Medical Blockchains: First Example Bitcoin Mechanics I

Alexander Schönhuth

Bielefeld University June 1, 2022

RECAP LECTURE 5

- ► Incentives
 - Block Rewards
 - Transaction Fees
- ► Proof of Work
 - Sybil attack: Recap
 - Proof of work: Key idea
 - Hash puzzles
- ► Hash Puzzles: Properties
 - Difficult to compute
 - Parameterizable cost
 - Trivial to verify
- Mining Cost, Bootstrapping, 51-Percent Attack
 - Mining cost: Basic calculation & complications
 - Bootstrapping: Feedback loop & recruiting miners
 - 51-Percent-Attack: Issues to consider

Medical Blockchain Motivation

Medical Blockchain Overview

Medical Blockchain Elements

Bitcoin Mechanics I

OVERVIEW

- Medical Blockchain: Motivation
 - Situation, risks, goals
 - Attribute Based Encryption
 - Key Aggregate Cryptography
 - Cloud based solutions
- ► Medical Blockchain: Overview
 - Nodes and data
 - Access rights
 - Transactions
 - Block structure
- ► Medical Blockchain: Elements
 - Transaction types: details
 - Tokens & rewards
 - Election
- ► Bitcoin Mechanics I
 - Transactions in detail
 - Metadata, Input, Output

Medical Blockchain Motivation

Medical Blockchain Overview

Medical Blockchain Elements

Bitcoin Mechanics I

MOTIVATION I

Situation

- Medical data scattered across institutions
 Strict regulations prevent sharing and transferring
- Data standards vary per institution
 Low level of interoperability
- Little people authorized to provide access and distribute
 Patients have trouble to use their data
 - IS Optimal usage of *individual medical histories* hardly possible

MOTIVATION II

Risks

- ► No guarantee on reliability and integrity of patient data
 - Loss or hacking are real possibilities
 - Personal privacy leaks, data security, etc.
- Medical data stored in centralized manner
 - Allows malicious tampering, prone to hacking
 - Node failure due to natural disasters
- ► Examples:
 - ► June 2017, Bondi Junction, Australia: Accidental release of identifiable patient records
 - October 2017: 47 GB medical records stored in Amazon database accidentally opened to public

MOTIVATION III

Goals

- Enable seamless exchange and sharing of medical data
- Get rid of single points of failure
- Make data tamper-proof and resistant to attacks
- Make data verifiable and immutable
- ► Cloud based solutions rely on
 - Attribute-based encryption schemes
 - Key aggregate cryptography based safety

ATTRIBUTE BASED ENCRYPTION I

Key Policy Attribute Based Cryptography From [Lee et al., 2015]

- Keys for decrypting data depend on *user properties*
- User characteristics part of key ^w"key based"
- Service provider encrypts data and issues keys on demand

ATTRIBUTE BASED ENCRYPTION II

Cyphertext Policy Attribute Based Cryptography From [Lee et al., 2015]

- Keys for decrypting data depend on *data characteristics*
- Data encrypted involving characteristics
 "cyphertext based"
- Service provider encrypts and issues particularly tailored keys

Key Aggregate Cryptography I

Key Aggregate Cryptography

From [Chu et al., 2014]

- Master generates key pair (MK, PK)
 - ► MK is master key
 - PK is public key
- Master sets all necessary parameters
- Master encrypts each data record i using PK

KEY AGGREGATE CRYPTOGRAPHY II

Key Aggregate Cryptography From [Chu et al., 2014]

- User requests access for data records i₁, ..., i_l
- Master generates aggregate key K_{i1},...,i_l using MK
- *Master* sends $K_{i_1,...,i_l}$ to *User*
- User decrypts data records $i_1, ..., i_l$ using $K_{i_1,...,i_l}$

CLOUD BASED SOLUTIONS: DRAWBACK

► ABE and KAC alone provide

- Tamper resistance
- Privacy protection
- Secure storage
- ► ABE and KAC alone do *not* provide
 - ► Full control of individual medical records by patient
 - Independence from third parties
 Cloud management holds master keys etc.
- ► *Solution:* Integrate cloud based with blockchain based system.
- ► Consequences:
 - Patients "own" their data
 - Cloud management decentralized

Medical Blockchain Motivation

Medical Blockchain Overview

Medical Blockchain Elements

Bitcoin Mechanics I

MEDICAL BLOCKCHAIN: OVERVIEW

- Data too large range needs to be put to cloud
- Different participants have different ...
 - ... requirements
 - ... rights to access data
- Challenge: Design appropriate blockchain
 - Cloud holds data
 - Blockchain holds metadata

Medical Blockchain Architecture

MEDICAL BLOCKCHAIN: NODES AND DATA

Patients

- Third-party agencies
 - Research teams
 - Insurance companies
 - Information platforms
- Medical Institutions
- Data: Individual medical records

