
Bitcoin Mechanics II
Ethereum & Smart Contracts I

Alexander Schönhuth

Bielefeld University
June 8, 2022



RECAP LECTURE 6

▶ Medical Blockchain: Motivation
▶ Situation, risks, goals
▶ Attribute Based Encryption
▶ Key Aggregate Cryptography
▶ Cloud based solutions

▶ Medical Blockchain: Overview
▶ Nodes and data
▶ Access rights
▶ Transactions
▶ Block structure

▶ Medical Blockchain: Elements
▶ Transaction types: details
▶ Tokens & rewards
▶ Election

▶ Bitcoin Mechanics I
▶ Transactions in detail
▶ Metadata, Input, Output



Bitcoin Scripts
–
Syntax

Bitcoin Scripts
–
Applications

Ethereum
Introduction

Smart
Contracts



OVERVIEW
INTRODUCTION

▶ Bitcoin Scripts Syntax
▶ Introduction
▶ Pay-to-PubKeyHash
▶ Opcodes
▶ Pay-to-ScriptHash
▶ Multisig

▶ Bitcoin Scripts Applications
▶ Escrow Transactions
▶ Micro Payments
▶ Lock Time

▶ Ethereum Introduction
▶ Transition Function
▶ Turing-Complete Cryptocurrency
▶ Blockchain Layers; Ethereum Virtual Machine

▶ Smart Contracts
▶ Definition
▶ Accounts
▶ Account State Transitions



Bitcoin Scripts
–
Syntax

Bitcoin Scripts
–
Applications

Ethereum
Introduction

Smart
Contracts



BITCOIN SCRIPTS: INTRODUCTION I

Transaction Output Syntax: Pay-to-PubkeyHash Script
From bitcoinbook.cs.princeton.edu

▶ Field specifying recipient(s) is a script
▶ Single elements (e.g. OP DUP) are commands
▶ Run through interpreter, commands are executed



BITCOIN SCRIPTS: INTRODUCTION II

Transaction Output Syntax: Pay-to-PubkeyHash Script
From bitcoinbook.cs.princeton.edu

▶ Bitcoin specific; syntax adopted from scripting language Forth
▶ Stack-based: Commands executed in linear manner; no looping!
▶ Data is pushed onto stack



BITCOIN SCRIPTS: INTRODUCTION III

Transaction Output Syntax: Pay-to-PubkeyHash Script
From bitcoinbook.cs.princeton.edu

1. OP DUP, then OP HASH160 are executed

2. Number 69e...3d42e is pushed onto stack

3. OP EQUALVERIFY, then OP CHECKSIG are executed



BITCOIN SCRIPTS: INTRODUCTION IV

Transaction Output Syntax: Pay-to-PubkeyHash Script
From bitcoinbook.cs.princeton.edu

▶ Simple & compact; but limits on time / memory
▶ Support for cryptography
▶ Here: Checking whether earlier output agrees with later input



BITCOIN SCRIPTS: PAY-TO-PUBKEYHASH I

Connecting Input with Output
From bitcoinbook.cs.princeton.edu

▶ scriptSig: Input from current transaction
▶ push 30440220... → push 0467d2c9

▶ scriptPubKey: Output from earlier transaction
▶ OP DUP→ OP HASH160→ push 69e02e18... → ...

... → OP EQUALVERIFY→ OP CHECKSIG



BITCOIN SCRIPTS: PAY-TO-PUBKEYHASH II

Connecting Input with Output
From bitcoinbook.cs.princeton.edu

▶ Validating transaction:
▶ Scripts executes without errors: include in your block
▶ Executing script yields error: reject transaction

▶ Renders validating robust and convenient



BITCOIN SCRIPTS: OPCODES I

▶ Bitcoin scripting language is small

▶ Instructions referred to as opcodes
▶ Room for 256 opcodes

☞ each one represented by one byte
▶ Currently, 15 disabled, 75 reserved

☞ 166 in use

▶ Has basic arithmetic and basic logic
▶ E.g. if-then logic

▶ Supports throwing errors and returning early



BITCOIN SCRIPTS: OPCODES II

▶ OP DUP – Duplicates topmost item on stack

▶ OP HASH160 – Replaces topmost item on stack by its hash
▶ Hashes twice: first SHA-256, then RIPEMD-160

