
Deep Learning: Applications in Biology

Alexander Schönhuth

Bielefeld University
October 12, 2022

CONTENTS TODAY

I Organizational Matters

I Introduction
I None of today’s topics plays an explicit role in

assignments/exercises or the exam
I But they may reappear in other topics, and then play an implicit

role
I Goal today is to get fundamental ideas about the following crucial

topics

Organizational Matters

PREREQUISITES, LECTURES, EXERCISES

I Course prerequisites: None; knowledge about optimization and
machine learning helpful

I Lectures: Wednesdays, 12-14. In general hybrid meetings; full
online meetings possible.

I Exercises: 5 assignments + 1 exam preparation session

ASSIGNMENTS, EXAM

I Tutorials/Assignments:
I New exercise sheets provided on Wednesdays October 19,

November 2, November 16, November 30, December 14, January 4
I Exercises to be submitted by Monday, 23:59 eleven days thereafter,

discussion on Wednesday, 10-12
I Submission of exercises in groups of 2 people possible
I Every one is supposed to present at least one exercise in the

tutorials (ideal scenario)
I Upload to corresponding folder in the “Lernraum Plus”
I First exercise sheet uploaded on 19th of October (next week)

I Exam:
I Presence exam planned for Wednesday, February 1, 2022 between

10:00 and 14:00 (may be subject to changes due to situation; we
will communicate changes as timely as possible)

I Admitted: everyone exceeding 50% of total exercise points
I Preparatory Session: Wednesday, January 25, 10-12

TUTORIALS

I Every Wednesday, 10-12, U10-146
I Tutor: Johannes Schlüter
I Tutorials in English; in German if applicable
I Hybrid meetings (links will be provided in time); presence

desirable and encouraged
I Presentation of individual solutions during the online

meeting, individually

COURSE MATERIAL

I Course website:
https://gds.techfak.uni-bielefeld.de/teaching/2022winter/bioadl

I Slides and pointers to literature
I Excercise sheets

I Lernraum Plus:
https://lernraumplus.uni-bielefeld.de/course/view.php?id=15150

I Submission of exercise solutions
I Self-managed forum

https://gds.techfak.uni-bielefeld.de/teaching/2022winter/bioadl
https://lernraumplus.uni-bielefeld.de/course/view.php?id=15150

LITERATURE AND LINKS

I Michael Nielsen. Neural Networks and Deep Learning:
http://neuralnetworksanddeeplearning.com

I Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep
Learning: https://www.deeplearningbook.org/

I Aston Zhang, Zack C. Lipton, Mu Li, Alex J. Smola. Dive
into Deep Learning: http://d2l.ai/

I Further Links: To be provided during course.

http://neuralnetworksanddeeplearning.com
https://www.deeplearningbook.org/
http://d2l.ai/

TENTATIVE COURSE CURRICULUM

Part 1: Foundations
I Introduction

I Supervised Learning
I Neural Networks (NNs)

I Deep Learning
I Motivation
I Training / Challenges

I Training
I Back Propagation
I Regularization, Dropout

I Convolutional NNs I
I Filters, Pooling
I Hyperparameters

Part 2: Foundations II +
Applications
I Convolutional NNs II

I Training Revisited
I Vanishing Gradients

I Deep NN Architectures I
I Recurrent Neural

Networks
I CNNs: Going Deep

I Graph Neural Networks
I Transformers
I Capsule Networks

Introduction

Supervised Learning

SUPERVISED LEARNING

I There is a functional relationship

f ∗ : Rd → V

we would like to understand, or learn.
I Regression: V = R
I Classification: V = {1, ..., k}

I To learn it, we are given m data points

(xi, f ∗(xi) = yi)i=1,...,m

that reflect this functional relationship.

Final goal: Predict f ∗(x) on unknown data points x.

SUPERVISED LEARNING

I The idea is to set up a training procedure (an algorithm) that
learns f ∗ from the training data.

I Learning f ∗ means to approximate it by f : Rd → V
sufficiently well, where f ∈M for a certain class of
functionsM.

I In most cases, f ∈M are parameterized by parameters w.
I + Learning means to determine an appropriate choice of

parameters w.