MEDICAL BLOCKCHAIN: ACCESS RIGHTS

- Everyone has read/write access to own data
- By default, everyone gets access to other data only by consent of data owner
- Exception Emergency: Medical institutions get read access without authorization

MEDICAL BLOCKCHAIN: TRANSACTIONS

- Medical data *release* through medical institution / doctor
- Medical data storage
 Interview of through patient
- Medical data *sharing* patient authorizes third-party or external institution

MEDICAL BLOCKCHAIN: BLOCK STRUCTURE

Medical Blockchain: Block Structure

- Transactions arranged by Merkle tree
- Transactions contain hash of medical data in cloud
- Public key encryption is used for data in cloud
- Access control policy established by cloud storage management

Medical Blockchain Motivation

Medical Blockchain Overview

Medical Blockchain Elements

Bitcoin Mechanics I

Symmetric Encryption

Symmetric Key Encryption Scheme

From wizardforcel.gitbooks.io/

- Encrypting and decrypting party share identical key
- ► *Advantage:* Data securely shared between two parties
- Disadvantage: Keys need to be transmitted across network

ASYMMETRIC ENCRYPTION I

Asymmetric Key Encryption Scheme

From wizardforcel.gitbooks.io/

- Encryption: Everyone holding public key can encrypt data
- Decryption: Only secret key holder can decrypt
- ► Advantage: No transmission of secret keys necessary

ASYMMETRIC ENCRYPTION II

Asymmetric Key Encryption Scheme

```
From wizardforcel.gitbooks.io/
```

► Safe transmission of secret key S from A to B:

- ▶ B generates asymmetric key pair (*PK*, *SK*), shares *PK* with *A*
- ► A encrypts S with PK
- B decrypts S with SK

► *Example: S* being symmetric, attribute based, or aggregate key

MEDICAL BLOCKCHAIN TRANSACTIONS: RELEASE

Medical Data Release: Situation

- ► Patient *A* visits doctor / medical institution *B*
- A and B have key pairs (S_A, P_A) and (S_B, P_B)
- ► *Reminder*: *P*_A and *P*_B are *A*'s and *B*'s blockchain identities
- ► *B* generates data *D*_{*A*} and performs transaction

Medical Data Release: Operations

- *B* generates digest $H(D_A)$ using hash function *H*
- B signs $H(D_A)$ using his secret key S_B
- *Transaction:* Records *A*, *B*, and $H(D_A)$ with signature from *B*

MEDICAL BLOCKCHAIN TRANSACTION: STORAGE I

Medical Data Storage: Situation

- Patient A with (S_A, P_A) has visited doctor / medical institution B with (S_B, P_B), who generated data D_A
- ► *B* has released data generation record to blockchain
- ► Simultaneously:
 - ► *B* generates symmetric key *K*_S
 - *B* encrypts D_A with K_S and K_S with P_A , yielding D'_A and K'_S

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- B sends D'_A and K'_S to A
- ► *A* is to perform storage transaction

MEDICAL BLOCKCHAIN TRANSACTION: STORAGE II

Medical Data Storage: Operations

- A verifies signature of B on $H(D_A)$ on blockchain
- A decrypts K'_S using S_A and D'_A using K_S
- A generates new encryption key E_A for cloud storage (e.g. a master-public key pair for KAC)
- ► Cloud:
 - A encrypts data D_A using E_A , yielding D''_A
 - A signs D''_A using S_A
 - A stores both D_A'' and its signature
- ► Blockchain:
 - Hash pointer to release transaction in blockchain

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Hash pointer to D''_A in cloud
- Transaction signed using S_A

MEDICAL BLOCKCHAIN TRANSACTION: SHARING

Medical Data Sharing: Situation

- ► Third party *C* with (*S_C*, *P_C*) requests access to data *D_{A1}*, ..., *D_{A1}* stored on cloud from *A*
- Release and storage of all $D_{A1}, ..., D_{Al}$ recorded in blockchain

Medical Data Sharing: Operations

- ► Cloud: A is the authority for self-owned data
 - ► A generates decryption key(s) for $D_{A1}, ..., D_{Al}$
 - A sends key(s) to C, who accesses and decrypts $D_{A1}, ..., D_{Al}$

► Blockchain:

- Access for P_C signed by S_A
- Proof of access: deposit decryption key(s) (and additional rights)
- ▶ Hash pointers to storage transactions of *D*_{A1}, ..., *D*_{A1}

MEDICAL BLOCKCHAIN: TOKENS I

Currency and Tokens

- Tokens are digital assets of value
- ► For a cryptocurrency:
 - Coins themselves
 - Rights to purchase something
- Medical data is valuable:
 - The individual itself requires it for optimizing health
 - Health insurances require it for optimizing premiums
 - Research teams require it for drawing scientificaly competitive conclusions