▶ OP EQUALVERIFY – Returns true if two topmost elements agree
▶ Marks transaction as invalid otherwise; stops executing script

▶ OP CHECKSIG – Verifies signature:
▶ Takes first (topmost) element of stack as public key
▶ Takes second element as signature
▶ Verification based on public key, signature and entire transaction

▶ OP CHECKMULTISIG: True if k of specified signatures valid



BITCOIN SCRIPTS: PAY-TO-PUBKEYHASH (P2PKH)

Connecting Input with Output
From bitcoinbook.cs.princeton.edu

▶ In the following:
▶ Signature 30440220... denoted as <sig>
▶ Public key 0467d2c9... denoted as <pubKey>
▶ Hash of public key 69e02e18... denoted as <pubKeyHash?>



P2PKH: EXECUTION I

Pay-to-PubkeyHash Script Execution and Stack
From bitcoinbook.cs.princeton.edu

1. <sig> is the first number from scriptSig → pushed onto stack

2. <pubKey> is the second number from scriptSig → pushed onto <sig>

3. OP DUP duplicates topmost <pubKey>

4. OP HASH160 replaces <pubKey> by its hash <pubKeyHash>



P2PKH: EXECUTION II

Pay-to-PubkeyHash Script Execution and Stack
From bitcoinbook.cs.princeton.edu

1. <pubKeyHash?> pushes data from scriptPubKey onto stack

2. OP EQUALVERIFY compares <pubKeyHash?> with <pubKeyHash>

▶ Script continues only if they agree

3. OP CHECKSIG verifies signature
▶ ”Consumes” <pubKey> and <sig> from stack
▶ Pushes <true> only if signature valid
▶ Throws error otherwise



BITCOIN SCRIPTS: THEORY & PRACTICE

▶ Theory:
▶ Scripts can specify various conditions to spend coins
▶ Whatever is possible through stack based arrangement
▶ However: Scripting language is not Turing-complete

☞ We’ll get to that later – in a lot more detail!

▶ Practice I:
▶ 99.9% of scripts are of type ”Pay-to-PubkeyHash (P2PKH)”
▶ MULTISIG gets used a little bit
▶ Pay-to-Script-Hash (P2SH) gets used a litle bit

▶ Practice II:
▶ Many nodes maintain ”white lists” of standard scripts
▶ They refuse non-white-listed scripts
▶ Usage of non-white-list scripts still possible, but harder



BITCOIN SCRIPTS: PAY-TO-SCRIPT-HASH (P2SH)

▶ Situation: Recipient wants to use ”fancy” script to redeem coins

▶ Solution: Recipient tells sender to send coins ...
▶ ... not to hash of public key (see above)
▶ ... but to hash of ”fancy” script

▶ P2SH has two parts:

1. Hashes script provided in scriptSig provided by recipient and
compares with hash of script provided by sender in scriptPubKey

2. Re-interprets (”deserializes”) script in scriptSig and executes it

▶ Advantage: Tracking output scripts by miners
▶ Keep track of unspent coins
▶ Hashing scripts pushes complexity to input scripts



BITCOIN SCRIPTS: PAY-TO-SCRIPT-HASH II

P2PKH as P2SH
From bitcoinbook.cs.princeton.edu

▶ Recipient provides in scriptSig (purple)
▶ his signature
▶ redemption script <<pubKey> OP CHECKSIG>

▶ Sender provides output script in scriptPubKey (yellow)



BITCOIN SCRIPTS: PAY-TO-SCRIPT-HASH III

P2SH: Comparison Stage
From bitcoinbook.cs.princeton.edu

▶ Comparison – <<pubKey> OP CHECKSIG> taken as data:
1. Push <signature> onto stack
2. Push <<pubKey> OP CHECKSIG> onto stack (data!)
3. OP HASH160 hashes data <<pubKey> OP CHECKSIG>
4. Push <hash of redemption script> onto stack
5. OP EQUAL compares the two topmost values



