC of g within x
I Recall: jg ∈ {1, 4, 8}, depending on number of variants in g

I Let x(g) ∈ R75584 be defined by

x(g) = [0, ..., 0, x[ng + 1], ..., x[ng + jg], 0, ..., 0] (2)

That is, all but the entries referring to g in x are turned to zero

INTERPRETABILITY – 922 DECISIVE GENES V

I Run trained Disease Capsule on all x(g) across all x and g

I Yields cx(g)
ij for all combinations of i, j, g, x

I For each gene g, average resulting cx(g)
5,ALS across all x

cg
5,ALS =

1
|Xtest| = 1040

∑
x∈Xtest

cx(g)
5,ALS (3)

yielding gene specific coupling coefficients cg
5,ALS for each g

I Keep the top 5% genes that yield the largest cg
5,ALS

+ Result: 922 genes

INTERPRETABILITY – 922 DECISIVE GENES VI

Strong link between primary capsule 5 and ALS pheno capsule

Selecting Genes that Drive Accurate Prediction: Protocol

I Primary capsule 5 activated by gene ensemble decisive for calling ’ALS’
I Select 922 genes that activate primary capsule 5 the most
I Annotating 922 genes revealed reasonable gene ontology (GO) terms

INTERPRETABILITY – 922 DECISIVE GENES VII

First 12 GO Terms Associated with 922 Decisive Genes

1st / 2nd column: GO term / GO identifier
3rd, 4th column: significance of association

I Many annotations related with nervous system
I Conclusion: Extraction of biomedical meaning from network possible

DISCOVERING 644 “NON-ADDITIVE” GENES

I Let G be the set of all 18 279 genes

I Let S ⊂ G denote a subset of genes

I Let ACCDC(S) be the training accuracy achieved by Gene-PCA +
DiseaseCapsule (DC) on genes S

I Let ACCLR(S) be the training accuracy of Gene-PCA +
LogisticRegression (LR) on genes S

I Goal: Determine

argmax
S⊂G

ACCDC(S)−ACCLR(S) (4)

DISCOVERING 644 “NON-ADDITIVE” GENES

I Goal: Determine

argmax
S⊂G

ACCDC(S)−ACCLR(S)

I The resulting S yields the greatest difference in performance
between DC and LR

I Insight: This S must bring up non-additive effects to do this

I Question: How to determine the optimal S?

DISCOVERING 644 “NON-ADDITIVE” GENES

Genetic Algorithm: Workflow

I Idea: Use genetic algorithm for determining S that maximizes
ACCDC(S)−ACCLR(S)

I Result: 644 genes yield maximal gain of non-linear DC over linear LR

DISCOVERING 644 “NON-ADDITIVE” GENES II

Classification Performance on 644 “Non-Additive” Genes

I Experiment: Retrain DiseaseCapsule and Logistic Regression using only
644 “non-additive” genes

I Result:
I 644 “non-additive” genes do not work in linear regression scheme
I 644 “non-additive” genes work excellently in DiseaseCapsule

DISEASECAPSULE NEEDS LESS TRAINING DATA

Classification Performance Relative to Size of Training Data

I DC’s performance stable on decreasing training data

I Other methods: performance collapses

I Only exception: logistic regression (LR)

DISEASECAPSULE: SUMMARY

I DiseaseCapsule shows superior accuracy in prediction

I DiseaseCapsule opens up interesting ways for interpreting
results

I DiseaseCapsule reveals genes that are decisive for classification
I DiseaseCapsule reveals genes that do not add up their effects

I DiseaseCapsule requires less training data

Attention

Attention: Biological Motivation

ATTENTION: MOTIVATION I

I Optic nerve receives 108 bits per second

I Challenge: Distinguish between important and irrelevant
information

I Solution: Attention
I Brain focuses on only a fraction of information
I Smart usage of resources
I Brain needs to know where to direct attention

I Idea: William James, “father of American psychology”, 1890’s

I Distinguish between non-volitional and volitional cues
I They trigger subconscious and conscious actions

ATTENTION: NONVOLITIONAL CUES

Nonvolitional cue: eye directs attention non-voluntarily to red coffee cup
From https://d2l.ai

I Nonvolitional cues based on saliency / conspicuity of objects

I Example:
I Papers on desk black and white
I Coffee cup red
I Consequence: Eye “sees” coffee cup first

+ Person grabs and drinks coffee

https://d2l.ai

ATTENTION: VOLITIONAL CUES

Deliberately searching for entertainment, eye voluntarily directs attention to book
From https://d2l.ai

I Done with coffee, brain wants entertainment
I Consequence: Eye “sees” book in a deliberate attempt

I Task-oriented search:
I Brain pre-trained to recognize objects that promise entertainment
I Selection of book under full cognitive and volitional control

https://d2l.ai

Queries, Keys and Values

ATTENTION: QUERIES, KEYS AND VALUES I
MOTIVATION

Attention pooling: integrating queries with keys (input) and values (output)

I Ordinary networks reflect non-volitional attention
I Examples: Convolutional and fully connected networks
I Goal: Model volitional attention cues and integrate them appropriately