MEDICAL BLOCKCHAIN: TOKENS II

Token Economy

From tectales.com

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Medical data raises a market in its own right
- Idea: Reward miners with tokens of interest

MEDICAL BLOCKCHAIN: REWARDS

► Transaction fees

- Requires platforms for connecting to external services
- Note: Such platforms are referred to as oracles

► Block reward patients:

- Treatment vouchers
- Health insurance premium reductions

► Block reward hospitals:

- Receive funds for / access to external medical data
- Raises competitiveness in performing studies
- May optimize in-house protocols
- ► Block reward health insurances:
 - Access to patient data

MEDICAL BLOCKCHAIN: ELECTION

Delegated Proof of Stake

- ► Currency: Tokens
- ▶ *Proof of Stake:* Chances proportional to medical data owned
- ► Delegated Proof of Stake:
 - Assign your tokens to delegates via staking pool
 - Raises chances of delegates
 - No participation by oneself required
 - Long-term trusted delegates attract others' tokens

Medical Blockchain Motivation

Medical Blockchain Overview

Medical Blockchain Elements

Bitcoin Mechanics I

ACCOUNT BASED LEDGER I

SIMPLIFICATION: only one transaction per block

Account based ledger

- Transactions recorded in terms of sender and recipient
- Requires to keep track of identities
- Requires to keep track of identities' accounts
- UNIVERSITÄT

ACCOUNT BASED LEDGER II

SIMPLIFICATION: only one transaction per block

Account based ledger

From bitcoinbook.cs.princeton.edu

◆ロト ◆帰 ト ◆ ヨ ト ◆ ヨ ト ● の Q ()

- Verifying transactions requires to keep track of accounts
- Requires to look back in history
- Expensive operation
 - Additional data structures increase efficiency...
 - ... but require housekeeping beyond the blockchain

TRANSACTION BASED LEDGER I

Transaction Based Ledger Note: one transaction per block

- *Reminder:* Do similar as for ScroogeCoin
- Each transaction input indexed as x[y]
 - ► *y* indexes transaction
 - x indexes output
- Each transaction signed by input provider

TRANSACTION BASED LEDGER II

Transaction Based Ledger: Validity Check

From bitcoinbook.cs.princeton.edu

How to check validity? Any gains in processing time?

TRANSACTION BASED LEDGER III

Transaction Based Ledger: Finite Scan

From bitcoinbook.cs.princeton.edu

Checking validity amounts to finite scan

TRANSACTION BASED LEDGER: FEATURES

Change Addresses

- ► The output needs to consume the input
- Remaining input needs to be routed to a *change address*
- Change address could be input address or alternative identity

Efficient Verification

Compare with transactions whose output is consumed
 Constant time operation

Consolidating Funds

- ► Goal: Summarize different outputs owned by same node
- Create transaction that
 - collects different outputs as its input
 - has one output sent one of node's identities

TRANSACTION BASED LEDGER: FEATURES II

Joint Payments

From bitcoinbook.cs.princeton.edu

- Transaction claiming outputs from several identities as input
- All identities providing input sign transaction
- UNIVERSITÄ BIELEFELD

TRANSACTION SYNTAX

Transaction Syntax

- Each transaction virtually is string of bits
- Scripting language supports compilation of transactions
- Parts of script: 1.) metadata, 2.) inputs, 3.) outputs
- UNIVERSITÄT BIELEFELD

TRANSACTION SYNTAX: METADATA

Transaction Metadata Syntax

- Housekeeping information: size, number of inputs and outputs
- ► Hash of transactions 🖙 unique ID for transaction
- "lock_time" field: to be discussed later

TRANSACTION SYNTAX: INPUTS

Transaction Input Syntax

- Inputs form an array; each input has same form
- ► Hash pointer to previous transaction 🖙 previous output is input
- Signature of the owning identity (identities)

TRANSACTION SYNTAX: OUTPUTS

Transaction Output Syntax

- Outputs form an array: each output has two fields
- Value where sum of output values at most sum of input values so difference: transaction fee
- ► Field specifying recipient(s); in fact, that field is a *script*

MATERIALS / OUTLOOK

- See [Chen et al., Journal of Medical Systems 43(5), 2019]; https://doi.org/10.1007/s10916-018-1121-4
- ► See Bitcoin and Cryptocurrency Technologies, 3.1
- See https://bitcoinbook.cs.princeton.edu/ for
 further resources
- See also related resources at https://www.tectales.com
- ► Next lecture: "Bitcoin Mechanics II: Scripts"
 - See Bitcoin and Cryptocurrency Technologies 3.2 & 3.3
- ► "Smart contracts and Ethereum I"
 - ► See Bitcoin and Cryptocurrency Technologies 10.7