BITCOIN SCRIPTS: PAY-TO-SCRIPT-HASH IV

P2SH: Redemption Script Execution Stage
From bitcoinbook.cs.princeton.edu

▶ Execution – <<pubKey> OP CHECKSIG> taken as script:
1. Push <signature> onto stack
2. Push <pubKey> onto stack
3. Execute OP CHECKSIG

▶ Summary: Both stages together simulate common P2PKH script



BITCOIN SCRIPTS: MULTISIG TRANSACTIONS I

▶ Idea: Create output that can be redeemed by specifying n public
keys out of which m provide signatures

▶ Implementation requires two transactions ((i) & (ii))

(i) MULTISIG transaction:
▶ Owner provides coins to be spent in scriptSig (as usual)
▶ In scriptPubKey, owner specifies n public keys, and minimum

number m of signatures

(ii) Redemption transaction:
▶ m out of n public keys reach agreement (offline)
▶ In scriptSig, they put their m public keys and their m signatures
▶ In scriptPubKey, they specify the recipient



BITCOIN SCRIPTS: MULTISIG TRANSACTIONS II

▶ Note: Combining scriptPubKey of MULTISIG with scriptSig of
redemption yields Pay-to-Multisig-Script (P2MS)

▶ Another note: P2MS can be performed using P2SH

▶ For illustrations (opcodes etc.) see e.g.
https://learnmeabitcoin.com/technical/p2ms

https://learnmeabitcoin.com/technical/p2ms


Bitcoin Scripts
–
Syntax

Bitcoin Scripts
–
Applications

Ethereum
Introduction

Smart
Contracts



SCRIPT APPLICATIONS

▶ Escrow transactions:
▶ Alice wants to pay Bob for goods
▶ Alice does not want to pay before having received goods
▶ Bob does not want to send goods before having been paid
▶ Solution: Introduce third party and perform escrow transaction

▶ Micro payments:
▶ Alice wants to continually pay Bob small amounts
▶ Example: Bob is Alice’s phone provider; Alice needs to pay for

every minute
▶ Sending one transaction per minute costs Alice too many fees
▶ Idea: Combine all small payments into one big payment at the end



SCRIPT APPLICATIONS

▶ Lock time:
▶ Alice releases MULTISIG transaction that never gets redeemed
▶ Example: Escrow transaction never released by sufficiently many

signatures
▶ Consequence: Coins remain locked
▶ Solution: Coins returned to Alice after some maximum lock time

▶ Smart contracts:
▶ General term for contract-type transactions
▶ Bitcoin scripts have limits

☞ They do not support Turing-complete language
▶ Idea: Support running programs on blockchain

☞ Again: we will get to that in more detail!



ESCROW TRANSACTIONS I

Escrow Transaction: 2-of-3 MULTISIG transaction
From bitcoinbook.cs.princeton.edu

▶ Goal: Alice pays Bob for services without anyone’s damage

▶ Idea: Involve Judy, as a third-party arbitrator

▶ Alice launches MULTISIG transaction:

▶ Spends x coins, price of Bob’s services
▶ 2 out of 3 signatures from Alice, Bob, Judy required



ESCROW TRANSACTIONS II

Merchandize Received OK: Alice & Bob Sign Redemption
From bitcoinbook.cs.princeton.edu

▶ Scenario 1: Bob’s services all right, Alice happy to pay
▶ Implementation: Alice & Bob both sign redemption script
▶ Result: Bob gets paid x coins



ESCROW TRANSACTIONS III

Merchandize Damaged: Alice & Judy Sign Redemption
From bitcoinbook.cs.princeton.edu

▶ Scenario 2: Bob’s services insufficient, Alice does not intend to pay
▶ Implementation: Alice & Judy both sign redemption script
▶ Result: Alice gets her x coins returned