SUPERVISED LEARNING

I We need to determine a cost (or loss) function C where
C(f , f ∗) measures how well f ∈M approximates f ∗.

I Optimization: Pick f ∈M (by picking the right set of
parameters) that yields small (possibly minimal) cost
C(f , f ∗)

I Generalization: Optimization procedure should address
that f is to approximate f ∗ well on unknown data points.

LINEAR REGRESSION
EXAMPLE: f : R→ R

CLASSIFICATION: PERCEPTRON
EXAMPLE: f : R2 → {0, 1}

f R2 −→ {0 = blue, 1 = red}

(x1, x2) 7→

{
1 x2 − x1 > 0
0 x2 − x1 ≤ 0

(1)

SUPERVISED LEARNING
SUMMARY

We need to specify:
I How to set up the data being used for training
I A model classM, for example linear functions
I A cost function C(f , f ∗) that evaluates the goodness of

f ∈M
I An optimization procedure that picks f such that C(f , f ∗) is

minimal, or very small
I Keep in mind that f is to perform well on previously

unseen data

SUPERVISED LEARNING
NOTATION

I The dataset is given by a design matrix X ∈ Rm×d where m is
the number of data points and d is the number of features

I Example: A row Xi corresponds to a data point

(xi1, ..., x1d)

where xij, j = 1, ..., d are the features of Xi

I Each data point Xi is assigned to a label yi that reflects the
true functional relationship yi = f ∗(xi)

I y = (y1, ..., ym) ∈ Vm is the label vector.

Generalization

ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I Split (X,y) into

I training data (X(train), y(train))
I validation data (X(val), y(val))
I test data (X(test), y(test))

I While training data is to pick the optimal set of parameters
(which specify elements fromM), using training and validation
data in combination is for picking hyperparameters

I Hyperparameters can refer to choosing subsets ofM
I For example, depth of a neural network, and widths of hidden

layers. They may also refer to specifications of cost function or
optimization procedure

ENABLING GENERALIZATION: DATA
TRAINING, TEST AND VALIDATION

I (X(test),y(test)) are never touched during training
I The final goal is to minimize the cost on the test data

+ But we are not allowed to use it to reach that goal!

OVER- AND UNDERFITTING

I Underfitting: Function underperforms on training data
+ cannot be expected to perform well on test data either

I Overfitting: Function performs perfectly on training data
+ Volatilities, noise affecting data lead to suboptimal
performance on test data

I Appropriate: Leave room for deviations during training
+ Can be expected to perform optimally on test data

What does that mean in practice, how to enable it?

Principled Idea: Prefer little complex functions

ENABLING GENERALIZATION: MODEL
CAPACITY, UNDER- AND OVERFITTING

Left: Linear functions underfit
Center: Polynomials of degree 2 neither under- nor overfit

Right: Polynomials of degree 9 overfit

I Choose a class of models that has the right capacity

I Capacity too large: overfitting

I Capacity too small: underfitting

ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

Let C(f , f ∗) be the cost function. Let w = (w1, ...,wk) be the
parameters specifying elements of fw ∈M.

I Usually, C refers to only known data points. So, C evaluates as

C(f , f ∗) =
∑

i

C(f (xi), yi = f ∗(xi)) (2)

where xi runs over all training data points.

I Add a regularization term to cost function, and choose fw that
yields minimal

C(fw, f ∗) + λΩ(w) (3)

I λ is a hyperparameter

ENABLING GENERALIZATION: COST FUNCTION
REGULARIZATION

I Prominent examples:
I L1 norm: Ω(w) :=

∑
i |wi|

I L2 norm: Ω(w) :=
∑

i w2
i

I Rationale: Penalize too many non-zero weights
I Virtually less complex model, hence virtually less capacity

ENABLING GENERALIZATION: OPTIMIZATION
EARLY STOPPING, DROPOUT

Optimization can be an iterative procedure.
I Early stopping: Stop the optimization procedure before cost

function reaches an optimum on the training data.
+ Function does not pick up all details, so is less complex

I Dropout: Neural network specific. Randomly remove
neurons and optimize parameters for neurons remaining.
+ Suppresses many weights to zero, reduces complexity

Prominent Model Examples

SUPERVISED LEARNING
EXAMPLE: LINEAR REGRESSION

I Design matrix X ∈ Rm×d, label vector y ∈ Rm

I Model class: Let w ∈ Rd

fw = f (x; w) : Rd −→ R
x 7→ wTx

(4)

I Remark: Note that the case wTx + b can be treated as a
special case to be included inM, by augmenting vectors xi
by an entry 1 (think about this...)