ATTENTION: QUERIES, KEYS AND VALUES II
SOLUTION

Attention pooling: integrating queries with keys (input) and values (output)

I Input / output ordinary neurons: keys and values
I Keys and values come in pairs
I Volitional cues = queries
I Model patterned after searches in databases

ATTENTION: QUERIES, KEYS AND VALUES III
ATTENTION POOLING

Attention pooling: integrating queries with keys (input) and values (output)

I Computes attention weights for each key
I Attention weight reflects compatibility of key and query
I Attention pooling computes weighted sum of values
I Output dominated by value whose key matches query best

Attention Pooling

ATTENTION AVERAGE POOLING

From https://d2l.ai

I Truth: y = f (x) := 2 sin(x) + x0.8 (blue)
I Data points (xi, yi) sampled from yi = f (xi) + ε where ε follows normal

distribution with µ = 0, σ = 0.5 (orange dots)

I Prediction: f̂ (x) :=
∑n

i=1 yi where n = # training data (dashed pink)
I Reflects unweighted average pooling

I Conclusion: Unweighted average pooling not necessarily good idea

https://d2l.ai

NADARAYA-WATSON KERNEL REGRESSION I

I Let K(.) be a kernel

I Kernel properties:
I K(x)→ 0 for |x| → ∞
I K(0) is maximum

I Example: Gaussian kernel

K(u) =
1√
2π

exp(−u2

2
) (5)

I Nadaraya-Watson kernel regression: For unseen x, determine

f̂ (x) =
n∑

i=1

K(x− xi)∑n
j=1 K(x− xj)

yi (6)

where (xi, yi), i = 1, ..., n are the training data points

NADARAYA-WATSON KERNEL REGRESSION II

I Nadaraya-Watson kernel regression: For unseen x, determine

f̂ (x) =
n∑

i=1

K(x− xi)∑n
j=1 K(x− xj)

yi (7)

where (xi, yi), i = 1, ..., n are the training data points
I This agrees with general concept of attention pooling

f̂ (x) =
n∑

i=1

α(x, xi)yi (8)

where x is query, and (xi, yi) are key-value pairs
I Value yi receives more weight the closer its key xi to x

NADARAYA-WATSON KERNEL REGRESSION III

From https://d2l.ai

I Plugging the Gaussian kernel (5) into (7),(8) yields (dashed pink curve)

f̂ (x) =
n∑

i=1

α(x, xi)yi =

n∑
i=1

exp(− 1
2 (x− xi)

2)∑n
j=1 exp(−

1
2 (x− xj)2)

yi

=
n∑

i=1

softmax(−1
2
(x− xi)

2)yi

(9)

https://d2l.ai

NADARAYA-WATSON KERNEL REGRESSION IV

From https://d2l.ai

I 50 training data points (xi, yi)

I 50 validation data points x
I Sort training and validation data by xi and x resp.
I Plot α(x, xi) =

∑n
i=1 softmax(− 1

2 (x− xi)
2) for each pair (xi, x)

https://d2l.ai

NADARAYA-WATSON KERNEL REGRESSION V

I Nadaraya-Watson kernel regression

f̂ (x) =
n∑

i=1

α(x, xi)yi =

n∑
i=1

K(x− xi)∑n
j=1 K(x− xj)

yi (10)

is an example of nonparametric attention pooling

I Benefit: Converges to true function on increasing training data
I Reminder: Training data reflect key-value pairs

I Disadvantage: There are no learnable parameters

PARAMETRIC ATTENTION POOLING I

I Integration of a learnable parameter w into (9) yields

f̂ (x) =
n∑

i=1

α(x, xi)yi =

n∑
i=1

exp(− 1
2 ((x− xi)w)2)∑n

j=1 exp(−
1
2 ((x− xj)w)2)

yi

=

n∑
i=1

softmax(−1
2
((x− xi)w)2)yi

(11)

I The parameter w can be learnt via (stochastic) gradient descent

I w reflects influence span of keys on queries
I Number of influential keys decreases on increasing w

PARAMETRIC ATTENTION POOLING II

From https://d2l.ai

I Predicted curve is less smooth than nonparametric counterpart

https://d2l.ai

PARAMETRIC ATTENTION POOLING III

From https://d2l.ai

I Training / validation procedure analogous to nonparametric setting
I However, training includes learning parameter w
I Region with larger attention weights sharper in parametric setting

https://d2l.ai

Attention Scoring Functions

ATTENTION POOLING: DIGEST I

I Re-consider (9):

f̂ (x) =
n∑

i=1

α(x, xi)yi =

n∑
i=1

softmax(−1
2
(x− xi)

2)yi

I One can view α(x, xi) as

I an attention scoring function

a(x, xi) := −
1
2
(x− xi)

2 (12)

I that is further fed into a softmax operation, yielding

α(x, xi) = softmax(a(x, xi)) (13)

ATTENTION POOLING: DIGEST II

I One can view α(x, xi) as

I an attention scoring function

a(x, xi) := −
1
2
(x− xi)

2 (14)