MICRO PAYMENTS I

Micro Payments: Initial Scenario
From bitcoinbook.cs.princeton.edu

▶ Situation: Alice wants to pay Bob per unit of time of service

▶ Example: Bob runs phone service
▶ Service needs to be paid per minute
▶ Alice cannot anticipate length of call

▶ Issue: One transaction per minute incurs excessive fees



MICRO PAYMENTS II

Alice Launches MULTISIG Transaction
From bitcoinbook.cs.princeton.edu

Solution Part I

▶ Alice launches MULTISIG transaction

▶ Specifies maximum amount to be paid for service (here: 100)

▶ 2-out-of-2 MULTISIG

▶ So both Alice and Bob need to sign redemption script



MICRO PAYMENTS III

Alice Broadcasts Redemption Transactions Every Minute
From bitcoinbook.cs.princeton.edu

Solution Part III

▶ Alice broadcasts redemption transaction every minute

▶ Each one appropriately breaks down amounts to be paid

▶ As long as Alice keeps calling
▶ Bob does not sign redemption scripts
▶ Therefore, transactions not published on blockchain



MICRO PAYMENTS IV

Alice Done Calling After 42 Minutes
From bitcoinbook.cs.princeton.edu

Solution Part IV
▶ When Alice is done calling, Bob signs most recent transaction
▶ Alice done after 42 minutes: Bob receives 42, Alice 58 coins
▶ All redemption transactions possible double-spends
▶ But: Earlier transactions invalid; only last transaction gets published



LOCK TIME I

Issue: Bob Never Signs Redemption Script
From bitcoinbook.cs.princeton.edu

▶ Possible Issue: Bob never signs any redemption script

▶ Consequence: Coins (here: 100) remain in escrow; Alice unable to
spend them otherwise



LOCK TIME II

Alice and Bob sign Timed Refund Transaction
From bitcoinbook.cs.princeton.edu

▶ Solution: Alice and Bob sign timed refund transaction

▶ After time t, Alice gets full amount in return

▶ So Bob needs to hurry to sign redemption; otherwise no pay



LOCK TIME III

Lock Time Specified in Metadata
From bitcoinbook.cs.princeton.edu

▶ Lock time is specified in the metadata part of transaction

▶ Transaction cannot be published before



Bitcoin Scripts
–
Syntax

Bitcoin Scripts
–
Applications

Ethereum
Introduction

Smart
Contracts



BITCOIN: TRANSITION FUNCTION

Bitcoin Blockchain as Sequence of States
From cs251.stanford.edu

▶ A UTXO is short for U nspent T ransa X ion O utput

▶ Keeping track of all UTXO’s: tracking of Bitcoin ownerships

▶ State: All UTXO’s at some point in time

▶ Transition: Executing transactions in one block



BITCOIN: TRANSITION FUNCTION

State Transition: Performing Transactions
From cs251.stanford.edu

▶ Let S be all possible Bitcoin states; let s0 be the genesis state
▶ Let I be all possible inputs ☞ An input is a set of transactions
▶ The Bitcoin state transition function

FBTC : S × I −→ S (1)

maps state s to new state FBTC(s, i) when given input i



ETHEREUM: MOTIVATION

State Transition: Performing Transactions
From cs251.stanford.edu

▶ FBTC : S × I → S has limits imposed by scripting language
▶ So, FBTC not Turing-complete; e.g. no looping
▶ Idea: Implement Turing-complete transition function

☞ Ethereum is a ”Turing-complete cryptocurrency”



”TURING-COMPLETE CRYPTOCURRENCY”

Things to Consider

▶ How to get computer programs onto/into blockchain?

▶ How to execute these programs?
▶ Programs may have several different functionalities
▶ Should be reusable, immutable etc.

▶ Turing machines: Infinite loops, halting problem?

▶ How to arrange states? Transaction based ledger?