I Cost function (recall yi = f ∗(xi))

C(f , f ∗) :=
1
m
||(f (x1), ..., f (xm))− y||22 =

1
m

m∑
i=1

(f (xi)− yi)
2

(5)

SUPERVISED LEARNING
EXAMPLE: LINEAR REGRESSION

Optimization

I Solve for
∇wC(fw, f ∗) = 0 (6)

to achieve a minimum. This yields the normal equations

w = (XTX)−1XTy (7)

I Global optimum if XTX is invertible
I Do this on training data (so X = X(train),y = y(train)) only.

Hope that cost on test data is small.

SUPERVISED LEARNING
LINEAR REGRESSION: NORMAL EQUATIONS

I Left: Data points, and the linear function y = w1x that
approximates them best

I Right: Mean squared error (MSE) depending on w1

I Remark on Perceptrons: Optimizing is different, but also
supported by a very easy optimization scheme (the perceptron
algorithm)

SUPERVISED LEARNING
POPULAR MODELS: SUPPORT VECTOR MACHINES

I Realization: From (7), write

wTx =

m∑
i=1

αixTxi =

m∑
i=1

αi〈x, xi〉 (8)

I Replace 〈., .〉 by different kernel (i.e. scalar product) k(., .),
that is by computing 〈φ(.), φ(.)〉 for appropriate φ

+ Optimize for choosing good α’s: still easy to optimize both
for regression and classification!

SUPERVISED LEARNING
POPULAR MODELS: NEAREST NEIGHBOR CLASSIFICATION

I Consider appropriate distance measure

D : Rd × Rd −→ R+ (9)

I For unknown data point x, determine the closest given
data point

xi∗ := argmini(D(x, xi)) (10)

I Predict label of x as yi∗

Neural Networks

NEURONS
LINEAR + ACTIVATION FUNCTION

output = a(wT · x + b)

Note: replace f in Figure by a!

Neuron: linear function followed
by activation function

Examples

I Linear regression:

a = Id

a is identity function
I Perceptron:

a(x) =

{
1 x ≥ 0
0 x < 0

a is step function

NEURAL NETWORKS
CONCATENATING NEURONS

NEURAL NETWORKS
ARCHITECTURES

DEEP NEURAL NETWORKS

Width = Number of nodes in a hidden layer
Depth = Number of hidden layers

Deep = depth ≥ 8 (for historical reasons)

NEURAL NETWORKS
FORMAL DEFINITION

I Let xl ∈ Rd(l) be all outputs from neurons in layer l, where d(l) is
the width of layer l.

I Let y ∈ V be the output.

I Let x =: x0 be the input.

I Then
xl = al(W(l)xl−1 + bl)

where al(.) = (al
1(.), ..., al

d(l)(.)), W(l) ∈ Rd(l)×d(l−1), bl ∈ Rd(l)

I The function f representing a neural network with L layers (with
depth L) can be written

y = f (x0) = f (L)(f (L−1)(...(f (1)(x(0)))...))

where xl = f (l)(xl−1) = al(W(l)xl−1 + bl)

TRAINING: BACKPROPAGATION

I E.g. let X be a set of images, labels 1 and 0: tree or not
I Let

f(w,b) : X→ {0, 1} and f̂ : X→ {0, 1}

network function (fw,b) and true function (̂f)

I L(f(w,b), f̂) loss function, differentiable in network parameters w,b

I Back Propagation: Minimize L(f , f̂) through gradient descent

+ Heavily parallelizable!
I Decisive: Ratio number of parameters and training data

MATERIALS / OUTLOOK

I http://neuralnetworksanddeeplearning.com:
Chapter 1, up to ’Perceptrons’

I https://www.deeplearningbook.org/:
5.1, 5.2, 5.3, 5.7

I Next lecture:

I Why “deep”?
I Training challenges

http://neuralnetworksanddeeplearning.com
https://www.deeplearningbook.org/