I that is further fed into a softmax operation, yielding

α(x, xi) = softmax(a(x, xi)) (15)

I Result: Probability distribution

I over values yi paired with keys xi where
I probabilities are attention weights α(x, xi)

ATTENTION SCORING FUNCTIONS: MOTIVATION

Output of attention pooling is weighted average of values

I Let x be query, and xi keys. Attention weights generally compute as

α(x, xi) = softmax(a(x, xi)) (16)

I Advantage: Freedom in choosing attention scoring functions a(x, xi)

ATTENTION POOLING: FORMAL SUMMARY

I Let q ∈ Rq be a query and (k1, v1), ..., (km, vm),ki ∈ Rk, vi ∈ Rv be m
key-value pairs

I The attention pooling f computes as

f (q, (k1, v1), ..., (km, vm)) =

m∑
i=1

α(q,ki)vi ∈ Rv (17)

I The attention weight α(q,ki) ∈ R computes as

α(q,ki) = softmax(a(q,ki)) =
exp(a(q,ki)∑m

j=1 exp(a(q,kj))
(18)

I The attention scoring function a(q,k) maps two vectors to a scalar

a : Rq × Rk −→ R (19)

ADDITIVE ATTENTION SCORING

I Let q ∈ Rq be a query and k ∈ Rk be a key

I Let Wq ∈ Rh×q,Wk ∈ Rh×k,wv ∈ Rh collect learnable parameters

I The additive attention scoring function computes as

a(q,k) = wT
v tanh(Wqq + Wkk) ∈ R (20)

I Interpretation: (20) reflects running q,k through MLP
I Input: Concatenation of q and k
I One hidden layer of width h
I Parameters from input to hidden layer are Wq,Wk
I The activation function is tanh
I Parameters from hidden to output layer captured by wv

SCALED DOT-PRODUCT ATTENTION SCORING

I Let q,k ∈ Rd be equal-sized query and key

I The scaled dot-product attention scoring function computes as

a(q,k) = qTk/
√

d (21)

I Note: Dot product qTk has mean 0 and variance d
+ Dividing by

√
d implies standard deviation of 1

Minibatches:

I Computing attention for n queries and m keys at once

I For queries Q ∈ Rn×d, keys K ∈ Rm×d, values V ∈ Rm×v compute

softmax(
QKT
√

d
)V ∈ Rn×v (22)

Multi-Head Attention

MULTI-HEAD ATTENTION I

I Motivation: Capture different attention mechanisms for same
queries, keys, values

I Example: Attend to both short- and long-range dependencies in
sequential data

I Question: How to vary attention mechanisms in informed way?

MULTI-HEAD ATTENTION II

I Question: How to vary attention mechanisms in informed way?

I Solution:
I Let h be intended number of attention mechanisms
I Linearly transform queries, keys, values using h different sets of

matrices W(q)
i ,W(k)

i ,W(v)
i , i = 1, ..., h

I Run the h differently transformed queries, keys, values through
attention pooling

I Transformations W(q)
i ,W(k)

i ,W(v)
i , i = 1, ..., h are learnt

I The h attention pooling outputs are concatenated, and linearly
transformed by another learned matrix Wo

I Design is called multi-head attention

I Each of the h attention pooling outputs is referred to as a head

MULTI-HEAD ATTENTION III

I Let q ∈ Rdq ,k ∈ Rdk ,v ∈ Rdv be query, key, value

I Let W(q)
i ∈ Rpq×dq ,W(k)

i ∈ Rpk×dk ,W(v)
i ∈ Rpv×dv collect learnable

parameters

I f is attention pooling, such as additive (20) or dot-product
attention (21)

I Each attention head is computed as

hi = f (W(q)
i q,W(k)

i k,W(v)
i v) ∈ Rpv (23)

MULTI-HEAD ATTENTION IV

From https://d2l.ai

I Attention heads:

hi = f (W(q)
i q,W(k)

i k,W(v)
i v) ∈ Rpv (24)

I Initial ’FC’ layers reflect operations W(q)
i q,W(k)

i k,W(v)
i v

I ’Attention’ layers reflect application of f to W(q)
i q,W(k)

i k,W(v)
i v

https://d2l.ai

MULTI-HEAD ATTENTION V

I Attention heads:

hi = f (W(q)
i q,W(k)

i k,W(v)
i v) ∈ Rpv (25)

I Let Wo ∈ Rpo×hpv collect further learnable parameters

I The multi-head attention output computes as

Wo

h1
...

hh

 ∈ Rpo (26)

MULTI-HEAD ATTENTION II

From https://d2l.ai

I Multi-head attention output computes as

Wo[hT
1 , ...,h

T
h]

T ∈ Rpo (27)

I ’Concat’ layer reflects forming [hT
1 , ...,h

T
h]

I Final ’FC’ layer reflects application of Wo

https://d2l.ai

REFERENCES

I http://d2l.ai, 10.6, 10.7, 11.1–11.3, 11.5

http://d2l.ai

OUTLOOK

I Sequence-2-Sequence Models

I Attention Mechanisms II

I Biological Applications

Thanks for your attention