ETHEREUM: TRANSITION FUNCTION

Ethereum: Transition of States
From cs251.stanford.edu

▶ DAPP: ”Decentralized Application”

▶ EVM: Ethereum Virtual Machine

▶ Blockchain records states; EVM performs transitions



Bitcoin Scripts
–
Syntax

Bitcoin Scripts
–
Applications

Ethereum
Introduction

Smart
Contracts



SMART CONTRACTS I

▶ Motivation: Nodes execute programs via transactions

▶ Solution: Make programs nodes in their own right

▶ Explicit, Signed Types of Transactions:
▶ User to User – Money Transfer: Simple transfer of ether (ETH)
▶ User to Program – Deployment: User releases (”deploys”) program

☞ Program becomes node
▶ User to Program – Execution: User executes program functionality

☞ User interacts with program node

▶ Implicit, Unsigned Types of Transactions:
▶ Program to User: Execution leads to money transfer
▶ Program to Program: Execution leads to execution of other program



SMART CONTRACTS: DEFINITION

DEFINITION [SMART CONTRACT]: A smart contract is the program
that gives rise to a program node.

Remarks:

▶ Turing-completeness implies that smart contracts can implement
arbitrary functionality

▶ Smart contracts are supported by programming languages that
take Turing-completeness into account

▶ Example languages: Solidity, Web3 (Python), Brownie



SMART CONTRACTS: EXAMPLE

From bitcoinbook.cs.princeton.edu

Transactions
▶ Deploying: Code writer node broadcasts code to network

▶ Execution: Node calls function claimName[name]

▶ name is name of choice
▶ Provided value msg.value must be sufficient, otherwise error
▶ RegistryName[name] stores msg.sender (sender’s public identity)



ETHEREUM ACCOUNTS

▶ Issue: Public key identities do not work for program nodes

▶ Solution: Nodes become accounts

▶ Accounts generalize concept of node

▶ Types of Accounts:
▶ Owned: Ordinary user accounts; controlled by (Sk,Pk) key pair
▶ Contracts: Program accounts; controlled by code

▶ Account Data:
▶ Owned: Balance of account only
▶ Contracts: Full spectrum of values assigned to variables



SMART CONTRACT ACCOUNT DATA I

From bitcoinbook.cs.princeton.edu

Example: Contract Account Data

▶ Creator Identity: Stored as hash of public key of deploying node

▶ Code: Stored as code hash

▶ Variables: Store nameRegistry



SMART CONTRACT ACCOUNT DATA II

▶ Issue:
▶ Transaction based ledger only works for owned accounts
▶ Contract accounts require account based ledgers
▶ ”Fancy” data structures necessary for efficient transitions

▶ Solution:
▶ Each contract maintains storage array S; entries hold 32 bytes
▶ S can hold 2256 entries S[i], i = 0, ..., 2256 − 1 (in theory)
▶ S arranged as Merkle Patricia tree

Account Merkle Patricia Tree
From cs251.stanford.edu



ACCOUNT STATE TRANSITIONS

From cs251.stanford.edu

▶ Owned account 14c5f8ba calls function of contract account bb75a980
▶ Provides money msg.value and input parameters

▶ Leads to adjustment of
▶ Contract account balance
▶ Values stored in Patricia Merkle tree



ETHEREUM: BLOCK OF TRANSACTIONS

From cs251.stanford.edu

▶ Columns 1-2: Sender (msg.sender in contract) and recipient
▶ Columns 3-4: Money transferred (msg.value in contract) and

transaction fees



MATERIALS / OUTLOOK

▶ See Bitcoin and Cryptocurrency Technologies, 3.2 & 3.3, 10.7

▶ See cs251.stanford.edu, Lecture 7

▶ See also

▶ https://bitcoinbook.cs.princeton.edu/
▶ https://ethdocs.org/en/latest/index.html
▶ https://ethereum.org/en/developers/docs/

for further resources

▶ Next lecture: “Ethereum Mechanics & Solidity”

https://bitcoinbook.cs.princeton.edu/
https://ethdocs.org/en/latest/index.html
https://ethereum.org/en/developers/docs/

